Transactions of Fusion Science and Technology

CONTENTS / FEBRUARY 2009—VOL. 55, NO. 2T

Proceedings of the
SEVENTH INTERNATIONAL CONFERENCE
ON OPEN MAGNETIC SYSTEMS
FOR PLASMA CONFINEMENT

Daejeon, Korea
July 15-18, 2008

v Comments / Nermin A. Uckan

vii Preface: Seventh International Conference on Open Magnetic Systems for Plasma Confinement / B. J. Lee

viii International Program Committee/Local Program Committee/Sponsors

1 Plasma Direct Energy Converter for Thermal Ions Using a Slanted CUSP Magnetic Field and Two-Stage Deceleration / Y. Yasaka et al.

9 Dynamic Response of Hydrogen Reemission and Retention from and in Inert Gas Sprayed Tungsten Exposed to ECR Plasmas / H. Zush et al.

15 Transport with Reversed E in the GAMMA-10 Tandem Mirror / W. Horton, P. J. Morrison, X. R. Fu, J. Pratt

19 Density Fluctuation Measurements in the Tandem Mirror GAMMA-10 / Masayuki Yoshikawa et al.

25 Drift-Wave Eigenmodes and Spectral Gaps in Tandem Mirrors / J. Pratt, H. L. Berk, W. Horton

30 Simulations of Non-Equilibrium Plasmas: Atomic and Molecular Data Needs / Vladimir I. Kolobov
TRANSPORT WITH REVERSED E, IN THE GAMMA-10 TANDEM MIRROR

W. Horton, P. J. Morrison, X. R. Fu, J. Pratt
Institute for Fusion Studies, University of Texas at Austin, Austin, TX 78712, USA

The radial E x B transport losses in the central cell of the GAMMA-10 device are analyzed and compared with recent data from E_c control experiments. Reversed E_c profile are seen to inhibit transport.

I. ADVANTAGES OF THE TANDEM MIRROR FUSION SYSTEM

The GAMMA-10 tandem mirror system has achieved high energy confinement times (70 – 90 ms) with turbulent radial losses faster than the electrostatically-plugged end losses. The HIBF measured plug potentials give the Pollock end-loss time (100 ms). This high confinement regime establishes a proof of principle that the combination of electrostatic and mirror confinement can successfully insulate electrons from thermal end losses. Tomography from the microchannel plates (MCP) with microsecond time resolution shows that a sheared radial electric field E_s suppresses the low frequency drift-wave fluctuations in the GAMMA-10. Radial energy confinement γ_s scaling laws derived in Pratt and Horton_2 provide a key prediction that there is a qualitatively different drift-wave turbulence in the tandem mirror geometry compared to toroidal systems.

There are three key advantages to a linear open system as a fusion reactor over a toroidal systems. The most important advantage is that linear systems such as tandem mirrors possess no toroidal curvature, a significant consideration for confinement. Toroidal curvature produces instabilities on all spatial scales. MHD modes are stabilized in a toroidal system by keeping the plasma pressure small compared with the magnetic pressure, consequently there exists a β limit for each deuterium-tritium plasma.

Some toroidal systems have relatively high beta (\(\beta = L_p/R_q\)) limits. The spherical tokamak has a large fraction of mirror-trapped particles and plasma betas approach 20%. Some large aspect ratio toroidal systems can have lower beta (\(\beta = 2\beta_p/\beta_p\)) limits. In contrast, the tandem mirror system has alternating regions of favorable and unfavorable curvature next to one another; this allows for a high beta limit of order unity. Small scale intertemperature-gradient (ITG) and electron-temperature-gradient (ETG) modes in the torus are driven by the toroidal curvature and responsible for the toroidal scaling laws of Bohm and gyro-Bohm confinement shown in Table I. Pratt and Horton_2 show that these laws can be developed in the context of a tandem mirror geometry and that a tandem mirror of comparable size to ITER could also produce \(Q_{\text{lim}} = 10\).

