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An isothermal truncation of the electromagnetic gyrofluid model of Snyder and Hammett �Phys.
Plasmas 8, 3199 �2001�� is shown to be Hamiltonian. The corresponding noncanonical Lie–Poisson
bracket and its Casimir invariants are presented. The invariants are used to obtain a set of coupled
Grad–Shafranov equations describing equilibria and propagating coherent structures.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3087972�

I. INTRODUCTION

Fluid models of plasma dynamics have proven fruitful in
bringing to light new nonlinear phenomena such as solitary
kinetic Alfvén waves,1 streamers,2 generation of geodesic
acoustic modes,3,4 fast reconnection mediated by whistler5

and kinetic Alfvén waves,6,7 mechanisms for the onset of fast
reconnection,8 partial reconnection,9 and phase mixing in
collisionless reconnection.10 In some cases fluid models have
been used to explain the results of kinetic simulations of
turbulent transport.11 A subset of the fluid models, referred to
as “cold ion” models because they assume that Ti�Te, has
been shown to possess a noncanonical Hamiltonian
formulation.12–14 Attempts to find such formulations for
models with Ti�Te, however, have met with mixed success.
The difficulty resides primarily in the nonlocality of the ion
dynamics caused by the excursions of the ions in their Lar-
mor gyration.

A particularly important class of fluid models is the
flute-reduced models that exploit the ordering k� �k�, where
k� is the component of the wavevector k in the direction of
the background magnetic field B0 and k� is the component
perpendicular to B0. Within the class of flute-reduced hot-ion
models, it is convenient to distinguish those that approximate
the nonlocal terms through a Taylor-series expansion based
on a long-wavelength approximation, �ik��1,15,16 and those
that attempt to account for the full range of perpendicular
wavevectors by using nonlocal averaging operators.17–20 We
will refer to the first as finite Larmor radius �FLR� models
and the second as gyrofluid models.

Electrostatic fluid models using both the FLR �Ref. 21�
and gyrofluid17,18 approaches have been available for many
years. Both approaches have played a key role in advancing
the understanding of turbulent transport. A few years ago,
Krommes and Koleshnikov22 presented a Hamiltonian for-
mulation for a simple gyrofluid model due to Rogers et al.,11

evolving the density and ion temperature. They showed how
to use the Hamiltonian property of the system to calculate
the generation of long-wavelength structures, such as zonal
flows, by short-wavelength turbulence. Shortly thereafter
Waelbroeck et al.23 presented a Hamiltonian formulation for
a FLR model of ion-temperature gradient driven turbulence
proposed by Kim et al.24 They pointed out the role of the
Hamiltonian property in the existence of ideal coherent
structures �ideal coherent structures are characterized by a

balance between dispersion and nonlinear steepening, in con-
trast to dissipative coherent structures where steepening is
balanced by dissipative transport�. They also provided an
example of how the lack of Hamiltonian structure could re-
sult in the equilibrium equation being insoluble. The role of
the Hamiltonian formulation in the existence of ideal coher-
ent structures is reviewed briefly in Sec. V of the present
paper.

Electromagnetic fluid models, like their electrostatic
counterparts, have played an important role in advancing the
understanding of plasma dynamics. In particular, electromag-
netic fluid models are the primary means of interpreting the
observations of nonlinear structures in the magnetopause25

and in the edge of laboratory experiments.26 Thus, it is not
surprising that efforts to construct electromagnetic Hamil-
tonian models for hot-ion plasma dynamics preceded similar
efforts for electrostatic models by over a decade. Hazeltine et
al. constructed the first such Hamiltonian FLR model by us-
ing a mapping technique.27 Unfortunately, the dispersion re-
lation for the linearized version of their model, although cor-
rect in the long-wavelength limit, has undesirable features at
short wavelengths that have inhibited its widespread adop-
tion. More recently, Schep and co-workers proposed a gyro-
fluid model �Schep–Pegoraro–Kushinov �SPK�� along with a
generating noncanonical Poisson bracket.28,29 The SPK
bracket, however, fails to satisfy the Jacobi identity �we give
a counterexample in Appendix A� and is thus disqualified as
a Poisson bracket. Lastly, we note that Strinzi et al. also used
Lagrangian methods to construct gyrofluid models satisfying
desired conservation properties.30

