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Abstract
We explore a method for constructing two-dimensional area-preserving, integrable maps associated with Hamiltonian
systems, with a given set of fixed points and given invariant curves. The method is used to find an integrable Poincaré
map for the field lines in a large aspect ratio tokamak with a poloidal single-null divertor. The divertor field is a
superposition of a magnetohydrodynamic equilibrium with an arbitrarily chosen safety factor profile, with a wire
carrying an electric current to create an X-point. This integrable map is perturbed by an impulsive perturbation that
describes non-axisymmetric magnetic resonances at the plasma edge. The non-integrable perturbed map is applied
to study the structure of the open field lines in the scrape-off layer, reproducing the main transport features obtained
by integrating numerically the magnetic field line equations, such as the connection lengths and magnetic footprints
on the divertor plate.

PACS numbers: 52.55.Rk, 52.55.Dy, 05.45.Pq

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The divertor is an essential component of modern tokamak
design [1]. In essence, a divertor is a shaped metallic plate that
is suitably placed outside the plasma boundary so as to capture
or divert particles escaping from the plasma. There are two
basic roles a divertor plays in tokamak design: (i) it exhausts
particles coming both from fusion products, such as He atoms
or impurity atoms stemming from plasma–wall interactions
and (ii) it removes heat from the plasma discharge. For
example, the divertor of ITER is designed to withstand a heat
load of 5–10 MW m−2 coming from alpha particles resulting
from fusion reactions taking place in the plasma core [2, 3].

Basic mechanisms underlying the operation of a divertor
are also examples of the practical application of chaos theory
in plasma physics [4]. In tokamaks, plasma is confined in
magnetic field configurations with nested flux surfaces that

6 Author to whom any correspondence should be addressed.

play the role of invariant curves of a Hamiltonian system [5–7].
These nested curves are surrounded by a region of chaotic field
lines, which occupy the outer plasma region extending from
the plasma boundary to the tokamak inner wall, including the
so-called scrape-off layer [5]. Chaotic behaviour exists in the
following sense: two (infinitesimally) nearby field lines depart
from each other at a positive exponential rate after toroidal
revolutions (where the toroidal angle plays the role of time in
the Hamiltonian theory) [6, 7].

In a first approximation, charged particles follow magnetic
field lines, and since the divertor plate is placed to intersect
a significant portion of the chaotic region, many particles
escaping from the plasma will eventually hit the divertor
[8–10]. In spite of its simplicity, the divertor concept still
raises a series of important questions in both technological
and theoretical aspects. For example, the particle and
heat deposition in the divertor plates is not uniform, rather
presenting regions of high and low deposition, sometimes
revealing potentially dangerous places of intense localized
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loading. Moreover, these high deposition layers possess
a fractal-like structure, called magnetic footprints [11–13],
which have also been experimentally investigated [14, 15].

Only recently have such magnetic footprints been
explained by the underlying mathematical structure of the
outer chaotic region [14–18]. The latter is not uniform, as
might be expected, and it possesses escape channels due
to the complicated structure of invariant manifolds attached
to the unstable orbits embedded in the chaotic region. An
investigation of the divertor chaotic region demands fast and
efficient numerical procedures for the tracking of a typically
huge number of orbit points. Direct attacks using numerical
integration of the differential equations of the magnetic field
lines are computationally time consuming. Moreover, to
preserve magnetic flux conservation such computer codes must
be symplectic, which makes them even more difficult to apply
in investigations of a more fundamental nature [19–22].

Discrete maps have been extensively employed to
investigate the field line properties in a tokamak with a divertor.
The unperturbed magnetic field of a tokamak with a divertor
was modelled in [19] by considering two infinitely long parallel
wires, and the resulting dependence of the width of the scrape-
off layer on the error fields was investigated. The magnetic
field line equation for the two-wire divertor field perturbed by a
non-axisymmetric field was numerically integrated in [20, 21]
in order to study the structure of the open field lines and their
connection lengths between two divertor plates. A field line
equation integration code was used in [17, 22] to study the
magnetic flux loss through the edge of a poloidally diverted
tokamak and also to show how the structure of the homoclinic
tangle near the separatrix ultimately determines the location
and structure of magnetic footprints and heat buildup on the
tokamak wall.

