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a b s t r a c t

We construct the noncanonical Poisson bracket associated with the
phase space of first order moments of the velocity field and qua-
dratic moments of the density of a fluid with a free-boundary, con-
strained by the condition of incompressibility. Two methods are
used to obtain the bracket, both based on Dirac’s procedure for
incorporating constraints. First, the Poisson bracket of moments
of the unconstrained Euler equations is used to construct a Dirac
bracket, with Casimir invariants corresponding to volume preser-
vation and incompressibility. Second, the Dirac procedure is
applied directly to the continuum, noncanonical Poisson bracket
that describes the compressible Euler equations, and the moment
reduction is applied to this bracket. When the Hamiltonian can
be expressed exactly in terms of these moments, a closure is
achieved and the resulting finite-dimensional Hamiltonian system
provides exact solutions of Euler’s equations. This is shown to be
the case for the classical, incompressible Riemann ellipsoids, which
have velocities that vary linearly with position and have constant
density within an ellipsoidal boundary. The incompressible, nonca-
nonical Poisson bracket differs from its counterpart for the com-
pressible case in that it is not of Lie–Poisson form.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The Euler equations governing the velocity field v, density q and pressure p of an inviscid fluid are

@tvþ v � rv ¼ �q�1rpþ f and ð1Þ
@tqþ div qvð Þ ¼ 0 ð2Þ
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where f denotes an as yet unspecified force. These equations must be augmented by boundary and
initial data, and by further conditions relating the variables v, p and q: either an equation of state
(in the compressible case) or the condition divv ¼ 0 (in the incompressible case). We shall be inter-
ested in exploring their Hamiltonian structure in a particular context. Our principal reference for a
general discussion of this structure and the derivations of the corresponding brackets will be [1].

Exact solutions of the Euler equations are possible only under simplifying assumptions and in sim-
ple contexts. A family of solutions in the context of astrophysics, namely, where the force term f in-
cludes the self-gravitational effects of the fluid mass, exists under the assumption of a fluid of uniform
density confined to an ellipsoidal domain, with a velocity field linear in the coordinates. These
assumptions reduce the Euler equations to a finite system of ordinary differential equations. The equa-
tions for these Riemann ellipsoids have been widely investigated: their study goes back to the work of
Dirichlet [2] and of Riemann [3], but our principal reference for this will be [4]. We summarize their
properties in Appendix A, which we will refer to often (in Appendix B. we describe four natural frames
of reference for the ellipsoids, which are included here because they do not appear to have been pub-
lished together elsewhere).

In none of these references was the Hamiltonian nature of the finite-dimensional system empha-
sized. This was first addressed by Rosensteel [5]. His starting point was the so-called virial method
originally introduced to investigate the stability of steady solutions of the Euler equations. The virial
is a moment of the form

Mij ¼
Z

D
qxivj d3x ¼

Z
D

xiMj d3x; ð3Þ

where i; j ¼ 1;2;3; and the second form introduces the specific momentum of the fluid M ¼ qv. This
moment is considered together with another moment, equivalent to the moment-of-inertia tensor,

Rij ¼
Z

D
qxixj d3x : ð4Þ

Rosensteel presents an algebra for these moments, i.e., bracket relations among them that are closed,
and that provide a noncanonical Hamiltonian description of the Riemann ellipsoids with a certain
choice of the Hamiltonian function HðR;MÞ; we present these relations below, in Eqs. (12)–(14).

We call attention to two features of Rosensteel’s description of the incompressible case:

1. The bracket relations are presented without reference to the fluid-dynamics Eqs. (1) and (2) above,
and

2. The formulation requires a Hamiltonian function other than the total energy as well as the impo-
sition of extraneous constraints.

The feature (1) is addressed in Section 2 below, where we derive Rosensteel’s bracket relations in a
straightforward way via a moment reduction of the general fluid-dynamical bracket (7). Feature (2) is
discussed in detail in Sections 5 and 6.

We view the fluid as incompressible. This is natural because the density of the Riemann ellipsoids
is spatially uniform.1 However, Rosensteel’s bracket does not constrain the fluid to be incompressible,
and we therefore modify it via Dirac’s procedure for incorporating constraints. Dirac’s method is de-
scribed in Section 3. We observe in Section 4 that one can alternatively first apply Dirac’s procedure
and subsequently effect a moment reduction, with the same result. The resulting Dirac bracket is no
longer of Lie–Poisson type: the bracket relations depend nonlinearly on the moments.

In Section 5 we relate the noncanonical Hamiltonian equations obtained from Rosensteel’s bracket
to the equations describing the Riemann ellipsoids and show that, if the Hamiltonian is taken to be the
total energy, the pressure term from fluid dynamics is missing. It can be restored by adding an extra
term to the Hamiltonian. In Section 6, we show that the Hamiltonian equations obtained from the Dir-
ac bracket using the total energy as Hamiltonian give the full equations for the Riemann ellipsoids,

1 There are also applications allowing for compressibility wherein q ¼ qðtÞ, i.e., the density is spatially uniform but varies with
time. We do not address these cases here.
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and, moreover, avoid the necessity of imposing any further constraints. Finally, in Section 7 we sum-
marize and discuss these results.

2. The Lie–Poisson bracket and its moment reduction

The Euler Eqs. (1) and (2) can be re-expressed in terms of the momentum density, M :¼ qv, as

@tMþ v � rMþ divvð ÞM ¼ �rpþ qf and ð5Þ
@tqþ divM ¼ 0: ð6Þ

These, like Eqs. (1) and (2), will be referred to as unconstrained, since neither the constraint of incom-
pressibility nor that of an equation of state has yet been imposed.