In the present paper, we describe a simple electromag-
netic gyrofluid model that possesses a noncanonical Hamil-
tonian formulation. Our model is a severe truncation of the
much more complete model proposed by Snyder and Ham-
mett that advances six moments for the ions and two mo-
ments for the electron dynamics.19 These authors showed
that their model reproduces exactly the kinetic dispersion
relation. They did not, however, address the question of its
Hamiltonian nature. Grasso et al. by contrast used a minimal
Hamiltonian electromagnetic gyrofluid model to investigate
hot-ion effects in magnetic reconnection.31 Their model as-
sumes that the density of ion guiding centers is unperturbed
and it evolves only the magnetic flux and the particle density.
The orbit-averaging effects are described by a Padé approxi-
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mation of the response of the particle density to the electro-
static potential. Loureiro and Hammett also investigated
magnetic reconnection with a model similar to that of Grasso
et al. except that they used Bessel functions to achieve a
more accurate description of the orbit-averaging effects.20

The model we investigate here extends the models of
Grasso et al.31 and Loureiro and Hammett20 by additionally
evolving the ion guiding center density. This enables our
model to describe drift waves and the effects of diamagnetic
flows associated with inhomogeneous plasma. With the in-
clusion of transport terms, our model is also able to describe
relatively slow processes, such as tearing modes, where the
density and velocity profiles may evolve under the effect of
collisional transport processes.

II. FORMULATION

We are interested in a model that describes the interac-
tion of kinetic Alfvén waves with drift waves. In order to
avoid complications associated with the sound wave, ion par-
allel motion, and ion Landau damping, we assume that
k�vti���, where vti is the ion thermal velocity and �� is the
drift frequency. We leave �e unrestricted, by contrast, in or-
der to describe both the “inertial” ��e�me /mi� and the “ki-
netic” ��e�me /mi� regimes of the Alfvén wave32 ��e is the
ratio of the electron kinetic pressure to the magnetic pres-
sures�. For �e�me /mi�vte�vA�, however, our equations
must be augmented with a model for electron Landau damp-
ing. We consider the evolution of the density of the ion guid-
ing centers ni, the electron density ne, and the magnetic flux
�=−Az where A is the vector potential. The quasineutrality
condition determines the electrostatic potential �. We nor-
malize these quantities according to

�ni,ne,�,�� =
Ln

�s
� n̂i

n0
,
n̂e

n0
,−

Âz

�sB0
,
e�̂

Te0
� ,

where the carets denote the dimensional variables. Here n0 is
the background density, �s=cs /�ci where cs= �Te /mi�1/2 is the
sound speed, �ci=eB0 /mi is the ion cyclotron frequency, and
Ln=n0 / 	�n	 is the density scale length. We also normalize
the independent variables according to

�t,k�,k�� = �t̂cs/Ln, k̂�Ln, k̂��s� .

Normalizing the perpendicular lengths to �s has the advan-
tage of making the �=Ti /Te→0 limit transparent.

The evolution equations are obtained from the equations
of Ref. 19 by assuming constant temperatures for both the
ions and electrons and discarding all but the lowest-order
moment for the ions and the lowest two parallel moments for
the electrons. They are

�ni

�t
+ �	,ni� = 0, �1�

�ne

�t
+ ��,ne� − cA

2��J = 0, �2�

�

�t
�� − de

2J� − de
2��,J� + ���ne − �� = 0, �3�

where ��
=�z
+ �� ,
� for any field 
, J=Jz=�2� is the axial
current, de

2=2me / �mi�e� is the square of the electron skin
depth normalized to �s, cA= �2 /�e�1/2 is the Alfvén speed
normalized to the sound speed, and

	 = �0
1/2�

is the gyroaveraged electrostatic potential. Here �0
1/2 is an

operator introduced by Dorland and Hammett18 and defined
by

�0
1/2
 = exp� 1

2���
2 �I0

1/2�− ���
2 �
 , �4�

where I0 is the modified Bessel function of the first kind and
�=Ti /Te. The definition in Eq. �4� should be interpreted in
terms of its series expansion,

�0
1/2
 = 1 + 


n=1

�

an����
2 �n = 1 + ��/2��2 + ¯ ,

where the an are real numbers. The system is completed by
the quasineutrality equation,

ne = �0
1/2ni + ��0 − 1��/� , �5�

where �0= ��0
1/2�2. The SPK model,28 by contrast, can be

obtained from the standard FLR model by replacing the per-
pendicular gradients by ���0−1� /��1/2. This procedure gives
the correct result in the limit of long and short perpendicular
wavelengths as well as �by construction� in the �→0 limit,
but it is clearly less physically compelling than that of Ref.
19.

