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Abstract.
Bracket formulations of two kinds of dynamical systems, called incomplete and complete,

are reviewed and developed, including double bracket and metriplectic dynamics. Dissipation
based on the Cartan-Killing metric is introduced. Various examples of incomplete and complete
dynamics are discussed, including dynamics associated with three-dimensional Lie algebras.

1. Introduction
The idea of extending the Hamiltonian or Lagrangian framework to include dissipation dates to
Rayleigh, but active interest in this idea was renewed in 1981. At that time, Allan Kaufman
had the idea to formulate dissipation in terms of brackets with some algebraic properties, an
extension of the work on noncanonical Poisson brackets that I had begun a couple of years
earlier with John Greene [1, 2]. Allan invited me to join him, and this resulted in a paper on
quasilinear theory [3], which unfortunately is the only paper I have published with Allan. By
1984 we had gone our separate ways on this topic ([4, 5, 6, 7, 8]). Others became interested
too (e.g. then [9] and afterwards [10, 11]) and, in particular, in two papers [12, 13] the double
bracket for describing a particular kind of dissipation was introduced. In this work I will review
some of the above, and describe and develop a few old ideas I had back in the mid 1980’s, but
never published.

The point of a bracket formulation is to imbue a dynamical system with certain structural
properties that are generally of a geometrical flavor. For example, the ordinary Poisson bracket
ensures the invariance of a closed, nondegenerate two-form, and the geometrical ramifications,
such as the existence of the Poincare’ invariants, that follow from this. Dynamical systems
theory is a huge endeavor, encompassing mappings, a variety of ordinary and partial differential
equations, and other more exotic equations. Here, encompassing statements applicable to finite
and infinite-dimensional systems are sought, and thus the discussion need be of a general and
formal nature. Two kinds of systems are described: incomplete and complete, a terminology
similar to but different from the open, closed, and isolated systems of thermodynamics.
Incomplete systems are ones that are not complete, but of special interest here are systems
described by gradient dynamics of some type, while complete systems are described by
metriplectic dynamics, a terminology introduced in [7]. Because incomplete and complete
systems may have a Hamiltonian component, in the remainder of this introduction some features
of Hamiltonian systems are described first, as needed for the discussions of incomplete and
complete systems that follow.
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Hamiltonian systems serve as the archetype of energy conserving nondissipative systems, and
can be viewed as a dynamical extension of the first law of thermodynamics. Here the Hamiltonian
will be a time-independent function, H(z), that can be identified with energy. The Hamiltonian
dynamics considered will be noncanonically Hamiltonian, which for finite-dimensional systems
means it has the form

żi = [zi, H] = J ij ∂H

∂zj
, i, j = 1, 2, . . . ,m , (1)

where repeated up and down indices are summed, z = (z1, z2, . . . , zm) denotes phase space
coordinates, and the Poisson bracket is defined by

[f, g] =
∂f

∂zi
J ij ∂g

∂zj
, i, j = 1, 2, . . .m , (2)

for some cosymplectic form, J(z), is a Lie algebra realization over IR, i.e. it is (i) bilinear, (ii)
antisymmetric, and (iii) satisfies the Jacobi identity. Much has been written about this kind of
dynamics and the interested reader is referred to [14, 15, 16]. Canonical Hamiltonian systems
are the special case where J = Jc with

Jc =
(

0n In
−In 0n

)
, (3)

where n = m/2 denotes the number of degrees of freedom, 0n denotes an n × n block of zeros,
and In is the n× n identity.

Associated with noncanonical Hamiltonian systems are two kinds of invariants: those that
commute with the particular H of interest, which will be denoted by P = {P1(z), P2(z), . . . },
where each Pi satisfies [P, H] = 0, and a special class of invariants, distinct from P, that
are built into the phase space. These invariants, called Casimir invariants and denoted by
C = {C1(z), C2(z), . . . }, satisfy [C, f ] ≡ 0 for any phase space function f . Thus they are
invariants for any Hamiltonian. Casimir invariants require det J ≡ 0, while H ∈ P is always the
case.