The Hamiltonian description of these equations is reviewed in [1]. The noncanonical Poisson brack-
et, as given in [6], is2

fF;GgM ¼
Z

IR3
Mi

dG
dMj

@

@xj

dF
dMi
� dF

dMj

@

@xj

dG
dMi

� �
d3xþ

Z
IR3

q
dG
dM
� r dF

dq
� dF

dM
� r dG

dq

� �
d3x: ð7Þ

This is a Lie–Poisson bracket (i.e., is linear in the variables M and q). It is implicit in the derivation of
this bracket that the integrals are convergent, i.e., the density and momentum variables, and the func-
tions of them that appear in the integrals, fall off sufficiently fast at large distances. The subscript M
indicates that this version employs the momentum (as opposed to the velocity) as a dynamical vari-
able. Since several brackets appear below, we will use subscripts to distinguish among them. This
bracket, like the versions of the Euler equations given above, is unconstrained. It allows for compress-
ibility, which is, however, expressed explicitly only in the Hamiltonian:

H ¼
Z

IR3

jMj2

2q
þ qUðqÞ þ qv

 !
d3x; ð8Þ

where f ¼ rv and U represents the internal energy. This bracket and this Hamiltonian generate the
compressible Euler equations with the pressure given by

p ¼ q2 @U
@q

: ð9Þ

We can apply the bracket (7) above to the functionals Mij;Rij; i; j ¼ 1;3. Since (see Eqs. (3) and (4)
above)

dMij

dMk
¼ xidjk and

dMij

dq
¼ 0; ð10Þ

dRij

dMk
¼ 0 and

dRij

dq
¼ xixj; ð11Þ

we easily find the following bracket relations:

fRij;RklgR ¼ 0 ð12Þ
fMij;MklgR ¼ dilMkj � djkMil ð13Þ
fRij;MklgR ¼ dilRjk þ djlRik: ð14Þ

These are precisely the relations obtained by Rosensteel by other means ([5], Eq. (134)); hence the in-
dex R. Since they are obtained directly from the unconstrained bracket (7), they must be likewise
unconstrained.

3. Dirac bracket for the moment formulation

We address here the constraint of incompressibility, which is not incorporated in the bracket rela-
tions (12)–(14) above. We do this with the aid of the Dirac bracket formalism. We begin this section by

2 Unless otherwise indicated, repeated Latin indices are summed from 1 to 3.
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defining this and conclude by giving the relations (25)–(27) for the Dirac bracket obtained from Rosen-
steel’s bracket.

3.1. The Dirac bracket

Given a bracket f� ; �g, canonical or noncanonical, and an even number 2k of phase-space functions
fClg2k

1 , one can define a new bracket for which these functions are Casimir invariants. This (so-called)
Dirac bracket is constructed as follows:

fF;GgD ¼ fF;Gg �
X2k

l;m¼1

fF; Clgx�1
lm fC

m;Gg ð15Þ

where

xlm ¼ fCl;Cmg; ð16Þ

it is further assumed that x, an antisymmetric matrix function of the dynamical variables, is invert-
ible. The following observations follow directly from this definition:

1. Each of the functions Cl is a Casimir invariant for the Dirac bracket
2. Any Casimir invariant of the original bracket f� ; �g is likewise a Casimir invariant for f� ; �gD.
3. f� ; �gD is antisymmetric and satisfies the Leibnitz rule (as in Eq. (20) below).

It is less obvious but also true that it satisfies the Jacobi identity. This is proved in Appendix C
below.

Suppose now that P is a constant of the motion in the dynamics provided by a particular Hamilto-
nian function H under the original bracket, but not a Casimir: fP;Hg ¼ 0 but fP;Gg–0 for some phase-
space function G. Then it is not guaranteed that P will be a constant of the motion in the dynamics
provided by H under the modified bracket f� ; �gD; it is possible in principle that fP;HgD–0. An example
of this is given in Appendix D. However, some constants of the motion P remain constants of the mo-
tion under the modified bracket. The following proposition is easily verified:

Proposition 1. If P ¼ H, the Hamiltonian, or if fP;Clg ¼ 0 for each l ¼ 1;2; . . . ;2k; then P is a constant of
the motion in the dynamics provided by H also under the Dirac bracket f� ; �gD.

In the application of the present paper we find that the constants of the motion are in fact un-
changed. We have k ¼ 1 and the functions C1 and C2 are given by Eq. (17) below. The only constants
of the motion that are not Casimirs of the original bracket are the Hamiltonian H and the three com-
ponents of the angular momentum

Li ¼ �ijkMjk; i ¼ 1;2;3:

These commute with C1 and C2 by virtue of the formulas (21) and (22) below. The persistence of the
constants of the motion under the change of bracket follows therefore from the Proposition (1).

3.2. A pair of constraints

We choose for the original bracket that of Rosensteel, whose relations are given in Eqs. (12)–(14)
above.

As discussed in Section 7 below, this bracket has a Casimir whose fluid-dynamical interpretation is
the magnitude of the circulation vector. In order to construct the incompressible bracket we shall aug-
ment this algebra by adding two additional Casimirs C1 and C2 expressing the constancy of the volume
and constancy of the divergence of the velocity field. We may express these in the forms

C1 ¼ ln Det Rð Þð Þ and C2 ¼ Tr R�1M
� �

: ð17Þ

The explanation for these choices originates in the context of a fluid confined to an ellipsoidal domain
and having velocity components that are linear in the cartesian coordinates. Consider C1 first. The mo-
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ment tensor R is symmetric and, when transformed to a principal-axis frame for the ellipsoid, takes
the form