The above equations conserve the following energy:

H = 1
2 �cA

2�	��	2 + de
2J2� + ne

2 + ��1 − �0��/�� , �6�

where the angular brackets denote the integral over the vol-
ume of interest, �g�x ,y ,z , t��=g�x ,y ,z , t�dxdydz, and the
boundary conditions have been assumed to be such that the
surface integrals vanish. Using the quasineutrality equation,
the conserved energy may be written in more perspicuous
form as

H = 1
2 �cA

2�	��	2 + de
2J2� + ne

2 + 	ni − �ne� .

In this form of the energy the successive terms represent,
respectively, the magnetic energy, the kinetic energy in the
electron parallel motion, the electron thermal energy, and the
electrostatic energy of the ions and electrons. It is easy to
show that the ion thermal energy is conserved separately:
including it in the Hamiltonian lengthens the algebra unnec-
essarily.

For latter use we record here some properties of the op-
erators �0

1/2 and �0−1. First, these operators and their in-
verses commute with each other, like any operator that is a
sum of derivatives with constant coefficients. The operators
are also formally self-adjoint; that is, if one integrates by
parts term by term and neglects surface terms,
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�f�0
1/2g� = �g��0

1/2�†f� = �g�0
1/2f� .

Finally, we have �0
1/2�
−cx�=�0

1/2
−cx, �0�
−cx�=�0
−cx,
and ��0−1��
−cx�= ��0−1�
, where c is any constant. These
identities are useful when seeking traveling-wave solutions,
and similar identities hold with x replaced by y.

III. HAMILTONIAN FORMULATION

A. Poisson bracket

We adopt ni, ne, and =�−de
2J as our dynamical vari-

ables. In terms of these variables the potential � is given by
the quasineutrality condition

� = ���0 − 1�−1�ne − �0
1/2ni� , �7�

and the Hamiltonian takes the form

H�ni,ne,� = 1
2 �cA

2 �  · �1 − de
2�2�−1 �  + ne

2

+ ��ne − �0
1/2ni��1 − �0�−1�ne − �0

1/2ni�� . �8�

Its variations are Hni
=	, Hne

=ne−�, and H=−2J /�e,
where H
j

is a shorthand notation for the functional deriva-
tive of H�
1 ,
2 ,
3� with respect to the fields 
1=ni, 
2=ne,

3=:

H
j
ª

�H

�
 j
, j = 1,2,3.

We may write the equations of motion in terms of the varia-
tions of H as follows:

�ni

�t
= �ni,Hni

� , �9�

�ne

�t
= − �zH − �,H� − �ne,Hne

� , �10�

�

�t
= − �zHne

− �,Hne
� − �e

2�ne,H� , �11�

where �e
2= 1

2�ede
2=me /mi is the electron gyroradius normal-

ized to �s. The corresponding Poisson bracket is

�F,G� = �F,G�� + �F,G��, �12�

where

�F,G�� = �Gne
�zF − Fne

�zG� �13�

and

�F,G�� = �− ni�Fni
,Gni

� + ne��Fne
,Gne

� + �e
2�F,G��

+ ��F,Gne
� + �Fne

,G��� . �14�

This Poisson bracket can be shown directly to satisfy the
Jacobi identity,

J ª �F,�G,H�� + �G,�H,F�� + �H,�F,G�� = 0 �15�

for all functionals F, G, H by using the techniques developed
in Ref. 33. In Sec. III C, however, we show this by simpler
means.

B. Invariants

Casimir functionals are invariants of the motion that owe
their existence to properties of the Poisson bracket.13,34 They
are most useful in the presence of an ignorable coordinate
because they can be used to construct variational principles
for studying the equilibrium and stability of a system. In this
section we assume �z=0: the generalization to the case of
helical symmetry is straightforward and is described in Ref.
13.