A second major advantage of both the tandem mirror system and the helical system, over the tokamak design, for fusion power is that the confining magnetic fields are externally produced and controlled; in a tokamak the confining field is produced by a large, internal plasma current. The plasma current causes difficulties because it intrinsically attempts to produce magnetic reconnection to release its stored energy. Large plasma currents routinely cause major plasma disruption events at irregular intervals, as well as smaller sawteeth oscillations when either the plasma current is too large or the current profile is not optimal. In the ITER device a current of 15 MA is required to keep the alpha particle banana radius size below 0.3 m which is 15% of the minor radius. The device has aspect ratio \(R/L = 6.5/2\) and toroidal magnetic field \(B_T = 5\ T\). For the same aspect and field strength the alpha particles in the linear mirror system would have gyroradius of 10 cm.

A third advantage to the linear open system is that there is a natural open divertor configuration. The escaping plasma can be allowed to expand over large areas, keeping the limits of the power-per-unit-area on material walls low. Escaping plasma can be configured to drive a direct energy conversion from plasma kinetic energy to electrical energy by separating the ion and electron orbits with a suitable system of electromagnetic fields. The principle of this direct conversion has been demonstrated on the GAMMA-10 device with the University of Kobe's bent-cusp direct convertor cell, which produces milliwatts of power per discharge_2. These advantages of the linear, open system are well known. In this work, we investigate the theory of turbulent transport control in the context of the tandem mirror.

II. CONTROL OF THE RADIAL POTENTIAL PROFILES AND THE ASSOCIATED TRANSPORT CONTROL

The tandem mirror has a controlled ambipolar potential that varies along its length; this potential is produced through the use of electron cyclotron heating of the plug plasma and neutral beam injectors that create sloshing ion distributions in the barrier regions. The magnetic field on the right hand side of the machine is shown in Fig. 1 with each mirror cell labeled. With the proper injection of high-power-resonance electron cyclotron heating from gyrotrons, a region of locally higher mass plasma potential \(\Phi_B(r)\) is produced. The potential in the plasma is measured both with the heavy ion beam diagnostic and the electrostatic end loss analyzers.

Fig. 2 shows the experimental data and parameterized fits to these data from Cho et al._2 for the electro-
static potential. The potential changes from monotonically decreasing (dashed curve) as a function of radius to a flattened non-monotonic profile (solid curve) with the injection of the electron cyclotron power creating a high energy electron ring in the region from \(r = 4 \) to \(7 \) cm. This shape for the potential has been theoretically postulated, and found experimentally by the GAMMA-10 team\(^3\). The resulting maximum in radius of the electric potential \(\Phi_0(r = 7 \text{ cm}) \approx 210 \text{ V} \) creates a reversed \(E \times B \) rotation of the ions and electrons in the plasma. The flattened non-monotonic profile changes the drift wave transport because barriers to transport become robust and survive perturbation by the presence of fluctuations. Even in the case of weak perturbations, this behavior is signaled by the non-applicability of the standard Kolmogorov-Arnold-Moser (KAM) theorem\(^4\) for Hamiltonian systems, which govern the motion of particles. However, of greater importance is the behavior of chaotic transport in such nontwist Hamiltonian systems under finite sized perturbations. The robustness of tori, barriers to transport, and diminished transport have been proposed\(^5\) and investigated in general terms\(^6\) and applied to a variety of experimental configurations e.g. Kwon et al.\(^7\), and Marcus et al.\(^8\).

III. MODELS OF THE RADIAL ELECTRIC FIELD AND THE ASSOCIATED \(E \times B \) ORBITS

From Fig. 2 we have constructed the three analytic models shown in Fig. 3 with different features that may be within the error bars of the data from the HIBP and the electrostatic end-loss analyzers used to infer the internal plasma potential \(\Phi_0(r) \). The models shown in Fig. 3 are:

1. Empirical model
\[
\Phi_0(I^*) = -260I^*(I^*+1.49)(I^* - 0.34) + 205, \quad \text{where} \quad I^* = \frac{r^2}{2a^2}.
\]

2. Twist model
\[
\Phi_0(I^*) = -460I^*(I^* - 0.33) + 205.
\]

3. Nontwist model
\[
\Phi_0(I^*) = -700I^2(I^* - 0.25) + 205.
\]

The ambipolar electric potential \(\Phi_0(r,z) \) reflects the small pitch angle ions. For particles with small pitch