For canonical Hamiltonian systems, a phase space point ze is an equilibrium point iff it
satisfies ∂H/∂zi|ze = 0 for all i = 1, 2, . . . n. For noncanonical Hamiltonian systems, the
Hamiltonian is not unique because F := H +

∑
i λiCi produces the same equations of motion

for any λi ∈ IR when inserted in the Poisson bracket. However, different equilibria are obtained
from ∂F/∂zi|ze = 0 for all i = 1, 2, . . . n, for different choices of the λi.

Equations that describe macroscopic media in terms of Eulerian variables are noncanonically
Hamiltonian systems. This includes Euler’s equations for fluid motion, magnetohydrodynamics,
the Vlasov equation, etc. (see e.g. [15, 17] and many references therein).

The Incomplete systems of interest here dissipate energy and possibly other physical
quantities. Energy, E(z), leaves the system at a rate prescribed at each phase space point
z. Thus, Ė(z) ≤ 0 for all z. Systems governed by gradient flows (see e.g. [18]), which for finite
m-dimensional systems have the form

ż = −∇zE , (4)

where ∇z = (∂/∂z1, ∂/∂z2, . . . , ∂/∂zm), are incomplete systems. Evidently,

Ė = −|∇zE|2 ≤ 0 , (5)

and so by Lyapunov’s theorem, gradient flows have built-in asymptotic stability, i.e. a temporal
relaxation to an equilibrium point ze that satisfies ∂E/∂zi|ze = 0. This follows because E serves
as a Lyapunov function.
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Stokes flow, which describes motion in the low Reynolds number limit of the the Navier-
Stokes equation, is a physical example of an infinite-dimensional gradient flow. Other examples
of infinite-dimensional gradient flows are Cahn-Hilliard systems [19] and Ricci flows [20, 21],
which are nonlinear diffusion-like equations. By Serrin’s theorem [22], the asymptotic stability
of Stokes flow also occurs for the full nonlinear Navier-Stokes equation, provided the Reynolds
number is small enough, yet this system, because it has a Hamiltonian component, is not a
gradient flow. This suggests that there may be some more general structure lurking. Indeed,
this is the subject matter of Sec. 2, where generalizations of gradient flows are described.

As basic theories, incomplete systems are incomplete: they do not properly account for
the lost energy, which would require coupling to the outside dynamics. The system’s loss is the
outside’s gain, and the gain is not accounted for in a dynamical sense, but just assumed to vanish
in a prescribed way. They are also incomplete because they do not describe the dynamics of both
energy and entropy. One or the other does not enter into the formulation in a physically precise
manner. Nevertheless, such systems that do not conserve energy or ignore entropy (or vice versa)
are quite useful in engineering and practical applications, the Navier-Stokes equation being a
case in point. Also, dissipative dynamics can be useful for proving theorems and constructing
numerical algorithms.

Complete systems conserve energy and produce entropy. They can be viewed as dynamical
extensions of thermodynamics that possess built-in structure emblematic of the first and second
laws of thermodynamics and, as such, possess both Hamiltonian and dissipative components.
The first law of energy conservation is embodied in the requirement that H be conserved under
the full dynamics. It is also assumed that the set P is conserved. In addition, complete systems
are assumed to possess an entropy function, S(z), that satisfies Ṡ(z) ≥ 0 for all z, which is an
embodiment of the second law. Thus the system may produce entropy, but it is possible there
could be motions where entropy remains constant.

As defined, complete systems do not exchange entropy, energy, or other physical quantities
with the outside. Indeed one could say there is no outside. For partial differential equations
this would mean, depending on the topology of the domain, the existence of certain boundary
conditions at infinity. However, to avoid being overly restrictive for infinite degree-of-freedom
systems (e.g. partial differential equations) this is relaxed to allow for finite boundaries by only
requiring local conservation of all physical quantities except those that are entropy-like. With
this alteration of the definition, boundary fluxes of P may exist and entropy could also traverse
the boundary. Archetype complete systems are the Boltzmann equation and the Vlasov equation
with collisions [4, 5, 7], which conserve mass, momentum and energy, but produce entropy.