On the other hand, discrete time Poincaré maps are much
faster to iterate and can yield reliable results on key features
of divertor phenomenology, such as magnetic footprints and
escape basins present in outer chaotic magnetic configurations
in tokamaks [4, 23, 25]. In fact, in the past two decades many
works on divertor physics have used discrete maps of various
types and geometries [11, 12, 26–29]. A series of symplectic
maps for divertor fields were proposed in [30–37] to investigate
the effect of different kinds of resonant perturbations on
the field line topology. These maps provide a generic
qualitative description of field line dynamics in a single-null
divertor configuration and are useful for studying the field line
deposition on the collector plates. However, the parameters
of such maps do not correspond to the control parameters that
can be directly reached in real divertors. Although relevant
generic constraints are considered in proposing these maps,
their parameters do not correspond to the control parameters
that can be directly reached in real divertors, since they were
not obtained from the magnetic field equations.

A field line Hamiltonian was used as the generating
function for a map that describes a superposition of a
piecewise analytic representation of the measured poloidal
flux function with the magnetic perturbation measured in the
DIII-D tokamak to model divertor experimental data in DIII-D
[27]. This approach was further generalized by including
an MHD analytic equilibrium so as to obtain the generating
function [28]. On the other hand, canonical maps were derived

from magnetic field line equations, to investigate field line
trajectories near the X-point in poloidal divertor tokamaks
[11, 38]. These maps are constructed from generalized
Poincaré integrals by a method described in [39], and have
been generalized for a more complex geometry consisting of a
three wire plasma model considering the toroidal effect of the
equilibrium [29, 40]. Moreover, external resonant magnetic
perturbations to the divertor map were also included in this
framework [41]. Recently, a field line convection coefficient
was added to this approach to estimate the chaotic transport
near the magnetic separatrix [12, 41]. Another canonical
procedure to derive a map from magnetic field line equations
was introduced in [26], where it was studied using parameters
of the tokamak COMPASS-D.

In this paper, we construct a symplectic divertor map using
a general method developed to tailor symplectic maps with
specified stationary points [42]. For a single-null divertor,
this stationary point is a saddle (or X-point) embedded in a
chaotic region and placed between the plasma boundary and
the divertor plate. Firstly, we use the method to obtain an
integrable map compatible with the single null, and then we
perturb the system in a non-integrable fashion by adding the
effect of an ergodic limiter. Starting from an integrable map
allows us to accurately control the onset and development
of chaos. With suitable perturbation, a large chaotic region
that intersects the divertor plate is created, which enables us
to investigate the formation of magnetic footprints and their
fractal properties.

The rest of this paper is organized as follows: in section 2
we outline the general method used to obtain integrable maps.
In sections 3 and 4, we apply the method to a magnetic field
line configuration with a single null. The addition of a non-
integrable perturbation caused by an ergodic limiter and the
resulting divertor map are treated in section 5. In section 6 we
present results on the fractal structure of magnetic footprints,
using the divertor map we have derived. Our conclusions are
left to the last section.

2. Hamiltonian systems and symplectic maps

Surfaces of section (also called Poincáre maps) are useful for
viewing cross-sections of general phase space trajectories. In
the present context, they show collections of points in the plane
that can reveal important topological features of the trajectories
and energy surfaces when the system is conservative. When the
equations describing the time evolution of the trajectories are
ordinary differential equations with bounded energy surfaces,
the coordinates of each point in a given surface of section,
written as (xn, yn), are uniquely determined by the coordinates
of the preceding point, yielding a map

xn+1 = f (xn, yn), (1)

yn+1 = g(xn, yn), (2)

where the functions f and g are only explicitly known under
the fortuitous circumstance that the trajectories derived from a
Hamiltonian function can be analytically solved [43].