Q ¼ ðm=5Þdiag a2
1; a

2
2; a

2
3

� �
ð18Þ

where a1; a2, and a3 are the principal-axis lengths and m is the total mass.3 Therefore

detðRÞ ¼ ðm=5Þ3 a1a2a3ð Þ2 ð19Þ

and C1 as defined above is a constant of the motion as long as the volume ð4=3Þpa1a2a3 is. Since for a
figure of uniform density the constancy of the volume implies that of the density, the constancy of C1

can be viewed equally as the constancy of the density q. Regarding C2, we note that for a fluid having a
linear velocity field V ¼ LðtÞX for some matrix L, the divergence of the velocity is the trace of L, which
should therefore vanish under the assumption of incompressibility. Substituting the expression for V
into the moment Eq. (3), we find that Lt ¼ R�1M. Therefore

TrðLÞ ¼ TrðLtÞ ¼ TrðR�1MÞ

and the velocity field is solenoidal if C2 ¼ 0:

3.3. Some useful formulas

The calculation of the Dirac bracket relations and of other related quantities needed below requires
some preliminary formulas, which we record here. Two useful, general identities for matrices A ¼ ðAijÞ
are

@A�1
ij

@Akl
¼ �A�1

ik A�1
lj and

@ det A
@Aij

¼ Cij ;

where Cij is the cofactor of Aij.
In order to apply the bracket relations to arbitrary functions of functionals, we use the derivative

property of brackets: if v1; v2; . . . vk are functionals and gðvÞ ¼ gðv1; v2; . . . ; vkÞ is a real-valued function
of them, then for any other functional u

fu; gðvÞg ¼
Xk

i¼1

@g
@vi
fu; vig: ð20Þ

We can now record the following relations for Rosensteel’s bracket:

Rij;C
1

n o
R
¼ 0 and Rij;C

2
n o

R
¼ 2dij; ð21Þ

Mij;C
1

n o
R
¼ �2dij and Mij; C

2
n o

R
¼ R�1

in Mnj þ R�1
jn Mni ð22Þ

3.4. Dirac bracket for incompressible ellipsoids

Since there are only two constraints, the matrix x has only one independent entry,

x1 2 ¼ �x2 1 ¼ C1; C2
n o

R
¼ R�1

kl Rkl;Mij
� 	

R�1
ij ¼ R�1

ij djkRil þ djlRik
� �

R�1
kl ¼ 2Tr R�1

� �
ð23Þ

which implies

x�1 ¼ �1

2Tr R�1
� � 0 1

�1 0


 �
: ð24Þ

Thus, the relations for the Rosensteel–Dirac bracket become

3 The total mass is conserved; it is a Casimir invariant of the bracket (7) (see [1]).
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fRij;RklgRD ¼ 0; ð25Þ

fMij;MklgRD ¼ fMij;MklgR þ
1

TrðR�1Þ
dij R�1

kn Mnl þ R�1
ln Mnk

� ��
�dkl R�1

in Mnj þ R�1
jn Mni

� ��
and ð26Þ

fMij;RklgRD ¼ fMij;RklgR þ
2dijdkl

Tr R�1
� �

:
ð27Þ

These bracket relations are nonlinear, i.e., the Dirac bracket is no longer of Lie–Poisson type. We
return later (Section 6) to a verification that they provide a Hamiltonian description of the equations
governing the motions of the incompressible Riemann ellipsoids.

4. Dirac bracket for the fluid formulation

We obtain a different route to the Dirac bracket for the incompressible, Riemann ellipsoids if we
first constrain the fluid bracket (7) and only subsequently perform the moment reduction. For this
purpose we carry out the procedure embodied in Eq. (15) but for the original bracket we employ
the fluid-dynamical bracket (7). We impose the same constraints C1 and C2 as defined in Eq. (17)
and therefore need expressions for the brackets fF;C1gM ; fF;C

2gM and fC1;C2gM . For this we need
the variational derivatives of C1 and C2 with respect to the variables M and q. Straightforward calcu-
lations lead to the following:

dC1

dMk
¼ 0 and

dC1

dq
¼ R�1

ij xixj; ð28Þ

dC2

dMk
¼ R�1

kj xj and
dC2

dq
¼ �MklR

�1
ik R�1

jl xixj: ð29Þ

The expressions needed for modifying the bracket are easily obtained with the aid of Eqs. (28) and
(29):

F;C1
n o

M
¼ �2R�1

lm

Z
R3

qxm
dF
dMl

d3x; ð30Þ

F;C2
n o

M
¼
Z

R3
Mi R�1

jl xl
@

@xj

dF
dMi
� R�1

ij
dF
dMj


 �
d3x

þ
Z

R3
q R�1

kj xj
@

@xk

dF
dq
þ xi

dF
dMj

Aji þ Aij
� �
 �

d3x; ð31Þ

where A ¼ R�1MR�1; and, from either of the preceding equations,

C1;C2
n o

M
¼ 2Tr R�1

� �
: ð32Þ

The Dirac-constrained fluid bracket is therefore

F;Gf gMD ¼ F;Gf gM þ
1

2Tr R�1
� � F;C1

n o
M

C2;G
n o

M
� F;C2
n o

M
C1;G
n o

M

� �
; ð33Þ

where the index MD denotes the momentum-Dirac bracket, and the index M denotes the uncon-
strained fluid bracket (7). We next carry out the moment reduction with the aid of equations (10)
and (11). We find

Rij;C
1

n o
M
¼ 0 and Rij; C

2
n o

M
¼ 2dij; ð34Þ

Mij;C
1

n o
M
¼ �2dij and Mij;C

2
n o

M
¼ R�1

ik Mkj þ R�1
jk Mki: ð35Þ

These are exactly the same expressions as found in the preceding section where the braces referred to
the finite system of Rosensteel’s relations (12)–(14). Since the moment reduction of the first term on
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the right-hand side of Eq. (33) leads as we have seen to Rosensteel’s bracket, we arrive at the same
constrained, moment bracket via either route, as indicated in Fig. 1.