Complete systems with no boundary fluxes are kindred dynamical extensions of the isolated
systems of thermodynamics, systems that do not exchange heat, work, or matter with an
environment. The closed systems of thermodynamics exchange energy but not matter with
an environment. Complete systems can accomplish this by suitable boundary conditions on P
and the allowance of boundary entropy fluxes. Similarly, complete systems can embody the open
systems of thermodynamics that allow, in addition to heat and work, matter fluxes. Incomplete
systems do not naturally line up with ideas from thermodynamics because either entropy or
energy dynamics is missing in the formulation.

In Sec. 3 metriplectic dynamics, the paradigmatic complete system, is discussed. As stated,
metriplectic systems possess a dynamical first law of conservation of energy and a second
law of entropy production. It will be seen that the Casimir invariants of the noncanonical
Hamiltonian description are candidate entropy functions and the Hamiltonian plays the role of
the thermodynamic internal energy. A shortcoming of metriplectic formulation is the apparent
stitching together of the Hamiltonian and dissipative parts. An attempt to build a more unified
structure is considered in Sec. 4, where a special kind of dissipation based on the Cartan-Killing
metric of a Lie algebra is introduced. This metric can be utilized in the context of incomplete
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or complete systems. Some special cases corresponding to the three-dimensional Lie algebras
are worked out. Finally, in Sec. 5, we conclude and summarize.

2. Incomplete Systems
To begin with, consider the general finite-dimensional incomplete system of the form

żi = [zi, H] +Di(z) , i = 1, 2, . . . ,m , (6)

where D represents dissipation of some kind. Analogous infinite-dimensional systems are written
as

ut = [u,H] +D(u) , (7)

where u(x, t) depends on independent variables x ∈ Ω and t ∈ IR, and

[F,G] =
∫

Ω
dx
δF

δu
J δG
δu

, (8)

where J is a cosymplectic operator and δF/δu denotes the function derivative of the arbitrary
functional F with respect to the dependent variable u (see e.g. [14, 15]). It is of interest to
construct ‘collision operators’ i.e. dissipative terms D that relax to steady states for future
times, t ≥ 0. In Sec. 2.1 one way to do this is shown [23], while in Sec. 2.2 the double bracket
formulation of [12, 13] is described.

2.1. Constructing H-theorems: general projection
Consider a partial differential equation of the form (7). It is not difficult to construct dissipative
terms D that formally relax to solutions associated with the Hamiltonian system without the
dissipation. The Boltzmann H-theorem serves as a guide. Because the Hamiltonian part
conserves P = {P1(z), P2(z), . . . }, the quantity

E :=
∑

i

λiPi , (9)

where the λi ∈ IR are arbitrary, satisfies the following when D 6= 0:

dE

dt
=
∫

Ω
dx

δE

δu
ut =

∫
Ω
dx

δE

δu
D . (10)

This suggests an obvious choice for D, viz. D1 := −δE/δu, which means (7) has the form of a
gradient flow and

dE

dt
= −

∫
Ω
dx

(
δE

δu

)2

≤ 0 . (11)

Whence one infers that the system could relax to states that satisfy δE/δu = 0.
As an example consider the KdV equation with dissipation,

ut + uux + uxxx = D1 , (12)

and recall Kruskal’s soliton variational principle δE/δu = 0 with

E = λ0P0 + λ1P1 + λ2P2 (13)

where

P0 =
∫

IR
dxu , P1 =

∫
IR
dx

u2

2
, P2 =

∫
IR
dx

(
u3

6
− u2

x

2

)
. (14)
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Extrema of this version of his principle are the single soliton solutions. Assuming

D1 = −η δE
δu

, (15)

where η is a parameter that sets the time scale for the relaxation, gives the following equation
of motion:

ut + uux + uxxx = −η
(
λ0 + λ1u+ λ2

1
2
u2 + λ2uxx

)
. (16)

Here the first three terms on the right correspond to quadratically non-linear damping and the
last is Burger’s dissipation. When evaluated on the single soliton solution the right-hand-side
vanishes, as of course does the left.