We obtain the Casimir functional C�ni ,ne ,� by ex-
pressing the condition that �
i ,C�=0 for 
i=ni, ne, and .
This results in the following system of equations:

�ni,Cni
� = 0, �16�

�ne,Cne
� + �,C� = 0, �17�

�e
2�ne,C� + �,Cne

� = 0. �18�

The first equation is easily integrated,

C�ni,ne,� = �f�ni�� + G�ne,� , �19�

where G�ne ,� is a functional. The second equation, Eq.
�17�, imposes that G�ne ,�= �g�ne ,�� where g is an arbi-
trary function. The last equation, Eq. �18�, becomes

�e
2g − gnene

= 0.

Integrating this using the method of characteristics follows
G=G��ne ,� where

G��ne,� = �g�� � �ene�� , �20�

and the g� are an additional two arbitrary functions. The
general form of the Casimir functional is thus

C�ne,ni,� = �f�ni� + g+� + �ene� + g−� − �ene�� . �21�

Note that in the limit �e→0, the two Casimirs G� be-
come indistinguishable. In this limit a replacement Casimir is
obtained from the first-order term in the Taylor expansion of
G� with respect to �e. That is, the two Casimirs G� are
replaced by �g���� and �neh���� where g=g++g− and h=g+�
−g−�.

In addition to Casimir invariants there are invariants,
such as linear and angular momenta, that are not built into
the Poisson bracket but depend on the choice of Hamil-
tonian. The following is an example of such for the system of
Eqs. �1�–�3�:

Py�ni,ne� = �x�ne − ni�� . �22�

If one identifies ne−ni with the vorticity, then this quantity is
proportional to the y component of the total linear momen-
tum. Its invariance follows upon time differentiating, insert-
ing Eqs. �1�–�3�, and making use of the properties of �0

discussed at the end of Sec. II. Replacing x by y gives the x
component of the linear momentum, and angular momentum
is obtained similarly. In Sec. V we obtain a variational prin-
ciple for equilibria; if Py is added to this, one obtains equi-
libria in a frame moving uniformly in the y direction.
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C. Normal fields and Jacobi

The form of the Casimirs suggests the introduction of a
new set of variables, which we call “normal fields”: ni and
�=��ene. In terms of these normal fields, the equations
of motion take the form

�ni

�t
+ �	,ni� = 0, �23�

��

�t
+ ���,�� = 0, �24�

where

�� = � � �/�e

are stream-functions that describe flows that convect the
fields ni, �. The latter are thus Lagrangian conserved quan-
tities. Grasso et al.10 showed that the mixing of such La-
grangian quantities by the convecting flows is an important
ingredient in rapid collisionless reconnection.

The Poisson bracket of Eq. �12� can be written in terms
of the normal fields by making use of the transformation ni

=ni, = �++−� /2, and ne= �+−−� /2�e, which gives

for the functional derivatives: Fni
= F̄ni

, Fne
=�e�F̄−

− F̄+
�,

and F= F̄−
+ F̄+

. Dropping the overbars and inserting
these derivatives into the brackets of Eqs. �13� and �14� gives

�F,G�� = 2�e�G−
�zF−

− G+
�zF+

� , �25�

and

�F,G�� = − �ni�Fni
,Gni

�� + 2�e�+�F+
,G+

��

− 2�e�−�F−
,G−

�� . �26�

The above sums of independent brackets of the three vari-
ables are known as a direct product.35 Since the individual
brackets satisfy the Jacobi identity, their sums in Eqs. �25�
and �26� also do. By virtue of the coordinate invariance of
the Jacobi identity, it follows that the parallel and perpen-
dicular brackets given by Eqs. �13� and �14� also satisfy the
Jacobi identity. Appendix B shows that the complete bracket
given in Eq. �12� also satisfies this identity and is thus a
proper Poisson bracket.

IV. DISPERSION RELATION

A. Exact

To make contact with previously known results, we in-
troduce the resistive force in the electron momentum equa-
tion,

�

�t
�� − de

2J� − de
2��,J� + ���n − �� = �J .

