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The noncanonical Hamiltonian formulation of a recently derived four-field
model describing collisionless reconnection is presented. The corresponding Lie-
Poisson bracket is shown to be a sum of a direct and semi-direct product forms
and to possess four infinite independent families of Casimir invariants. Three
out of four of these families are directly associated with the existence of La-
grangian invariants of the model. Two of the invariants generalize previously

discovered invariants of a two-field model for reconnection in low-β plasmas. Fi-
nally a variational principle is given for deriving general equilibrium equations
and an example of an equilibrium solution is described explicitely.
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1. Introduction

Magnetic reconnection (MR) is a phenomenon of great relevance for both
laboratory and astrophysical plasmas. In fact MR is believed to play a key
role in events such as solar flares, magnetospheric substorms, and sawtooth
oscillations in tokamaks [1,2]. Through the process of MR magnetic energy
can be converted into kinetic and thermal energy of a plasma, concomitant
with an alteration of the topology of the magnetic field. Whereas early
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works on MR adopted a plasma description based on collisional resistive
magnetohydrodynamics (MHD), in subsequent years a great effort has been
devoted also to investigating reconnection occurring in plasmas, such as
the high-temperature tokamak plasmas where collisions can be neglected.
In such plasmas, finite electron inertia can be responsible for the violation
of the frozen-in condition that allows MR to take place. In the context
of collisionless reconnection mediated by electron inertia, a fruitful line of
research originated with the derivation of a three-field model [3] valid for
low-β plasmas, where β is the ratio between plasma and magnetic pressure.
Two-dimensional two-field reduced versions of this model were intensively
investigated in a number of works [4–6]. More recently a collisionless four-
field model that is valid not only for plasmas with β � 1 was derived [7].
This model makes it possible to investigate MR for a wider range of values
of β and also for length scales comparable with the ion skin depth. Because
this model is free from dissipative terms, a natural and important question
is whether or not it can be cast into noncanonical Hamiltonian form [8], as
is the case for other dissipation-free plasma models, such as for instance the
one mentioned above [3]. Apart from its formal elegance, an Hamiltonian
formulation lends information on the dynamics described by the system
without the need for solving directly the model equations. In particular,
for the two-field reconnection model knowledge of the Casimir invariants,
obtained through the Hamiltonian formulation, made it possible to give an
explanation for the formation of the cross-shaped structures in the current
density and vorticity fields observed in numerical simulations of collisionless
reconnection [5]. Moreover, the Hamiltonian formalism can greatly simplify
the search for exact stationary solutions of the system and for sufficient
conditions for formal stability [9].

2. Model equations

The four-field model derived by Fitzpatrick and Porcelli [7] reads

∂(ψ − d2
e∇2ψ)

∂t
+ [ϕ, ψ − d2

e∇2ψ] − dβ [ψ, Z] = 0, (1)

∂Z

∂t
+ [ϕ, Z] − cβ [v, ψ] − dβ [∇2ψ, ψ] = 0, (2)

∂∇2ϕ

∂t
+ [ϕ,∇2ϕ] + [∇2ψ, ψ] = 0, (3)

∂v

∂t
+ [ϕ, v] − cβ [Z, ψ] = 0. (4)
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Equation (1) is a reduced Ohm’s law where the presence of finite electron
inertia, which makes it possible for MR to take place, is indicated by the
terms proportional to the electron skin depth de. Equations (2), (3) and (4)
are obtained from the electron vorticity equation, the ion vorticity equa-
tion, and the parallel ion momentum equation, respectively.
Considering a Cartesian coordinate system (x, y, z) and taking z as an ig-
norable coordinate, the fields ψ, Z, ϕ and v are related to the magnetic field
B and to the ion velocity field v by the relations B = ∇ψ×ẑ+(B(0)+cβZ)ẑ
and v = −∇ϕ × ẑ + vẑ, respectively. Here B(0) is the constant guide field,
whereas cβ =

√
β/(1 + β) and dβ = dicβ with di indicating the ion skin

depth. The ions are assumed to be cold, but electron pressure perturba-
tions are taken into account and are given by p = P (0) + B(0)p1 + p2, with
P (0) a constant background pressure, p1 coupled to the magnetic field via
the relation p1 � −cβZ, and p2, which at the lowest order is decoupled
from the system. Notice that in this context the parameter β is defined as
β = (5/3)P (0)/B(0)2. In the above formulation all the quantities are ex-
pressed in a dimensionless form according to the following normalization:
∇ = a∇, t = vAt/a, B = B/Bp, where a is a typical scale length of the
problem, Bp is a reference value for the poloidal magnetic field, and vA is
the Alfvén speed based on Bp and on the constant ion density. Finally, we
specify that [f, g] = ∇f×∇g ·ẑ, for generic fields f and g. Notice that in the
limit of perfectly conducting plasma (i.e. de = 0) the above model is equiv-
alent to the Hamiltonian model derived in [10] when field line curvature is
neglected.