Generalizing a bit, supposeD2 = −LδE/δu, where L is a non-negative operator, i.e. it satisfies
〈φ,Lφ〉 = ||Tφ||2 ≥ 0 for all φ for some pairing or inner product. It is easy to construct such
operators by simply writing L = A†A which could be a positive operator, i.e. satisfy 〈φ,Lφ〉 > 0
for all φ 6= 0, or it could have some desired degeneracies built-in that result in the conservation
of some of the Pi’s in the presence of this dissipation. With this choice

dE

dt
= −

∫
Ω
dx

(
AδE
δu

)2

≤ 0 . (17)

Similarly, as a final possibility consider D3 = −A†KAδE/δu, where K is some other known
positive or non-negative operator.

The above constructions suggest a degenerate metric form for dissipation. For finite systems
this would be

żi = [zi, H] + (zi, E) , i = 1, 2, . . . ,m , (18)

with
(f, g) = − ∂f

∂zi
gij ∂g

∂zj
, i, j = 1, 2, . . .m , (19)

where the ‘metric’ gij(z) is symmetric and non-negative, i.e. it has positive eigenvalues and is
possibly degenerate (det g = 0).

There is freedom in two respects with the above construction: one can choose E to obtain
desired solutions to which the system relaxes, and one can design the degeneracies of g to
preserve certain elements of P. For example, g can be constructed using a projection operator
so that for some P ∈ P, gij∂P/∂zj = 0 for all i. Then if E = H, the equation of motion follows
from

żi = [zi, E] + (zi, E) , i = 1, 2, . . .m , (20)

and the system can relax to solutions of ∂(H + P )/∂zi|ze = 0. Evidently, the gradient flows of
Sec. 1 correspond to the case where g is the Kronecker delta, i.e. gij = δij .

2.2. Double bracket dynamics
If the operator A of Sec. 2.1 above is chosen to be the cosymplectic form, J , then a Casimir
preserving relaxation to equilibria ze that satisfy ∂F/∂zi|ze = 0 is obtained. This nice idea
was introduced in [12, 13], and this special form of dissipative bracket is now referred to as the
double bracket, which for finite-dimensional systems has the form

{{f, g}} =
m∑

k=1

J ikJ jk ∂f

∂zi

∂g

∂zj
. (21)

Plasma Theory, Wave Kinetics, Nonlinear Dynamics: KaufmanFest 2007 IOP Publishing
Journal of Physics: Conference Series 169 (2009) 012006 doi:10.1088/1742-6596/169/1/012006

5



The equations of motion follow from

żi = [zi, F ] + {{zi, F}} , i = 1, 2, . . .m , (22)

where [ , ] is a noncanonical Poisson bracket with Casimir invariants C and F = H+C (a notation
that means F is the sum of H plus a linear combination of elements of C). Evidently,

Ċ = {{C, F}} = 0 , (23)

for any C, and
Ḟ = {{F, F}} = {{H,H}} ≤ 0 . (24)

As an example, consider again the KdV equation which is noncanonically Hamiltonian with
the Gardner bracket [24],

[F,G] = −
∫

Ω
dx
δF

δu

∂

∂x

δG

δu
, (25)

and the Hamiltonian P2 of (14). The only Casimir of the Gardner bracket is P0 of (14). The
double bracket based on (25) is

{{F,G}} =
∫

Ω
dx
δF

δu

∂2

∂x2

δG

δu
(26)

and the resulting equation of motion is

ut + uux + uxxx =
(
δH

δu

)
xx

= (uux + uxxx)xx (27)

When Ω = IR and the boundary conditions u = 0 at ± infinity is assumed, this results in the
trivial solution.

However, in the case of the ideal fluid, the situation is much richer and this double bracket
construction has been used as a means of numerically obtaining equilibrium solutions that
preserve the Casimir invariants for Euler’s fluid equations [13] and for calculating the V-states
of contour dynamics [17]. It is noted in passing that the double bracket formalism has been
explored in a deeper and quite interesting sense in the context of the Toda lattice [25].