Taking the ẑ axis to lie in the direction of the equilibrium
magnetic field, the x̂ axis to lie in the direction of the equi-
librium density gradient, and ŷ= ẑ� x̂, the linearized equa-
tions consist of

�ni − ��e	 = 0, �27�

�ne − ��e� − k�k�
2 cA

2� = 0, �28�

��1 + k�
2 de

2�� − ��e� + k��� − ne� = − i�k�
2 � , �29�

and the linearized quasineutrality equation. Here ��e

=−kyn0��x�=−ky in our normalized units. This system yields
the dispersion relation

�1 −
��i

�
� ��0�b� − 1�

�
�1 −

��e

�
+ k�

2 �de
2 +

i�

�
−

k�
2cA

2

�2 ��
= − k�

2 �1 −
��e

�
� k�

2cA
2

�2 , �30�

where b=�k�
2 and ��i=−���e=�ky. Taking de=0 in the

above dispersion relation, we recover the result of Kadomt-
sev and Pogutse.36

The dispersion relation is cubic in the frequency so that
it is easily solved. We have graphed the angular frequency as
a function of k� in Figs. 1 and 2. For large k� the roots with
the smallest and largest frequencies correspond to the two
branches of the kinetic Alfvén wave, while the intermediate
root corresponds to the drift wave. If one follows the disper-
sion curves toward smaller k�, the drift wave and the lower
branch of the kinetic Alfvén wave �traveling in the electron-
drift direction� undergo mode conversion at k�cA�1. For
k�cA�1, the root with the lowest frequency is the drift-
Alfvén wave; its value of �1 at k� =0 corresponds to �
=��e in un-normalized units. The upper root, which attains
the value of +1 at k� =0 �corresponding to the un-normalized
value of ��i�, is sometimes called the ion drift wave.

Note that whenever magnetic shear is present, k� will
vary across the plasma. When this is the case, the set of
values � corresponding to a real value of k� represents the
continuous spectrum for the inhomogeneous plasma. The
band of frequencies lying between 0 and ��i=�ky constitutes
a gap in which there is no real root for k�. This gap can
harbor discrete modes that do not suffer from continuum

-3

-2

-1

1

2

3 k
⊥
= 0.5

ω

ky

0.5 1 1.5 2

k||cA

ion

FIG. 1. �Color online� Graph of the dispersion relation for �=1, de=0, and
k�=0.5. The three groups of curves correspond to the two branches of the
kinetic Alfvén wave and the drift wave. Within each group the solid line
represents the kinetic result, the dashed line represents the Padé approxima-
tion, and the dotted line represents the FLR expansion. For this value of k�

the FLR result agrees within 10% for all branches. The dashed-dotted lines
represent the dispersion relation in the limit k�→� where the Alfvén and
drift waves propagating in the electron direction decouple. The arrow indi-
cates the ion drift direction.

032109-4 Waelbroeck, Hazeltine, and Morrison Phys. Plasmas 16, 032109 �2009�

Downloaded 09 Apr 2009 to 128.83.63.22. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



damping. The role of this gap in the dynamics of the saw-
tooth instability and of the neoclassical tearing mode is dis-
cussed in Refs. 37 and 38, respectively.

B. Padé approximant

The Padé version of our electromagnetic model is ob-
tained by using �0

1/2�b�= �1+b /2�−1 and taking

ne = �1 + b/2�−1ni − �1 − �0��/� . �31�

With these approximations the dispersion relation becomes

�� − ��i��� − ��e� = �1 − ��e/� + �1 + ��k�
2 �k�

2cA
2 . �32�

The dispersion relation for the kinetic, Padé, and FLR
models are compared in Figs. 1 and 2 where the Padé model
is seen to give an excellent approximation whereas, unsur-
prisingly, the FLR model is inadequate for moderate to large
values of k�. In particular, the FLR dispersion relation fails
to display the gap in the continuous spectrum between 0 and
��i. The gap is evident in Fig. 3 where the gyrofluid disper-
sion relation is graphed for a logarithmic scan of k�. This

figure is in contrast to Fig. 4 showing the absence of gap in
the corresponding scan of the dispersion relation for the FLR
model.

An example of the role of the dispersion relation in non-
linear drift-Alfvén dynamics is provided by the evolution of
magnetic islands in fusion devices.39 When their phase ve-
locity is between the ion and electron drift velocities, mag-
netic islands experience a braking force due to the radiation
of drift-acoustic waves. Calculations of the magnitude of this
force and of the effect of the radiation on the island ampli-
tude using a FLR model have shown that the radiative effects
are weak in the frequency band where the FLR model incor-
rectly predicts wave propagation across the magnetic field
�k�

2 �0�.40 The reason for this is that the FLR model predicts
a cutoff �k�=0� at the electron drift frequency but a reso-
nance �k�→�� at the ion drift frequency, so that the ficti-
tious waves in the ion direction predicted by the FLR model
are strongly damped by collisional transport processes. The
importance of drift-wave radiation in the electron direction,
however, is confirmed by direct numerical simulations.41

V. EQUILIBRIUM

A. General case

In this section we examine the calculation of two-
dimensional equilibria with � /�z=0. We note that the results
apply to ideal coherent structures since such structures rep-
resent states with localized properties that are fixed in time
when viewed in a moving frame. That is, they are a particu-
lar kind of equilibrium solutions.