3. Hamiltonian formulation

Dissipation-free fluid models for plasmas admit a noncanonical Hamiltonian
formulation [8]. In short this means that it is possible to reformulate an n-
field model as

∂ζi

∂t
= {ζi, H}, i = 1, · · · , n (5)

where ζi are suitable field variables, H is the Hamiltonian functional, and
{, } is the Poisson bracket consisting of an antisymmetric bilinear form
satisfying the Jacobi identity.
One way to derive a noncanonical Hamiltonian formulation is to proceed by
first searching for a conserved functional that is a natural candidate for the
Hamiltonian of the model. If one considers for instance a squared domain
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D in the xy plane with doubly periodic boundary conditions, the four-field
model (1)–(4) admits the following constant of motion:

H =
1
2

∫
D

d2x(d2
eJ

2 + |∇ϕ|2 + v2 + |∇ψ|2 + Z2) (6)

with J = −∇2ψ indicating the parallel current density. The quantity H

represents the total energy of the system. The first term refers to the kinetic
energy due to the relative motion of the electrons with respect to ions
along the z direction. The second and the third terms account for the
kinetic ion energy, whereas the last two terms refer to the magnetic energy.
Adopting ψe = ψ−d2

e∇2ψ, U = ∇2ϕ, Z, and v as field variables and (6) as
Hamiltonian, it is possible to show that the model can indeed be cast in a
noncanonical Hamiltonian form with Poisson bracket, of Lie-Poisson type,
defined as

{F, G} =
∫

d2x (U [FU , GU ] + ψe([Fψe , GU ]

+[FU , Gψe ] − dβ([FZ , Gψe ] + [Fψe , GZ ]) + cβ([Fv, GZ ] + [FZ , Gv]))

+Z([FZ , GU ] + [FU , GZ ] − dβde
2[Fψe , Gψe ] + cβde

2([Fv, Gψe ] + [Fψe , Gv])

−α[FZ , GZ ] − cβγ[Fv, Gv]) + v([Fv, GU ] + [FU , Gv]

+cβde
2([FZ , Gψe ] + [Fψe , GZ ]) − cβγ([Fv, GZ ] + [FZ , Gv]))

)
,

(7)

where α = dβ + cβde
2/di, γ = de

2/di, and subscripts indicate functional
differentiation.

4. Casimir invariants

Lie-Poisson brackets for noncanonical Hamiltonian systems are character-
ized by the presence of Casimir invariants. A Casimir invariant is a func-
tional that annihilates the Lie-Poisson bracket when paired with any other
functional, i.e. a Casimir C satisfies

{F, C} = 0, (8)

for every functional F . Thus Casimir invariants constraints the nonlinear
dynamics generated by the Poisson bracket for any choice of Hamiltonian.
For the derivation of the Casimirs of the four-field model we can proceed
in the following way. First, multiplying Eq. (4) times di and adding it to
Eq. (1) yields
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∂D

∂t
+ [ϕ, D] = 0, (9)

where D = ψe +div. Equation (9) indicates that the field D is a Lagrangian
invariant that remains constant along the contour lines of ϕ. The presence of
this Lagrangian invariant also suggests that using D as one of the variables
will simplify the Lie-Poisson bracket. Indeed, upon replacing ψe with D as
field variable, Eq. (8) for the four-field model reads

{F, C} =
∫

d2x (FU [CU , U ] + FD[CU , D] + FU [CD, D]

+cβFv[CZ , D] + cβFZ [Cv, D] + FZ [CU , Z] + FU [CZ , Z]

−αFZ [CZ , Z] − cβγFv[Cv, Z] + Fv[CU , v] + FU [Cv, v]

−αFv[CZ , v] − αFZ [Cv, v]) = 0.