3. Complete Systems
Metriplectic dynamics [7], a systemization and formalization of the work of Allan Kaufman, the
author, and others, describes complete systems. As stated in Sec. 1, it is a dynamic generalization
of thermodynamics that embodies both the first law of conservation of energy and a second law
of internal entropy production. Because of this, it could be argued that it is a paradigm for the
most basic classical dynamics. The structure of metriplectic dynamics is similar to that above
for incomplete systems, in that metriplectic dynamics possess both Hamiltonian and dissipative
components, but the dynamics is generated by both a Hamiltonian and an entropy function and
the metric is designed to have degeneracies of a particular type.

The metriplectic equation of motion has the form

żi = {zi, F}M = [zi, F ] + (zi, F )M (28)

where [ , ] is a noncanonical Poisson bracket and F = H + S, where S is the entropy function.
As stated in Sec. 1, Casimir invariants are candidate entropies, i.e. S is chosen from C, and
this choice determines the equilibrium state ze. Given that Casimir invariants are related to
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relabeling symmetries [26, 27], and thus a counting of states, it is not too surprising that entropies
should come from C. As before, [f, C] = 0 implies

[f, S] = 0 for all f , (29)

and, as in (19), dissipation is described by the bracket

(f, g)M =
∂f

∂zi
gij
M

∂g

∂zj
, i, j = 1, 2, . . .m , (30)

but with a sign change and the following additional requirement:

(f,P)M = 0 for all f . (31)

Thus upon identifying H with the energy and the entropy S with an element of C, the dynamical
embodiment of the first and second laws are as follows:

Ḣ = {H,F}M = [H,F ] = 0 and Ṡ = {S, F}M = (S, S)M ≥ 0 . (32)

As noted above, the brackets for this have been worked out for many systems, including
kinetic theories [4, 5, 7, 8], the compressible Navier-Stokes equation [6], and other systems
[9, 10, 11]. Here the case of the free rigid body as given in [7] is briefly reviewed.

The free rigid body noncanonical Poisson bracket has Lie-Poisson form (e.g. [15, 16]), denoted
[f, g]LP , which means its cosymplectic form has the form

J ij = cijk z
k , (33)

with cijk being the structure constants of some Lie algebra. For classical theories this is generally
a real Lie algebra. If {e1, e2, . . . , em} denotes an m-dimensional Lie algebra basis, then the
structure constants satisfy

[ei, ej ]Lie = cijk e
k . (34)

where [ , ]Lie is the Lie algebra nonassociative product. (Note, for consistency our index
placement is dual to what is typical.) It can be shown that the Jacobi identity for the Poisson
bracket defined by (33) follows from that for [ , ]Lie.

For the rigid body [7], the Lie algebra is so(3) with cijk = εijk, the Levi-Civita symbol, and
the coordinates z = (z1, z2, z3) correspond to the three components of the body (principal axes)
frame angular momenta. The Hamiltonian is the rotational kinetic energy

H =
1
2
Aijz

izj i, j = 1, 2, 3 , (35)

where A = dia(1/I1, 1/I2, 1/I3) is a diagonal matrix that depends on the principal moments of
inertia, Ii. The Casimir invariant is proportional to the square of the angular momentum

C =
1
2
δijz

izj i, j = 1, 2, 3 , (36)

which serves as the entropy S, and the bracket (f, g)M is given by

(f, g)M = −
3∑

i,j,k=1

[
∂H

∂zi

∂H

∂zj
− δij

∂H

∂zk

∂H

∂zk

]
∂f

∂zi

∂g

∂zj
, (37)

where we have scaled out η, the parameter that sets the time scale for relaxation. Observe (37)
is a simple projection designed so that ∂H/∂z is a null eigenvector of gM .
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4. Cartan-Killing Dissipation
Metriplectic dynamics and its concomitant metriplectic manifold defined in [7] have an unnatural
quality: despite the complementary alignment of the degeneracies of J and g, there is no deep
intrinsic gemetrical connection between the Hamiltonian and dissipative components. One would
hope for a structure with both components arising out of some common geometrical principle.
As it stands, metriplectic dynamics has a clumsy and piecemeal quality with its brute force
projection method, as evidenced by the lack of tensorial form of (37). For incomplete systems
the double bracket formalism addresses this deficiency somewhat, in that the dissipation relies
in an essential way on the cosymplectic form. However, (21) also lacks tensorial form and has
an unnatural quality.