TABLE I: Radial Loss Time Scaling Laws

<table>
<thead>
<tr>
<th>(T_{L79})</th>
<th>(T_{B98})</th>
<th>(T_{B89})</th>
<th>(T_{B98})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.010B^{0.98}L^{0.98}n^{0.98}P^{0.98})</td>
<td>(0.067B^{1.08}L^{0.43}n^{0.41}P^{0.49})</td>
<td>(0.080B^{0.85}L^{0.31}n^{0.51}P^{0.59})</td>
<td>(0.103B^{0.99}L^{0.33}n^{0.59}P^{0.64})</td>
</tr>
<tr>
<td>(T_{B89}^{3/2})</td>
<td>(0.042B^{3/2}L^{3/2}n^{3/2}P^{3/2})</td>
<td>(0.016B^{4/2}L^{4/2}n^{4/2}P^{4/2})</td>
<td>(0.025B^{4/2}L^{4/2}n^{4/2}P^{4/2})</td>
</tr>
</tbody>
</table>
static potential. The potential changes from monotonically decreasing (dashed curve) as a function of radius to a flattened non-monotonic profile (solid curve) with the injection of the electron cyclotron power creating a high energy electron ring in the region from r = 4 to 7 cm. The shape for the potential has been theoretically postulated, and found experimentally by the GAMMA-10 team.\(^4\) The resulting maximum in radius of the electric potential \(\Phi_0(r = 7\, \text{cm}) \approx 210\, \text{V} \) creates a reversed \(E \times B\) rotation of the ions and electrons in the plasma. The flattened non-monotonic profile changes the drift wave transport because barriers to transport become robust and survive perturbations by the presence of fluctuations. Even in the case of weak perturbations, this behavior is signaled by the non-applicability of the standard Kolmogorov-Arnold-Moser (KAM) theorem\(^4\) for Hamiltonian systems, which govern the motion of particles. However, of greater importance is the behavior of chaotic transport in such nonwave Hamiltonian systems under finite sized perturbations. The robustness of tori, barriers to transport, and diminished transport have been proposed\(^5\) and investigated in general terms\(^6\) and applied to a variety of experimental configurations e.g. Kwon et al.,\(^7\) and Marcus et al.\(^8\).

III. MODELS OF THE RADIAL ELECTRIC FIELD AND THE ASSOCIATED \(E \times B\) ORBITS

From Fig. 2 we have constructed the three analytic models shown in Fig. 3 with different features that may be within the error bars of the data from the HIBP and the electrostatic end-loss analyzers used to infer the internal plasma potential \(\Phi_0(r)\). The models shown in Fig. 3 are:

1. Empirical model
 \(\Phi_0(r) = -2600(7 - 1.49)(7 - 0.34) + 705\), where \(r^* = r/2.3a\).

2. Twist model
 \(\Phi_0(r) = -460(7 - 0.63) + 705\).

3. Nontwist model
 \(\Phi_0(r) = -706(7 - 0.25) + 705\).\(^9\)

The empirical electric potential \(\Phi_0(r)\) reflects the small pitch angle ions. For particles with small pitch angles, \(\mu = m v^2/2B \ll 1/B\), the parallel motion is given by the Lagrangian \(L = m v^2/2 - q \Phi_0(r)\), where

\[
\frac{dz}{dt} = v_j, \quad \frac{dt}{dz} = \frac{q \Phi_0}{m}.
\]

IV. DRIFT WAVE SPECTRUM

For drift waves, many modes can exist, thus the total potential in cylindrical coordinates is

\[
\Phi(r, \theta) = \Phi_0(r) + \sum \Phi_m(z) \cos(m \theta - \omega t + \phi_m),
\]

where \(\phi_m = \phi_1 m^{-\alpha_m}\), with spectral index \(\alpha_m = 1, 2, 3\), and the phase \(\phi_m\) is a random value between 0 and \(2\pi\). To start with, we can choose \(\phi_m(z) = \text{const}\), i.e. a flute mode in which \(B \cdot \nabla \Phi = 0\). The guiding center motion is generated by

\[
\frac{dr}{dt} = E \times B/\nabla E = \left(-1 \frac{\partial \Phi}{\partial r}, 1 \frac{\partial \Phi}{\partial \theta}, 0\right).
\]

By defining \(I = r^2/2\), we get the Hamiltonian structure

\[
\frac{dl}{dt} = -1 \frac{\partial \Phi}{\partial \theta}, \quad \frac{d\theta}{dt} = 1 \frac{\partial \Phi}{\partial r},
\]

with the Hamiltonian \(H = \Phi/B, \text{momentum } I, \text{ and coordinate } \theta\).