After initial conditions are chosen in a specified region
of the surface of section, the map equations (1) and (2) can be
iterated to generate trajectories for an arbitrarily length of time.
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The accuracy of the generated orbit is thus only influenced
by one-step numerical error, and this allows us to track a
large number of trajectories in phase space with controlled
numerical accuracy. Hence, Poincaré maps are more efficient
for viewing phase space topology (especially when looking at
many different trajectories over long times) than finding the
surface of section by numerically integrating the dynamical
equations.

Because Hamiltonian systems preserve integral invariants,
an example being phase space volume preservation (Liouville’s
theorem), a map of the form (1) and (2) must be symplectic,
i.e. it will have a unit Jacobian determinant,

[f, g] = ∂f

∂xn

∂g

∂yn

− ∂f

∂yn

∂g

∂xn

= 1. (3)

This is a rather stringent property that cannot be taken for
granted, in general, when the map is obtained directly from
Hamiltonian differential equations of motion.

As a simple, but representative example, consider the
general one degree-of-freedom Hamiltonian system with
canonical coordinates (x, y), with y being the canonical
momentum conjugate to the coordinate x. Given the
Hamiltonian H(x, y), the equations of motion are

dx

dt
= ∂H

∂y
, (4)

dy

dt
= −∂H

∂x
, (5)

whence it is seen that H is a constant of motion. Because the
number of constants of motion matches the number of degrees
of freedom, all one degree-of-freedom Hamiltonian systems
are integrable in the sense of Liouville. This means trajectories
lie on contours of H and that there exists a canonical change of
coordinates (x, y) ↔ (θ, J ) such that in the new coordinates
the Hamiltonian depends only on J , i.e. H(x, y) = H̄ (J ).
Here the action variable J is defined by J = ∮

y dx/2π , where
y is written as a function of x by setting H equal to a constant
and θ is obtain from the requirement [θ, J ] = 1. Thus, (4) and
(5) in the new coordinates become

dθ

dt
= ∂H̄

∂J
, (6)

dJ

dt
= 0, (7)

which have the simple solution θ = θ0 + �(J )t and J = J0

with initial condition (θ0, J0) and �(J ) := ∂H̄/∂J . In
the coordinates (θ, J ) one can easily obtain explicitly the
integrable map that takes any initial point to a point at any
future time �t as follows:

θn+1 = θn + �(Jn+1)�t and Jn+1 = Jn. (8)

Thus, the situation appears to be quite simple; although one
can rarely obtain the transformation (x, y) ↔ (θ, J ) in
closed form, a quadrature integral is at hand, but numerical
implementation requires iteration. Since the transformation
from ‘time’ n to n + 1 is generated by Hamilton’s equations,
this mapping must be area preserving. We have chosen � to

be a function of Jn+1 rather than Jn, so that the area preserving
property (3) takes a particularly simple form.

When the plane is foliated by closed nested contours
the action transformation is uniquely defined, but when the
contours of H have more interesting topology with multiple
contours corresponding to the same value of H , then the
transformation (x, y) ↔ (θ, J ) becomes multibranched, and
invertibility of the transformation requires the addition of
a discrete branching index, say I. As we see later, the
field line ‘dynamics’ of a tokamak equilibrium with a single-
null divertor constitutes an example of a Hamiltonian system
with this branching. For a general one degree-of-freedom
Hamiltonian system, one has an integrable area-preserving
map of the two-dimensional phase space by effecting the
following procedure: choose an initial point (xn, yn); this point
determines the index I and an initial value of the energy,
whence one can obtain coordinates (θn, Jn); from (8) one
then obtains (θn+1, Jn+1); finally, given (θn+1, Jn+1) and I, one
obtains (xn+1, yn+1).