An origin of the problem is that symplectic manifolds have no natural metric, while for
dissipation described by a gradient flow a metric is the essential ingredient. Obviously (31)
would benefit from a natural metric. However, in addition, both the projection of (37) for
complete systems and the double bracket expression of (21) for incomplete systems can be
viewed as incorporating a Euclidean metric, and if a natural metric were available then they
could be replaced by the following:

(f, g)M = − ∂H
∂zm

∂H

∂zn

[
gmignj − gnmgij

] ∂f
∂zi

∂g

∂zj
, (38)

{{f, g}} = J ingmnJ
jn ∂f

∂zi

∂g

∂zj
. (39)

Noncanonical Hamiltonian systems with Lie-Poisson brackets arise from a reduction based
on symmetry (e.g. [15, 16]) and consequently are described by a particular Lie algebra. Thus,
the idea comes to mind to incorporate the trace form used by Cartan to classify Lie algebras as
a natural metric for dissipation. The trace form, sometimes called the Cartan-Killing metric, is
defined in coordinates by

gij
CK = cinmc

jm
n , (40)

where the structure constants cijk ∈ IR are defined as in Sec. 3. So, a dissipation naturally mated
to a Lie-Poisson bracket appears to be

(f, g)CK =
∂f

∂zi
gij
CK

∂g

∂zj
, i, j = 1, 2, . . .m . (41)

This choice comes, so to speak, ‘as is’. Because it is essentially a kinematic construction,
there is no a priori guarantee that (f,H)CK = 0 for all f . Thus a bracket of the form
{f, g} = [f, g]LP + (f, g)CK might not work, and for a metriplectic formulation one would
need to use a bracket of the form of (38). Similarly, in general (f,H)CK 6= 0 for all f , and so for
an incomplete description of dissipation one might need to use (39). In any event, both these
constructions seem to be superior.

Another problem with (41), a potential major problem, is that the eigenvalues of gCK can have
either sign. Because gCK may also have zero eigenvalues, there could be expanding, contracting,
and null directions, depending on the choices of H and S. It is possible that this seeming
disadvantage could be turned into an advantage in selecting out preferential systems that possess
the desired degeneracies, in which case, {f, g} = [f, g]LP + (f, g)CK would work.

For semisimple Lie algebras, det g 6= 0 and an inverse, gCK
jk , can be defined, i.e.

gik
CKg

CK
kj = δi

j . (42)

The standard quadratic Casimir invariant is given in terms of this inverse as follows:

C =
1
2
gCK
ij zizj . (43)
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If the Lie algebra is compact as well as semisimple then gCK generates a gradient flow. In this
case there are no degeneracies in gCK and consequently the system relaxes without preserving
an H nor an S.

Darboux’s theorem of geometric mechanics reveals that all symplectic manifolds are
equivalent in the sense that they all can be described locally in terms of canonical coordinate
systems. In this vein, there is a similar structure theorem for metriplectic manifolds and
double bracket dissipation with a Lie-Poisson bracket and Cartan-Killing dissipation. In the
classification of Lie algebras, it is known that a basis exists such that the CK metric can be
written in standard form where gCK = dia(ε1, ε2, . . . , ) with εi ∈ {−1, 0, 1}. A linear change of
phase space coordinates, z̄i = Ai

jz
j induces a basis change for the Lie algebra, which amounts

to a usual tensorial change of coordinates for the structure constants and the Cartan-Killing
metric. Thus, the work of Cartan and others can be carried over directly to give a structure
theorem.

To illustrate some of the ideas above, consider the Lie algebras of dimension three [28]. The
designation used here will be the same as that used for the homogeneous Bianchi cosmologies
[29]. There are nine real three-dimensional Lie algebras, but only Types III, VIII, and IX will
be considered for the purpose of demonstration. The structure constants, for these three cases
are as follows:

(i) Type IX cijk = εijk,
(ii) Type VIII c23

1 = −c32
1 = −1 , c31

2 = −c13
2 = 1 , c12

3 = −c21
3 = 1, otherwise 0,

(iii) Type III c13
1 = −c31

1 = +1 otherwise 0.