(10)

After integrating by parts, collecting the terms multiplying the same func-
tional derivatives of F , and using the arbitrariness of F one obtains the
following system of equations for C:

[CU , D] = 0, (11)

[CU , U ] + [CD, D] + [CZ , Z] + [Cv, v] = 0, (12)

−cβ[Cv, D] − [CU , Z] + α([CZ , Z] + [Cv, v]) = 0, (13)

cβ [CZ , D] − cβγ[Cv, Z] + [CU , v] − α[CZ , v] = 0. (14)

A functional integration of (11) yields that C can be of the form

C(U, D, Z, v) =
∫

d2x(UF(D) + g(D, Z, v)), (15)

where F and g represent arbitrary functions of their arguments. Equation
(12) is automatically satisfied for any choice of C with an integrand that
depends only upon the field variables and not their spatial derivatives, and
therefore imposes no constraints. Using (12) and substituting (15) into (13)
yields(
−cβ

∂2g

∂v2
− α

∂2g

∂v∂D

)
[v, D] −

(
cβ

∂2g

∂v∂Z
+ F ′(D) + α

∂2g

∂D∂Z

)
[Z, D] = 0,

(16)



January 29, 2007 10:38 WSPC - Proceedings Trim Size: 9in x 6in tassi1

6

where ′ indicates derivative with respect to the argument of the function.
In the latter expression the coefficients multiplying the brackets ‘[ , ]’ must
vanish independently. This leads to the relation

cβ
∂g

∂v
+ α

∂g

∂D
= ZF ′(D) + K(D), (17)

with K an arbitrary function of D. Analogously, (14), (12), and (15) yield(
−cβ

∂2g

∂Z∂v
+ F ′(D) − α

∂2g

∂Z∂D

)
[D, v] −

(
cβ

∂2g

∂Z2
+ cβγ

∂2g

∂v∂D

)
[D, Z]

−
(

cβγ
∂2g

∂v2
− α

∂2g

∂Z2

)
[v, Z] = 0,

(18)

which leads to

cβ
∂g

∂v
+ α

∂g

∂D
= −ZW (v, D) + Y (v, D) (19)

with W and Y arbitrary functions. A comparison of (17) with (19) leads to

W (v, D) = −F ′(D), Y (v, D) = K(D). (20)

If one chooses g such that gv = 0, then, upon integration of (17) with
respect to D, one obtains

g(D, Z) =
Z

α
F(D) + H(D) (21)

where H′ = K(D). This allows us to identify the two independent infinite
families of Casimirs given by the following:

C1 =
∫

d2x

(
U +

Z

α

)
F(D), (22)

C2 =
∫

d2xH(D). (23)

If one sets F(D) = 0 and H(D) = 0, then the general solution for g becomes

g = g+

(
χ −

√
γα

cβ
Z

)
+ g−

(
χ +

√
γα

cβ
Z

)
, (24)

where χ = D − (α/cβ)v and g± are arbitrary functions of their arguments.
Therefore two additional independent infinite families of Casimirs are given
by

C3 =
∫

d2xg+

(
D − α

cβ
v −

√
γα

cβ
Z

)
=
∫

d2xg+(T+), (25)
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C4 =
∫

d2xg−

(
D − α

cβ
v +

√
γα

cβ
Z

)
=
∫

d2xg−(T−). (26)

Knowledge of the functional dependence of the Casimirs suggests a simplifi-
cation of the Lie-Poisson bracket will occur if the Poisson bracket is written
in terms of the new coordinates

D = D, (27)

ω = U +
Z

α
, (28)

T+ = ψe − γv −
√

γα

cβ
Z, (29)

T− = ψe − γv +
√

γα

cβ
Z. (30)

Indeed, in the new coordinates the Lie-Poisson bracket reads

{F, G} =
∫

d2x(ω[Fω , Gω] + D([FD, Gω] + [Fω , GD])

+ T−[FT− , GT− ] + T+[FT+ , GT+ ]).
(31)

This form reveals the algebraic structure of the Lie-Poisson bracket, which
can be identified as a sum of direct product and semi-direct product forms
[9,11]. Making use of the coordinates suggested by the form of the Casimirs,
the model equations can be rewritten in the compact form

∂D

∂t
= −[ϕ, D], (32)

∂ω

∂t
= −[ϕ, ω] +

1
de

2 + di
2 [D, ψ], (33)

∂T+

∂t
= −

[
ϕ +

dβ

de

√
1 +

d2
e

d2
i

ψ, T+

]
, (34)

∂T−
∂t

= −
[
ϕ − dβ

de

√
1 +

d2
e

d2
i

ψ, T−

]
(35)

with ω = U + Z/α a “generalized” vorticity. This formulation displays the
existence of the three Lagrangian invariants D, T+ and T− associated with
the families of Casimirs C2, C3 and C4, respectively. The existence of such
invariants implies that the values of D, T+ and T− remain constant on the
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contour lines of ϕ, ϕ + dβ

de

√
1 + d2

e

d2
i
ψ, and ϕ− dβ

de

√
1 + d2

e

d2
i
ψ, respectively. It

implies also that the area enclosed by the contour lines of the Lagrangian
invariants remains constant. Notice also that T+ and T− in the limit β → 0
and di → ∞ tend to the Lagrangian invariants G± = ψ − d2

e∇2ψ ± deρsU

of the two-field model derived in [3]. The family C1 is of a different nature
and one of the constraints imposed by it is that the total value of ω within
an area enclosed by a contour line of D remains constant.