It is instructive to consider the task of calculating the
equilibrium states by solving the equations of motion �1�–�3�
directly after setting all of the time derivatives to zero:

vE · �ni = 0, �33�

vE · �ne = cA
2��J , �34�

���ne − �� = de
2vE · �J , �35�

where vE= ẑ��� is the electric drift velocity and vE=z
��	 is its gyroaverage. Equations �33�–�35� contain com-
binations of convective derivatives along different vector

0.5 1 1.5 2

-6

-4

-2

2

4

6

k
||
cA

k⊥= 2.

ω

ky

FIG. 2. �Color online� Graph of the dispersion relation for �=1, de=0, and
k�=2.0. The three groups of curves correspond to the two branches of the
kinetic Alfvén wave and the drift wave as in Fig. 1. The curve for the Padé
approximation is almost indistinguishable from the exact result. The fre-
quency of the drift wave given by the FLR model �the central dotted curve�,
by contrast, has the wrong sign.

-4

-2

2

4

0.5 1 1.5 2
ω
ky

k||cA
k⊥= 0.1

k ⊥
=
10
.

k
⊥ =
10.

k⊥= 10.

k⊥= 0.
1

ion

FIG. 3. �Color online� Graph of the gyrofluid dispersion relation showing
the spectral gap between 0 and ��i for �=1 and for log10 k� ranging from
�1 to 1 in steps of 0.125.

-3

-2

-1

1

2

3

0.5 1 1.5 2

ω

ky
k
||
cA

k⊥= 0.1

k ⊥
=
10
.

k
⊥ =
10.

k⊥= 10.

k⊥=
0.1

FIG. 4. �Color online� Graph of the FLR dispersion relation showing the
absence of spectral gap between 0 and ��i for the same parameters as in Fig.
3.
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fields, namely, the magnetic field and electric drift-velocity
field. Unfortunately, there exists no systematic procedure for
solving such a system of equations. In the absence of a
Hamiltonian formulation, one must begin by checking
whether the solubility conditions are satisfied. In the pres-
ence of convection cells, for example, the solubility of Eq.
�34� requires that

� dl

	vE	
��J = 0, �36�

where the integral is calculated on a closed streamline. Fur-
thermore, integrating Eq. �34� around the cross section of a
flux tube requires that

� dl

	��	
vE · �ne = 0. �37�

Equation �35� must also satisfy similar solubility condi-
tions. Note that coherent structures, in particular, are typi-
cally characterized by closed streamlines as well as closed
flux surfaces and thus have to satisfy both of the above solu-
bility conditions. A violation of the solubility conditions in-
dicates an inconsistency of the fluid closure under consider-
ation. Such a violation can sometimes be detected by
evaluating the solubility integrals near the center of a vortex
tube or near a magnetic axis using a Taylor expansion of
their arguments.23

Clearly, the direct approach is impractical for all but the
simplest models. Fortunately, Hamiltonian formulations en-
able the use of a powerful variational method. When a
Hamiltonian formulation is available, the equilibrium equa-
tions may be expressed as �
 j ,H�=0 for all j. Invoking the
invariance of Casimirs leads to the more general condition

�
 j,F� = 0, �38�

where F=H+C. The solution of Eq. �38� is

�F/�
 j = 0 �39�

for all j. That is, the equilibria are extremals of the functional
F. It is easy to see that Eq. �39� provides first integrals of Eq.
�38� or, equivalently, of Eqs. �33�–�35�, since the Poisson
brackets involve differential operators. Thus, the Hamil-
tonian approach directly yields first integrals of the equilib-
rium equations. It follows that all of the integrability condi-
tions such as Eqs. �36� and �37� are automatically satisfied
for a Hamiltonian system. Another advantage of the varia-
tional approach is that the second variation of F describes the
linear stability of the system.34 F itself may also be used to
construct nonlinear stability criteria based on convexity
arguments.34