In the next two sections, we investigate the structure of Hamilton’s equations first using Rosen-
steel’s bracket and then using the Dirac bracket based on it.

5. Dynamical equations under Rosensteel’s bracket

In this section, we work out the dynamical equations obtained under Rosensteel’s bracket, using as
the Hamiltonian function the total energy of a Riemann ellipsoid. We shall find (see the last sentence
of this section) that a key term is missing.

The symmetric matrix R can be transformed to the diagonal form Q, as in Eq. (18) above. We have
implicitly assumed in this description that R is positive-definite: this represents a choice of initial data
and, once made, will persist for at least a finite time interval. We assign the potential energy appro-
priate to an ellipsoid with semiaxes a1; a2; a3:

W ¼ �ð1=2Þ
Z

qVðxÞd3x ¼ �ð3=10Þm2GI ; ð36Þ

where the potential function V is given by Eq. (63) and I by Eq. (64) of Appendix A. We have further
used Eq. (22) of chapter 3 of [4] to complete the integration. This potential energy is therefore a func-
tion only of the squares of the semiaxes, i.e., of the eigenvalues of the matrix R. If we write

R ¼ TtQT; ð37Þ

we may think of the six independent entries of R as consisting of the three eigenvalues together with
the three angles needed to specify the rotation matrix T. We may equally regard the potential energy
as a function of R:

VðRÞ ¼WðQÞ: ð38Þ

We use the total energy for the Hamiltonian function:

H ¼ ð1=2ÞTr MtR�1M
� �

þ VðRÞ: ð39Þ

That this function depends only on the moments M and R shows that a reduction has been achieved.4

Derivatives of the Hamiltonian are given by the formulas

Unconstrained

Fluid

Bracket

Constrained

Fluid

Bracket

Unconstrained

Moment

Bracket

Constrained

Moment

Bracket

Incompressibility

Constraint

Incompressibility

Constraint

Moment

Reduction

Moment

Reduction

Fig. 1. This commuting diagram indicates that the final result is obtained on following either path.

4 This should be compared with Rosensteel’s Eq. (4), where an extra term, proportional to the fluid pressure, appears. It is this
extra term that leads to the correct dynamical equations under Rosensteel’s bracket.
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@H
@R
¼ �1

2
R�1MMtR�1 þ @V

@R
ð40Þ

and

@H
@M

¼ R�1M ; ð41Þ

where indices have been suppressed: to get the ij derivative on the left, one takes the ij entry of the
matrix on the right.

We now find, using Rosensteel’s bracket relations (12)–(14), the equations of motion

_Mij ¼ MtR�1M
� �

ij
þ @V

@Rkl
M;Rklf gR and ð42Þ

_R ¼MþMt: ð43Þ

These represent a dynamical system of dimension 18 that has a 15-dimensional invariant manifold
expressed by the symmetry of R, and we henceforth restrict consideration to this system of dimension
15. With the aid of the relation (14) we may rewrite the first of these equations as

_M ¼MtR�1M� 2R
@V

@R
: ð44Þ

From the relations Rij ¼ TriQ rsTsj (see Eq. (37) above) and the chain rule, we find that

@W

@Q ij
¼ @V

@Rkl

@Rkl

@Q ij
¼ @V

@Rkl
TikTjl ¼ T

@V

@R
Tt

� �
ij

;

where, in the next-to-last term, we have exploited the fact that T and Q may be regarded as indepen-
dent. Eq. (44) therefore takes the form

_M ¼MtR�1M� 2RTt @W

@Q
T:

Next writing M ¼ TtN T and R ¼ TtQT we obtain the equations in the rotating frame:

_N þ ½N ;X� ¼ N
tQ�1N � 2Q

@W

@Q
and _Qþ ½Q ;X� ¼ N þN

t
: ð45Þ

Here X ¼ _TTt is the antisymmetric angular-velocity matrix and the square bracket is the commutator:
½A;B� ¼ AB� BA. At first glance Eq. (45) do not look like a well-determined dynamical system. The vari-
ables N ;Q appear on the left-hand side but on the right are N ;Q and X, so this system is well-deter-
mined only if X is a function of N and Q. However, the second equation consists of three differential
equations for Q11;Q22;Q 33 and three equations expressing X ¼ XðN ;QÞ. They therefore indeed repre-
sent a dynamical system of dimension 12 for these variables. The remaining three variables of the ori-
ginal 15 define the rotation matrix T and may be recovered if desired from the equation _T ¼ XT after
the time dependence of X has been found. Thus we can think of the transformation from ðR;MÞ to
ðQ ; T;N Þ as a change of coordinates.

The equations of motion for the Riemann ellipsoids in their standard form as given in Eq. (62) be-
low likewise represents a 12-dimensional system. We next bring the moment system (45) into this
standard form. Recall that the matrix N represents the set of first moments of the momentum qU
where U ¼ Kx is linear in x:

N ij ¼
Z

qxiUj d3x ¼
Z

qxiKjlxl d3x ¼ QilKjl:

Accordingly, we replace the matrix N with K through the transformation

N ¼ QKt : ð46Þ
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The moment Eq. (45) take the forms

_K þ K2 �XK þ KX ¼ �2
@W

@Q
and ð47Þ

_Q ¼ QKt þ KQt þXQ � QX: ð48Þ

We focus our attention first on the second of these equations, Eq. (48). Eq. (48), which is unchanged
under transposition, may be regarded as six equations for the nine entries of K. We introduce the
matrix

A ¼ diagða1; a2; a3Þ; ð49Þ

the matrix of semiaxes, so that Q ¼ ðm=5ÞA2. The diagonal entries of K are easily found to be (for exam-
ple) K11 ¼ _a1=a1, by virtue of Eq. (18). Among the off-diagonal entries there must be three that are as
yet undetermined. If we define a matrix K through the formula

K ¼ _AA�1 þ AKA�1 �X; ð50Þ

we find that Eq. (48) is satisfied if and only if the matrix K is antisymmetric. This prescribes the nine
entries of K through the three entries of _AA�1, the three independent entries of X, and the three inde-
pendent entries of K. This should be compared with [4], chapter 4, Eq. (42), where the same result is
arrived at in a different way.