5. Equilibria

The knowledge of the Casimir invariants makes it possible to construct
a variational principle [9] that can greatly simplify the search for exact
equilibrium solutions of the system. Indeed setting to zero the first variation
of the free energy functional F = H + C1 + C2 + C3 + C4 yields

−d2
e∇2ψ + ψ = D − div(ψ, D) (36)

D − ψ

d2
i + d2

e

+ F ′(D)∇2F(D) +
di F ′(D)

cβ(d2
i + d2

e)
Z(ψ, D) + H′(D) = 0, (37)

with v(ψ, D) and Z(ψ, D) given by

v =
di

d2
i + d2

e

[
D − 1

2

(
h−1

+

(
cβ

√
d2

i + d2
e

2de
ψ +

F(D)
2

)

−h−1
−

(
cβ

√
d2

i + d2
e

2de
ψ − F(D)

2

))] (38)

Z = − di

de

1√
d2

i + d2
e

[
1
2

(
h−1

+

(
cβ

√
d2

i + d2
e

2de
ψ +

F(D)
2

)

+h−1
−

(
cβ

√
d2

i + d2
e

2de
ψ − F(D)

2

))] (39)

where h+ and h− are arbitrary invertible functions of their arguments. At
equilibrium, the relations

T± = ±h−1
±

(
cβ

√
d2

i + d2
e

2de
ψ ± F(D)

2

)
(40)

also hold. Given the freedom in choosing the forms for F , H, h+, and h− it
emerges that deriving exact solutions using the above variational principle
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is considerably easier than solving the original system (1)–(4) with the time
derivatives set to zero. Once the choice for the free functions F(D), H(D),

h−1
+

(
cβ

√
d2

i +d2
e

2de
ψ + F(D)

2

)
, and h−1

−

(
cβ

√
d2

i +d2
e

2de
ψ − F(D)

2

)
(or equivalently

g+(T+) and g−(T−)) is made, the problem amounts to solving the system
(36)–(37) for ψ and D. The corresponding equilibrium solutions for v and
Z are then simply obtained from (38)–(39).
A possible choice for the free functions is the following:

h+(T+) = λT+, h−(T−) = −λT−, F(D) = D, H′(D) = d̃D

(41)
with constants λ and d̃. For this choice one has

v =
di

d2
i + d2

e

(
D − cβ

√
d2

i + d2
e

2deλ
ψ

)
, Z = − di

2λde

D√
d2

i + d2
e

, (42)

with D and ψ solutions of

∇2ψ = a(λ̃)ψ − bD, (43)

∇2D = bψ + d(d̃)D (44)

where b = 1/(d2
i + d2

e) and a(λ) and d(d̃) are arbitrary constants. A
particularly simple example of solution corresponds to D = Cψ, with
C = − 1

2b

(
d − a ±√

d2 − 2ad + a2 − 4b2
)
, and ψ a solution of

∇2ψ = (a(λ) − bC)ψ. (45)

Considering a circular domain of unit radius and adopting polar coordinates
(r, θ), the flux function admits the following solution

ψ(r, θ) = C1J1(
√

bC − a(λ)r) cos θ, (46)

with dipolar structure. The corresponding equilibrium solutions for the
fields D, v, and ϕ will be simply linear functions of ψ. Notice that the
boundary conditions in this case imply that the choice of the arbitrary
constants d and a must be such that J1(

√
bC − a(λ)) = 0.

6. Conclusions

The four-field model derived in [7] has been shown to admit a noncanonical
Hamiltonian formulation. The corresponding Lie-Poisson bracket is char-
acterized by four independent infinite families of Casimir invariants. The
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families associated with the invariants T± generalize the families related to
G± of the low-β two-field model derived in [3]. A natural question that is
under investigation is whether the invariants T± play a role analogous to
the one played by G± in the two-field limit in determining the alignment
of current density and vorticity along the separatrices of the magnetic field
during the nonlinear evolution of the system [5]. The problem of accessi-
bility to a saturated state is also under investigation, in order to extend to
this model the analysis carried out in [6]. By means of a variational prin-
ciple the problem of finding exact equilibrium solutions has been reduced
to the problem of solving a system of coupled partial differential equations
possessing two arbitrary functions of D. Choosing the arbitrary functions
to be linear functions of their arguments, the problem becomes linear and
was shown to admit, in a specific case, solutions with dipolar structures.
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