Based on Fig. 2, we try two models for \(E_r = -\Phi_0(r)/dr\):

1. \(E_r\) points outward

 We record the time for particles to escape (so called "first exit time"), i.e. \(z^*(\text{exit}) + y^*(\text{exit}) = 2I^* > 2a^*\).

2. Reversed \(E_r\) experiment

 From Fig. 2 and 3, we have \(L_{\text{in}} = a^2/4, \text{ i.e. } r_0 = 0.770a, a = 10\, \text{cm}\). There exists a reversal layer at a radius of \(r_0\). Outside the layer, \(E_r\) points outward, while inside \(E_r\) points inward. At the reversal layer,

\[
\Omega(r_0) = \frac{E_r}{rB} \to 0
\]

\[
\frac{dl}{dt} = 1 \frac{\partial \Phi}{\partial r}, \quad \frac{d\theta}{dt} = 1 \frac{\partial \Phi}{\partial \theta},
\]

\[
\theta = dl/dt.
\]

Integration of ensembles show that the reversed layer results in a large increase in the average first exit time.

From simulations and data we note that a dominant single mode \(\phi = \phi_m \cos(m \theta - \omega t + \phi_m)\) gives islands in the \(I - \theta\) plane. For the case when many waves are present, \(\phi = \sum \phi_m \cos(m \theta - \omega t + \phi_m)\), the islands overlap and Hamiltonian motion transitions to a stochastic diffusive motion.

\(\text{TRANSACTIONS OF FUSION SCIENCE AND TECHNOLOGY VOL. 55 FEB. 2009}\)
V. ONSET OF CHAOTIC DIFFUSION

In Fig. 4, taken from Horton et al.9 (see also Apte et al.10), the phase space shows that in these type of systems there exists a transport barrier for the nontwist potential profile such as model 3 with fluctuating voltages up to $\phi \sim 4\ V$. For the twist map in model 2 the last integral curve producing the transport barrier breaks down at a smaller fluctuating potential $\phi \leq 1\ V$. For fluctuating potentials greater than $10\ V$ there is a radial diffusive transport $D(x)$ as in quasi-linear theory. However the level of $D(x)$ remains lower with the nontwist potential profile.

A similar effect is observed in tokamak edge dynamics.8

High speed photographs of the Balmer alpha line (656 nm) from the $n = 3$ to 2 transitions of the atomic hydrogen in the central cell of the GAMMA-10 by Nakashima et al.12 show the speed up and then collapse of the plasma pressure. The plasma rotates in the ion diamagnetic direction at 9 to 10 kHz corresponding to the $m = 1$ mode in the collapse of the plasma pressure. During the growth of the image signal before the collapse one sees briefly what appears to be the $m = 2$, 3 and 4 distortions in the images (http://pecos.ph.utexas.edu/-vortex). For $m = 1$ the growth rate increases as the conducting wall moves inward to the plasma in contrast to $m = 2$ where the close wall is stabilizing. This is because the $m = 1$ is a displacement mode that is neutrally stable in the absence of a conducting wall. With the conducting wall the Dirichlet boundary condition induces an image charge in the wall that makes an effective dipolar structure that is unstable. The $m = 1$ mode, called the wobble mode, contains the dominant energy component of the nonlinear state in the late stages of the nonlinear evolution. These early theoretical results are confirmed by the high speed CMOS/CCD camera movies.

VI. CONCLUSION

The radial plasma losses are controlled by the E_r profile in the linear tandem mirror system. Both theory and the experiment show that a reversal of the E_r-profile reduces the radial transport. The core ion pressure then increases. The increasing pressure gradient finally results in a plasma disruption as seen in the Balmer α emission and the drop in the diamagnetic signal.

REFERENCES