With the choice (50) for K, we can now express the left-hand side of Eq. (47) in terms of the vari-
ables A; _A;X;K. We find

_K þ K2 þ ½K;X� ¼ d2A

dt2 þ
d
dt

AK�XAð Þ þ _Ak�X _Aþ AK2 þX2A� 2XAK

" #
A�1

; ð51Þ

i.e., the left-hand side of Eq. (47) agrees exactly with that of Eq. (62) of Appendix A. The right-hand
side of Eq. (47) is diagonal with, for example, the 11 entry

�2
@W

@Q 11
¼ �ð10=mÞ @W

@a2
1

¼ þ3mG
@I

@a2
1

¼ ð3=2ÞmGA1; ð52Þ

where we have used the definition (64) of I .
This gives agreement with Eq. (62) with the important exception that the pressure term is missing.

6. Dynamical equations under the Dirac bracket

We address here two aspects of results of the preceding section that are not wholly satisfactory.
One is the apparent need for a Hamiltonian that is not the total energy as usually defined, and the
other is that the system obtained is not self-contained but needs to be augmented by the further con-
straints alluded to above regarding the density and the divergence. The latter may seem an innocent
requirement since such augmentation is needed also in the fluid-dynamical derivation as presented in
[3] or [4]; see also the discussion in Appendix A below. However, the Hamiltonian version, as embod-
ied in the bracket (7) above, incorporates not only the law of conservation of momentum but also that
of conservation of mass.5 We should therefore expect the dynamics to be fully described by a Hamilto-
nian description without the need for any augmentation.

Consider the Dirac bracket f�; �gRD presented in Eqs. (25)–(27), and again employ as the Hamiltonian
the total energy (Eq. (39)). The additional terms added by the Dirac procedure to the right-hand sides
of the bracket relations provide corresponding additional terms on the right-hand sides of the dynam-
ical equations. The dynamical equations corresponding to Eqs. (42) and (43) therefore become (after a
series of tedious but straightforward calculations)

5 It would also include conservation of energy (or entropy) if we used the full bracket as given in [1].
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_M ¼MtR�1Mþ 1
TrðR�1Þ

Tr K2 þ 2
@W

@Q

� �
I � C2

Tr R�1
� � R�1MþMtR�1

� �
and ð53Þ

_R ¼MþMt � 2
C2

Tr R�1
� � I; ð54Þ

where I denotes the unit matrix and C2 is one of the two Casimir invariants of the Dirac bracket de-
fined in Eq. (17) and is therefore a constant of the motion for the preceding dynamical system. Since
it is proportional to the divergence of the velocity field, it is supposed to vanish, and we choose the
initial data so that this is so; this simplifies the preceding equations.

Proceeding as in Section 5, we obtain from these, with the same definition of K as in Eq. (50) above,
the equation

_K þ K2 þ ½K;N� ¼ �2
@W

@Q
þ 1

Tr Q�1
� � K2 þ 2@W=@Q

� �2
4

3
5Q�1: ð55Þ

This not only has the structure of Eq. (62) but also explicitly provides the expression for the pres-
sure that is otherwise obtained by the standard fluid-dynamical procedure needed to maintain the
vanishing of the divergence of the velocity field. To see this, observe that the term 2pc=q of Eq. (62)
is expressed in terms of the dynamical variables by taking the trace of each side of Eq. (62):

2pc

q
TrðA�2Þ ¼ Tr _K þ K2 þ ½K;X� þ 2@W=@Q

� �
¼ Tr K2 þ 2@W=@Q

� �
:

Here we have used the identity (51), we have used the formula (52), we have observed that
Trð½K;X�Þ ¼ 0, and we have set

Trð _KÞ ¼ d
dt

X
_ai=ai

� �
¼ @

@t
divU ¼ 0;

in accordance with the fluid-dynamical procedure for defining the pressure. This gives for the pressure
term on the right-hand side of Eq. (62) the expression

2pc

q
A�2 ¼ 1

TrðA�2Þ
Tr K2 þ 2@W=@Q
� �

A�2 ¼ 1
TrðQ�1Þ

Tr K2 þ 2@W=@Q
� �

Q�1: ð56Þ

The latter is exactly the extra term provided by the Dirac bracket formulation and completes the ver-
ification that the dynamics given by the Hamiltonian (39) under the Dirac bracket is exactly that of the
Riemann ellipsoids.

7. Discussion

Beginning with the Hamiltonian structure of the ideal fluid, we have shown that the incompress-
ible Riemann ellipsoids are governed by Hamiltonian equations in which the Hamiltonian function is
the total energy and the constraints of incompressibility are incorporated into a nonlinear bracket via
the Dirac formalism. No extraneous constraints are required in our formulation. Our results are ob-
tained by introducing a Dirac bracket for the finite-dimensional system of moment equations govern-
ing the motions of the Riemann ellipsoid, and are related in spirit to work of Nguyen and Turski [7],
who formally introduce a Dirac bracket for the purpose of achieving a Hamiltonian formulation of the
full, infinite-dimensional system of incompressible Euler equations.