The variational approach is particularly useful when cal-
culating the steady-state solution reached asymptotically af-
ter a time-dependent process. In particular, it allows the de-
termination of the relationship between the profiles that
appear in the equilibrium equations and the free functions
�f ,g�� that appear in the Casimirs. One application is to the
calculation of a bifurcated equilibrium solution correspond-
ing to the saturated state of the system after an ideal
instability.14,42 Another application is to the determination of

the final state after the collision of two coherent structures.
The infinite family of conserved quantities that the Casimir
represents contributes to the solitary nature of coherent struc-
tures by virtue of the fact that they constrain the equilibrium
solution. That is, if two coherent structures separate after a
collision, the conservation of the Casimirs implies that they
will have the same initial and final states. Since they do not
completely determine the state of the system, the Casimirs
do not prevent the mixing of coherent structures during col-
lisions.

For the system under consideration in this paper, de-
manding that F be extremal with respect to all the variables
leads to

− J + g+�� + �ene� + g−�� − �ene� = 0, �40�

ne − � + �e�g+�� + �ene� − g−�� − �ene�� = 0, �41�

	 + f��ni� = 0. �42�

The quasineutrality condition, Eq. �5�, completes the above
system of equations. Assuming that the function f� in Eq.
�42� is invertible, this equation and the quasineutrality equa-
tion may be used to eliminate ne and ni in terms of � and �,
leaving a system of two nonlinear coupled integrodifferential
equations for � and �,

�0
1/2f�−1��0

1/2�� + ��0 − 1��/� − � � �eJ

= � 2�eg�� � � �e�0
1/2f�−1��0

1/2�� � �e��0 − 1��/�� .

�43�

To obtain the equilibrium equations in a frame moving at
speed c in the y direction, one can use the identities stated at
the end of Sec. II to conclude that it is sufficient to replace �
in these equations by �−cx. Equivalent equations can be
obtained by adding the momentum invariant to the varia-
tional principle.

Solving these equations is difficult but is fortunately un-
necessary in general, since the smallness of the ratio of the
electron and ion masses results in separation of scales. It is
thus possible in general to solve simpler equations and match
them asymptotically. In the following section we consider
the solution of the equilibrium problem on scales large com-
pared to the electron skin depth.

B. Limit of vanishing electron mass

For k�de�k��s�1, the electron inertia may be ne-
glected. In this regime the solutions of the equilibrium equa-
tions, obtained by neglecting the time derivatives in Eqs.
�1�–�3�, are

ni = K�	� , �44�

ne = � + H��� , �45�

�2� = I��� − �H���� , �46�

where H����=dH /d�. Substituting the above results for ni

and ne into the quasineutrality equation yields an equation
for � alone:
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�0
1/2K��0

1/2�� − � + ��0 − 1��/� = H��� . �47�

We may simplify this equation by applying the operator �0
1/2

on both sides:

�0�K�	� + 	/�� − �1 + 1/��	 = �0
1/2H��� .

Inverting the �0 operator, we obtain the following equation
for 	:

�1 + 1/���0
−1	 − �K�	� + 	/�� = − �0

−1/2H��� .

Using the Padé approximant of �0, there follows

�1 + 1/���i
2�2	 + �K�	� − 	� = �0

−1/2H��� . �48�

This equation has a form similar to that of the Grad–
Shafranov equation �46�, and the two coupled equations can
be solved by conventional methods. These coupled equations
have a rich variety of stationary and traveling-wave solutions
depending on the choice of the free functions.

VI. SUMMARY

We have investigated the equations obtained from the
general electromagnetic gyrofluid model of Ref. 19 by keep-
ing only the lowest-order moment �the continuity equation�
for the ions and the lowest two parallel moments �the conti-
nuity equation and Ohm’s law� for the electrons. We have
shown that these equations are Hamiltonian and have pre-
sented the corresponding noncanonical Lie–Poisson brack-
ets. The system possesses a Casimir functional given by Eq.
�21� that depends on three arbitrary functions. The existence
of a proper Poisson bracket describing the dynamics guaran-
tees that the equilibrium equations obtained by neglecting
the time derivatives �possibly in a frame of reference moving
at constant velocity� may be integrated once to obtain Grad–
Shafranov-like equations that determine the magnetic flux
�i.e., the component of the vector-potential along the back-
ground field� and the electrostatic potential. The correspond-
ing equilibrium equations are given by Eq. �43� for the gen-
eral case and by Eqs. �46� and �48� in the case of negligible
electron inertia. The functions entering into the Casimir
functional determine the profiles of the various fields in the
equilibrium state.