Type IX is so(3) and Type VIII is sl(2, 1), which arises in the context of a vortex reduction of
the Hamiltonian description of fluid mechanics, e.g. the Kida vortex [30, 31]. The cosymplectic
forms for the Lie-Poisson brackets for these algebras are

JIX =

 0 z3 −z2

−z3 0 z1

z2 −z1 0

 , (44)

JV III =

 0 −z3 −z2

z3 0 z1

z2 −z1 0

 , (45)

JIII =

 0 0 z1

0 0 0
−z1 0 0

 , (46)

which have the Casimir invariants

CIX = (z1)2 + (z2)2 + (z3)2 , (47)
CV II = (z1)2 + (z2)2 − (z3)2 , (48)
CIII = f(z1, z2) , (49)

Plasma Theory, Wave Kinetics, Nonlinear Dynamics: KaufmanFest 2007 IOP Publishing
Journal of Physics: Conference Series 169 (2009) 012006 doi:10.1088/1742-6596/169/1/012006

9



respectively. The Cartan-Killing metrics, gCK , for these algebras are

gIX = −2

 1 0 0
0 1 0
0 0 1

 , (50)

gV III = −2

−1 0 0
0 1 0
0 0 1

 , (51)

gIII = −

 0 0 0
0 0 0
0 0 1

 . (52)

Note, Type IX is compact and semisimple, Type VIII is semisimple and noncompact, while Type
III is not semisimple. To within a scale factor these are already in the standard form described
above.

Because gIX is the Euclidean metric, Type IX metriplectic dynamics and double bracket
dynamics are exactly as before. It is, however, somewhat interesting to see what kind of
dissipation is generated by the standard Casimir invariant of (43) when it is inserted into
(f, g)CK = (f, g)IX , the dissipative bracket for this case. This gives

(zi, CIX)IX = gij
IXg

IX
jk z

k = zi , (53)

which corresponds to isotropic linear damping or growth. Note, this holds true for any compact
semisimple Lie Group of any dimension.

The lack of definiteness for Type IIV is problematic if one seeks relaxation. However, if one
chooses an S independent of z1, then partial relaxation to the z2 − z3 plane is possible. Or,
conversely, one could choose S independent of z2 and z3 and consider a relaxation to the z1

axis. If such an S does not appear to have a mathematical or physical origin, then this is not
too appealing.

Because of the degeneracy, Type III is more interesting. From (52) and (49), it is seen that
∂CIII/∂z is a null eigenvector of gIII . Consequently, the dynamics

żi = [zi, F ]III + (zi, F )III , (54)

with F = H + CIII , satisfies Ċ = 0, Ḟ = Ḣ and

Ḣ = (H,H)III ≤ 0 . (55)

Thus, this is an alternative to double bracket dynamics for incomplete systems.
One could continue and construct metriplectic dynamics for complete systems by projection

etc., but this will not be pursued further now.

5. Summary and Conclusions
In this work, a variety of bracket formulations of dynamical systems have been described, with a
division into the two categories of incomplete and complete systems. Incomplete systems do not
describe in entirety the dynamics of both entropy and energy, but are quite useful for practical
situations. Complete systems, as described by metriplectic dynamics, are a dynamical extension
of thermodynamics that describes energy conservation and entropy production dynamics. An
new kind of dissipation based on the Cartan-Killing metric was introduced and described for
examples associated with Lie algebras of dimension three. The results about Cartan-Killing
dissipation are preliminary: only the surface has been scratched and there are many directions
in which one could proceed. This might be the subject of a future publication.
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Appendix A. Reminiscence
For many decades Allan Kaufman has been a most important presence in plasma physics. He
has a widespread reputation for crisp, clear, and beautiful physics at the forefront of plasma
science, with a theoretical physics flavor that belies his training at the University of Chicago
under Gregor Wentzel. Allan has also had a profound influence by advising generations of
students and by encouraging other young physicists. I personally owe him a debt of gratitude
and I am glad to have this opportunity to express it and to reminisce a bit.