Below we make some additional remarks about constraints. In particular, we show that a formu-
lation of Lewis et al. [8] for a free boundary liquid, which enforces the incompressibility constraint
by requiring divergence free functional derivatives, gives the correct equations for a self-gravitating
liquid mass.
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7.1. A bracket for a free-boundary problem

Lewis et al. [8] have proposed the following bracket for a liquid with uniform density and a free
boundary:

F;Gf g ¼
Z

D

dF
dv
� dG

dv
�x

� �
d3xþ

Z
@D

dF
dr

dG
d/
� dF

d/
dG
dr

� �
d2x; ð57Þ

where x ¼ curlv and the variations have the following meanings. The functionals F and G depend on
the velocity field v in the domain D and also on a variable r determining the instantaneous shape of
the boundary and defined as follows. The distance Dr is the amount that some point x on @D moves
normal to itself in the time interval Dt. Therefore rt ¼ n̂ � v. This is the local evolution equation for the
motion of the surface normal to itself. The variable r is therefore a function of surface coordinates on
@D and of time. The variational derivative dF=dv is clear, but what is less obvious is the requirement
that it, like the velocity v, be solenoidal:

div
dF
dv
¼ 0: ð58Þ

The remaining functional derivative is given by the formula dF=d/ ¼ n̂ � dF=dv. It is evaluated only on
the boundary and is not an independent variation but depends on dF=dv.

In their paper, Lewis et al. show how this bracket yields the equations of motion for a liquid drop
held together by surface tension. We now verify that it does the same if surface tension in the Ham-
iltonian is replaced by self-gravitation. The Hamiltonian is then H½v;r� ¼ T½v;r� þW ½r�, where

T½v;r� ¼
Z

D
ð1=2Þjvj2 d3x and W½r� ¼ �ð1=2Þ

Z
D

VðxÞd3x; VðxÞ ¼
Z

D

d3y
jx� yj :

The dependence on r arises because the domain D depends on the shape of the boundary. Straightfor-
ward calculations show that

dH
dv
¼ v;

dH
d/
¼ n̂ � v; dH

dr
¼ ð1=2Þjvj2 � VðxÞ: ð59Þ

These variations have been made without explicitly imposing the solenoidal constraint (58), but note
that dH=dv satisfies this constraint anyway by virtue of the solenoidal character of v. Therefore

fF;Hg ¼
Z

D

dF
dv
� v�xð Þd3xþ

Z
@D

n̂ � v dF
dr

d2x�
Z
@D

n̂ � dF
dv
ð1=2Þjvj2 þ VðxÞ
� �

d2x

¼
Z

D

dF
dv
� �v � rvþrVðxÞð Þd3xþ

Z
@D

dF
dr

n̂ � vd2x ;

where we have used the fact that the divergence of dF=dv vanishes and a standard vector identity.
On the other hand,

Ft ¼
Z

D

dF
dv
� vt d3xþ

Z
@D

dF
dr

rt d2x:

Hamilton’s equations hold if and only if Ft ¼ fF;Hg for all functionals F. Comparing the expressions for
the two quantities we see that we must have rt ¼ n̂ � v, expressing the free-boundary condition. The
equality of the two integrals multiplied by dF=dv does not guarantee the equality of their coefficients
because dF=dv is not entirely arbitrary but in the Lewis et al. formulation must be constrained by the
solenoidal condition: if pðxÞ is any function on D vanishing on @D,

R
D dF=dv � rpd3x ¼ 0. Thus the

equality of Ft with fF;Hg implies the correct equation of motion, vt ¼ �v � rv�rp�rVðxÞ, where
p is a scalar vanishing on @D.

In principle one should next check whether the moments ðR;MÞ effect a reduction with the Lewis
et al. procedure. Because we know that the Hamiltonian depends only on these moments, this

P.J. Morrison et al. / Annals of Physics 324 (2009) 1747–1762 1757



Author's personal copy

amounts to checking that they are closed under the brackets. With the definitions of (3) and (4) we
find for the variational derivatives, on ignoring the solenoidal constraint,

dMij

dvk
¼ xidjk;

dMij

dr
¼ xivj;

dRij

dvk
¼ 0; and

dRij

dr
¼ xixj:

It is seen that dR=dv satisfies this constraint, but dM=dv does not. This can be rectified by restricting
also the variations dv to be solenoidal, thereby modifying the expression for dM=dv by the addition of
a certain gradient. Carrying this out, checking algebraic closure, and verifying the equations of motion
of the Riemann ellipsoid would require calculations of a length and difficulty similar to those already
carried out in this paper and we have not done this.

Fasso and Lewis [9] have given an alternative Hamiltonian formulation, not for fluid dynamics, but
explicitly for the equations governing the Riemann ellipsoids.

7.2. The nature and number of incompressibility constraints

The Dirac procedure requires an even number of constraint functions and we have used two. It
might be surmised that the goal of introducing incompressibility would require only one constraint,
divv ¼ 0, and that the imposition of a second is an artifice needed in order to use the Dirac procedure.
This is not so.

It is easiest to see this in the special context of the Riemann ellipsoids. In Eq. (62) there are two
extra parameters, pc and q, that need to be defined in order to make the system determinate. One
of these is achieved by simply declaring q to be a fixed constant. The second is achieved by taking
the trace of either side of the equation and setting

@

@t
divv ¼ d

dt

X
_ai=ai

� �
¼ 0;

thereby defining pc as a function of the velocity field. This definition of pc ensures that the preceding
equation will hold for all t and therefore that

P
_ai=ai ¼ 0 for all t if this is chosen to be true at the ini-

tial instant. Our choice of two invariants for the Dirac bracket corresponds precisely to these choices.
In a more general fluid-dynamical framework in which velocity and density vary with position, the

imposition of the constraint divv ¼ 0 is not a single constraint, but an infinite family of constraints
indexed by the position vector x. Once imposed, it implies by virtue of mass-conservation Eq. (2) that
Dq=Dt ¼ 0, where D=Dt ¼ @=@t þ v � r represents the convective derivative. This means the initial val-
ues of the density are convected by the velocity field and necessitates the imposition of a second fam-
ily of conditions, namely those determining the density at the initial instant of time.