Possible applications of the electromagnetic gyrofluid
model presented here include any electromagnetic problems
where both diamagnetic drifts and nonlinear effects are im-
portant. In fusion devices, two examples are the sawtooth
crash in the core9,37,43–45 and the peeling-ballooning modes
in the edge.37,45–48
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APPENDIX A: JACOBI IDENTITY FOR THE SPK
MODEL

In this appendix we show that the SPK model28 fails to
satisfy the Jacobi identity, Eq. �15�. We use the notation of
Ref. 28 throughout. The functional derivatives of the brack-
ets are

�

�
3
�F,G� = ade�e

−1/2��F
3
,G
3

� + ¯� ,

�

�
2
�F,G� = ade�e

−1/2��F
2
,G
2

� + �LF
3
;LG
3

� + ¯� ,

where the “¯” indicate terms that do not contribute to the
Jacobi identity, �A ;B�=
 j�Aj ,Bj�, and


2 = de�e
1/2�ln

n

n0
�, 
3 = − de�e

1/2�ln
n

n0
+ ��1 − �0���

as in Ref. 28. The nested bracket is thus

��F,G�,H� = a2de
2�e

−1��
3��F
3
,G
3

�,H
3
�

+ 
2���F
2
,G
2

�,H
2
�� + ���LF
3

;LG
3
�,H
2

�

+ �L�F
3
,G
3

�;LH
3
��� .�

The first two terms cancel in the sum of cyclic permutations,
but the last two do not. To show explicitly that the bracket
does not obey the Jacobi identity, we use the following coun-
terexample:

F = �x2
3�, G = �y2
3�, H = �
3
2� .

All the functional derivatives of the above three functionals
vanish except

F
3
= x2, G
3

= y2, H
3
= 2
3.

Keeping only the lowest–order term in L, L��i�, we find

J = a2de
2�e

−1�i�
2��y,�x
� + �x,�y
� − �x�yy
3,y�

− �y�xx
3,x��� ,

=a2de
2�e

−1�i�
2�y�xxy
3 − x�yyx
3�� .

where J, defined in Eq. �15�, is the sum of cyclic permuta-
tions of the nested brackets in the Jacobi identity. Clearly, J
does not vanish in general.

APPENDIX B: JACOBI IDENTITY USING NORMAL
FIELDS

In this appendix we use the normal fields to show that
the complete bracket, formed in Eq. �12� by combining the
parallel and perpendicular brackets, satisfies the Jacobi iden-
tity. Because of the decoupling of variables in the direct
product form, it is only necessary to prove the Jacobi identity
for the following:
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�F,G��+� = �F,G��
�+� + �F,G��

�+�

= 2�e�− G+
�zF+

+ +�F+
,G+

�� . �B1�

The − bracket is identical and there is no parallel contribu-
tion for the ni bracket.

It is easy to see that the parallel and perpendicular brack-
ets separately satisfy the Jacobi identity. We must show that
their sum also does:

��F,G��+�,H��+� + cyc. = ��F,G��
�+�,H��

�+� + ��F,G��
�+�,H��

�+�

+ ��F,G��
�+�,H��

�+�

+ ��F,G��
�+�,H��

�+� + cyc., �B2�

The first and fourth terms in Eq. �B2� involve elementary
brackets that are already known to satisfy the Jacobi identity.
The third term vanishes because

��F,G��
�+�

�+
= 0 + ¯ , �B3�

where the dots represent second-variation terms that do not
contribute to the sum of cyclic permutations �see Ref. 33�.
There remains to show that

��F,G��
�+�,H��

�+� + cyc. � 0. �B4�

Note that

��F,G��
�+�

�+
= 2�e�F+

,G+
� + ¯ . �B5�

Inserting this into Eq. �B4� gives

��F,G��+�,H��+� + cyc. = − 4�e
2�H+

�z�F+
,G+

�

+ F+
�z�G+

,H+
�

+ G+
�z�H+

,F+
�� . �B6�

Upon integrating the first term of Eq. �B6� by parts and mak-
ing use of Gauss’ identity in the form �f�g ,h��=−�g�f ,h��,
we see that the first term cancels the sum of the second and
third, thereby establishing the Jacobi identity for the com-
plete bracket.
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