In the Fall of 1979 I moved to Princeton to accept a post doctoral position and while there I
was most fortunate to eventually work with John Greene, another giant of our field. But, this
did not happen right away. After a month or two at Princeton, I summoned the courage to poke
my head into John’s office and utter something that had been on my mind for a while, namely,
that I thought MHD was a Hamiltonian theory. I am not exactly sure of the origin of this idea,
but I had studied Hamiltonian dynamics as a graduate student and knew that this Berkeley
plasma physics professor by the name of Kaufman had an interest in it and its applications to
plasma physics. I remember in 1973 I wanted to know more about and possibly even be part of
Allan’s Berkeley school. In any case, my thought about MHD was met by John’s ‘go-away’ stare
– and so I left. Nevertheless, now and then I began toiling away on my own on this idea, totally
ignorant of any literature on the subject. A while later, I returned to John and repeated that
I thought MHD was a Hamiltonian theory – but added, here is why. John was more receptive
this time and let me explain that based on a scaling argument the velocity field could not be a
canonical field and that one needed to add a gradient and that this could be seen in Fourier space
etc. John’s response was, “Oh That.” It turned out that I was well on my way to rediscovering
the Clebsch representation of fluid mechanics, a potential representation of the velocity field
dating from the mid-nineteenth century (see e.g. [22]). This was a big disappointment to me,
but as things usually go, not a total loss. John suggested some literature, one thing led to
another, and eventually this led to our fairly influential paper [1] on noncanonical brackets for
MHD that was submitted to PRL in April of 1980. My Clebsch material was used as one of
two means for proving the Jacobi identity by exploiting the connection between the canonical
Clebsch variables and the usual but noncanonical Eulerian variables, which John insisted we do
prior to publication. I wanted to give some backstory about how this came to pass, since many
people have asked me about it and because Allan played a role in this story.

In January of 1980 there was a buzz around the theory wing of the Princeton Plasma Physics
Laboratory that one of Allan’s students was coming to give a seminar. Allan’s students were (and
are) viewed as gems: smart, highly polished, articulate, and universally well-educated. Robert
Littlejohn came to Princeton and didn’t disappoint when he spoke about his dissertation work
on guiding center perturbation theory using noncanonical variables [32] that he did under Allan’s
supervision. Robert gave a sparkling and highly motivating talk. His talk and one of the papers
that John suggested to me by Clifford Gardner on the Hamilton description of the KdV equation
[24] were the inspiration for our work. Both concern Hamiltonian structure in terms of Poisson
brackets that obey the Lie algebraic properties, but the latter was for an infinite-dimensional
system and possesses a degeneracy and, hence, what we now call a Casimir invariant. This
served as the prototype of what we called the noncanonical Hamiltonian formulation in our
paper.

Allan immediately took an active interest in this work and gave me more encouragement
than anyone. Many of us early in our careers have doubts and insecurities, and having an
esteemed scientist like Allan take an interest was flattering, motivating, and also somewhat
overwhelming. Allan’s efforts were most important to me, because my style of mathematical
physics was uncommon in the plasma community and my paper was met with criticism. Without
his help, I may not have continued. Allan also played an active role in the dissemination of this
work. Through him, Jerry Marsden and Alan Weinstein became aware of it, and this started
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their interest in noncanonical brackets for fluids and plasmas, followed by many others. Without
question, because of Allan, my work rapidly cut a much wider swath.

Finally, I would like to mention another debt I owe Allan. Before I left Princeton he nominated
me for a fellowship; although I didn’t receive it, his action had consequences. First, he sent me
a copy of the nomination letter, which was quite flattering. I remember carrying it around,
rereading it, unbelieving that he had written such words. Second, he sent it to several senior
scientists, and it was evident to me that their attitudes toward me changed because of this. I
believe this action of Allan’s jump-started my career. Last, at some point this letter got sent
to my mother-in-law, an outspoken Cal graduate, and I do believe her attitude toward me also
improved after that. So, Allan, thanks again for all you’ve done, for being a generous and kind
mentor, and I wish you the happiest of Happy Birthdays.
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