7.3. Invariants

Notice that the mass m is the zeroth moment of the density distribution and an algebra reduction
can be constructed for it. It is a Casimir invariant and, as one would expect, so is the first moment (the
center-of-mass position). By restricting attention to the quadratic moments of the density we sit on
the symplectic leaf of constant mass and center-of-mass position. In the algebra we have constructed,
aside from the Casimirs that we have introduced, there is one more.

Rosensteel [5] shows that the magnitude of the Kelvin circulation vector

C2 � Tr R�1MRMt �MM
h i

ð60Þ

is a Casimir for the algebra ðgcm 3ð ÞÞ and it remains so for the present algebra.6 That it is a Casimir for
Rosensteel’s unconstrained algebra shows that its validity does not depend on incompressibility. The
angular momentum, �ijkMjk is not a Casimir for this algebra, but is conserved by the choice of
Hamiltonian.

6 This refers to the system in the rotating frame. When the equations of motion are written in the inertial frame, it is possible to
identify a three-component vector of circulation, each of whose components is separately conserved.
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Appendix A. Summary of the equations governing riemann ellipsoids

We provide a summary of the basic equation governing the motion of a self-gravitating, liquid
ellipsoid of spatially uniform density q and semiaxes a1; a2; a3 with a velocity field depending linearly
on the cartesian coordinates. A full description is in [4], chapter 4.

Relative to a rotating reference frame in which the cartesian coordinates x are aligned with the
principal axes of the ellipsoid, fluid motions are allowed that have the form

uðxÞ ¼ _Aþ AK
� �

A�1x ð61Þ

where A ¼ diagða1; a2; a3Þ and K is an antisymmetric matrix. A and K are in general time-dependent,
but the full spatial dependence of u is that of linearity in x, as explicitly expressed in this equation. The
rotation rate of this rotating frame is expressed via a second antisymmetric matrix X, and the dynam-
ical equations governing the time evolution of the variables A;X;K may be written as (cf. [4], chapter
4, Eq. (57))

d2A

dt2 þ
d
dt

AK�XAð Þ þ _Ak�X _Aþ AK2 þX2A� 2XAK

" #
A�1 ¼ �3

2
mGAþ 2pc

q
A�2

; ð62Þ

where A ¼ AðAÞ ¼ diagðA1;A2;A3Þ represents the coefficients in the self-gravitational potential

VðxÞ ¼ 3
4

mG I �
X3

i¼1

Aix2
i

 !
; ð63Þ

which is valid inside the ellipsoid. These coefficients are determined by the semiaxes via the formulas.7

I ¼
Z 1

0

du
DðuÞ ; Ai ¼

Z 1

0

du
a2

i þ u
� �

DðuÞ
; where DðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2

1 þ uÞða2
2 þ uÞða2

3 þ uÞ
q

: ð64Þ

The scalar pc is the pressure at the center x ¼ 0.
The system (62) consists of 12 first-order equations in the 12 unknowns of A; _A;XandK in which q

and pc appear as parameters. It arises from Eq. (1) only, i.e., from the imposition of the law of conser-
vation of momentum only. It must be augmented by further information in order to render it deter-
minate. For incompressible flow, two conditions are imposed that are consistent with Eq. (2) of
mass conservation: the density8 is set equal to a constant (which is therefore excluded from the list
of variables) and the solenoidal condition

P
_ai=ai ¼ 0 is imposed. One can then express pc in terms of

the dynamical variables A; _A;X;K by taking the trace of each side of Eq. (62) and putting
d
dt

P
_ai=ai ¼ 0; then one has 12 equations in 12 unknowns in which the solenoidal conditionP

_ai=ai ¼ 0 is preserved by virtue of the choice of pc together with the initial data.9

Appendix B. The hybrid coordinate systems

The transformation of Eqs. (53) and (54) to the equations governing the dynamics of ðQ ; T;N Þ was
demonstrated in Section 5, and their equivalence to Riemann’s equations of (62) with (56) was dem-
onstrated in Section 6. Thus Riemann’s equations are simply the moment equations as we have de-
rived them with velocities and coordinates resolved in a reference frame rotating with the body of
the ellipsoid.

7 The definitions given here differ by a factor a1a2a3 from those given in [4].
8 Or alternatively the product a1a2a3.
9 Alternatively one can eliminate pc from the system and achieve a system of 10 equations in 10 unknowns.
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In fact, there are four reference frames of interest. The first, with variables ðR;MÞ, uses velocities
measured in the inertial frame and resolved along axes in the inertial frame while the fourth, with vari-
ables ðQ ;N Þ, suppressing the dependence on the rotation matrix, measures and resolves velocities in
the rotating frame (where Riemann’s equations live). There is also a second, hybrid frame, with vari-
ables ðR; ~MÞ, where velocities are measured in the inertial frame but resolved along axes in the rotat-
ing frame and a third, hybrid frame, with variables ðQ ; ~N Þ,where velocities are measured in the
rotating frame but resolved along axes in the inertial frame. We present the transformation to these
frames here.

For the fourth frame, we showed in Section 5 that with R ¼ TtQT and N ¼ TMTt the equations of
motion for ðR;MÞ, (53) and (54), become

_Q ¼ ½X;Q � þN þN
t and _N ¼ ½X;N � þN

tQ�1N þ F : ð65Þ

where F represent pressure and forcing terms which transform in a straightforward fashion.
In the third frame the velocities are resolved along the inertial frame coordinates but are measured

along some rotating frame. At the outset there is no need to bias this frame by requiring it to be the
frame rotating with the body so we can consider an arbitrary angular velocity vector x such that
uRot ¼ uInert �x� x. So, defining ~Mij ¼

R
qxiuRot

j d3x we find

~Mij ¼Mij �
Z

qxi�jklxkxl d3x ¼Mij � Ril
~Xlj; ð66Þ

where ~Xlj ¼ �ljkxk. Therefore the dynamics of R and ~M are governed by

_R ¼ ~Mþ ~Mt þ R~X� ~XR ð67Þ
_~M ¼ ~MtR�1 ~M� ~X ~M� ~M~X� R~X~X� R _~Xþ F : ð68Þ

So far, ~X can be a completely arbitrary, prespecified function of time. The terms on the right had side of
(68) represent advection, Coriolis, centripetal, Euler and external forces, respectively. If we choose a
frame to coincide with the body of the ellipsoid, then R must be diagonal and, in this manner, ~X is
determined.

The equations for moments completely specified in the rotating reference frame can be arrived at
by either conjugating (67) and (68) with an orthogonal matrix or by shifting the velocity in (65). We
shall perform both. Defining ~N ¼ N � QX and inserting into (65) gives easily

_Q ¼ ~N t þ ~N ð69Þ
_~N ¼ ~N tQ�1 ~N � 2 ~NX� QXX� Q _Xþ F : ð70Þ

Alternatively, using Q ¼ TRTt and ~N ¼ T ~MTt , substituting in (67) and (68), and identifying X ¼ T ~XTt

gives again (69) and (70). Note, with the above definition of ~X, defining ~T by _~T ¼ �~X~T , results in ~Tt ¼ T.

Appendix C. The Jacobi identity for general Dirac brackets

It is known (cf. [10]) that a Dirac bracket based on a canonical bracket satisfies the Jacobi identity
and therefore provides a valid bracket. To our knowledge there is no explicit corresponding proof in
the literature for the case when the original bracket is more general, i.e., not necessarily canonical.
We provide that proof here.

We must show that

ffF;GgD;HgD þ cyclic permutations ¼ 0 ð71Þ

for all F; G; H and any invertible x. Therefore

ffF;GgD;HgD ¼ ffF;Gg;HgD � ffF;Clgx�1
lm fCm;Gg;HgD

¼ ffF;Gg;Hg � ffF;Gg;Clgx�1
lm fC

m;Hg � ffF;Clgx�1
lm fC

m;Gg;Hg

þ ffF;Cagx�1
ab fC

b;Gg;Clgx�1
lm fC

m;Hg
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where the subscripts on the right hand side have all been dropped in the second line since it is unam-
biuously written in terms of the Lie–Poisson bracket. Upon cyclic permutations, the first term will can-
cel due to the Jacobi identity which holds for the Lie–Poisson bracket, so we can dispose of it
immediately. Using the Leibnitz rule, the left hand side of (71) becomes

¼ �ffF;Gg;Clgx�1
lm fC

m;Hg � ffF; Clg;Hgx�1
lm fC

m;Gg
� fF;Clgx�1

lm ffC
m;Gg;Hg � fF; Clgfx�1

lm ;HgfC
m;Gg

þ ffF; Cag;Clgx�1
ab fC

b;Ggx�1
lm fC

m;Hg
þ fF;Cagx�1

ab ffC
b;Gg; Clgx�1

lm fC
m;Hg

þ fF;Cagfx�1
ab ; C

lgfCb;Ggx�1
lm fC

m;Hg þ c:p:0s:

The x�1 term can be pulled out of the bracket in all of the terms by recognizing the relation

fx�1
lm ; Fg ¼ �x�1

lax
�1
bm fxab; Fg ð72Þ

¼ �x�1
lax

�1
bm ffC

a;Cbg; Fg: ð73Þ

The first three terms and their permutations cancel due to the Jacobi Identity as do the second three
terms and their permutations. Finally, the last term and its permutations cancel amongst themselves
due to the Jacobi identity. In this way, it can be shown that the Dirac bracket defines a Lie algebra with
an even number of Casimirs more than the original algebra for any bracket.

Appendix D. Non-persistence of invariants

The Dirac bracket construction ensures that the existence of the Lie–Dirac invariants. However, if
there exist other dynamical invariants of the unconstrained system, i.e. invariants that commute with
the Hamiltonian under the unconstrained bracket, canonical or Lie–Poisson, then there is no reason
that these invariants will remain invariants under the Dirac bracket dynamics. Here we give an exam-
ple where dynamical invariance is lost.

Consider an N-body type of system with a Hamiltonian of the form

Hðp; qÞ ¼
XN

i¼1

p2
i

2
þ V ¼

XN

i¼1

p2
i

2
þ
XN

i;j¼1

Vðxi � xjÞ; ð74Þ

where Vðxi � xjÞ ¼ Vðxj � xiÞ, and dynamics generated under the canonical Poisson bracket,

ff ; gg ¼
XN

i¼1

@f
@xi

@g
@pi
� @g
@xi

@f
@pi

� �
: ð75Þ

This system conserves the total momentum P ¼
PN

k¼1pi, as is easily shown.
Now, suppose we constrain away one of the degrees of freedom, by choosing

C1 ¼ x1 and C2 ¼ p1 ð76Þ

which results in the following Dirac bracket:

ff ; ggD ¼
XN

i¼2

@f
@xi

@g
@pi
� @g
@xi

@f
@pi

� �
ð77Þ

Thus under the constrained dynamics

_P ¼ @V

@x1
–0 : ð78Þ

We lose Newton’s third law because reaction forces are nulled out by the constraint.
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