Because the procedure above is cumbersome in general,
we base our construction of integrable maps on the
Hamiltonian for one-dimensional motion of a particle of unit
mass under a potential V (x), namely

H(x, y) = y2

2
+ V (x), (9)

with the equations of motion

dx

dt
= y, (10)

dy

dt
= −V ′(x). (11)

This form of H does not allow for general energy contours,
but it is sufficient for obtaining symplectic maps with the
features desired here, i.e. maps with a given unstable fixed point
with an invariant curve of a homoclinic type. The ‘trajectory
integration method’, described in essence above, together with
the example using the Hamiltonian (9) was introduced in [42].
The virtue of using the Hamiltonian (9) lies in the fact that
the discretization procedure can be effected in simpler form,
alleviating the need for interaction, and thus produces no
modelling error in the sense that the map still describes an
integrable system with all trajectories confined to invariant
curves. If one wishes to obtain a map with a set of fixed
points lying on a line (without loss of generality, the x-axis)
and with invariant curves having a desired topology, then one
can proceed as follows:

1. write down a one-dimensional potential V (x) that
produces a phase space portrait with the same fixed points
and topology as the desired mapping equations;

2. integrate the canonical equations (10) and (11) so as to
express analytically the coordinates x and y in terms of
their initial conditions (x0, y0) and the time t ;

3. turn the continuous time parameter t into a discrete time
step �t .

As a result, one obtains an integrable map with the same fixed
points as those determined by the potential V (x). This is, of
course, equivalent to a special case of the coordinate change
procedure described above.
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A particularly tractable example is the harmonic oscillator
which has the potential V (x) = x2/2 and Hamiltonian
H(x, y) = y2/2 + x2/2. The corresponding dynamical
equations can be easily integrated and yields the linear (and
trivially integrable) map

xn+1 = xn cos � + yn sin �, (12)

yn+1 = −xn sin � + yn cos �, (13)

where the time step � may be chosen arbitrarily. In section 3
we use this simple example to construct something more
interesting. Other potentials could have equally been chosen.
For example, another combination of local one-dimensional
harmonic oscillators (for which the potential function is
a combination of parabolae spliced together so that their
slopes match at the connection points) would yield vertically
elongated and horizontally displaced invariant curves. If
such potentials were used to generate invariant curves, then
the corresponding Hamiltonian equations would be more
complicated.

There exists another situation where explicit maps can be
obtained exactly, namely when there is a periodic forcing that is
localized in time. This occurs, for example, when the potential
V is time dependent and possesses a series of periodic ‘kicks’
and is given by

V (x, t) = V̂ (x)

∞∑
n=−∞

δ(t − nτ), (14)

where δ(t) is the Dirac delta function. Integration of (14)
across a kick yields the map. For potentials that are periodic
in time and nearly non-zero for only narrow intervals, this
is a reasonable approximation. However, sometimes this
discretization procedure is used when the potential is not close
to the kick form, but in fact is even constant in time. When this
is done it amounts to a finite difference scheme, and for larger
�t it introduces error into the system that usually appears in
the form of chaos in the trajectories. As a consequence when
used in this manner, even for small �t , the fixed points of
the obtained discrete map are only approximations of those
implied by the shape of the potential V (x). In section 5 we
use a kick map of physical origin for introducing chaos into
our divertor model.

3. Integrable map for a single-null divertor

As mentioned above, the magnetic field line equations for
confined plasmas with axisymmetry can be described as
Hamiltonian systems (see, e.g. [5–7, 23–25]). In our case, for
unperturbed flux surfaces with the topology of closed nested
tori, the Poincaré surface of section is an actual poloidal plane
intersecting the torus at a fixed constant toroidal angle φ. Due
to the axisymmetry of equilibrium states in such devices, this
angle is a cyclic coordinate and plays the role of time in the
Hamiltonian description of a field line, with the other two
variables being the canonical coordinates. Thus, the field
line equations can be cast in the form of Hamilton’s equations
describing a single degree-of-freedom integrable system.

We choose a simple coordinate system that retains the
essential features we expect in more realistic geometries. We

Figure 1. Schematic view of a periodic cylinder approximation of a
tokamak toroidal chamber. The polar and rectangular coordinates
are also shown in the figure in a circular section of the tokamak, as
well as ergodic limiter configuration with the arrows indicating the
current direction. The ring-shaped coil has length g.

start from a toroidal flux surface of minor and major radii given
by b and R0, respectively. If the aspect ratio R0/b is big,
then the periodic cylinder of length 2πR0, where the magnetic
axis is parametrized by the coordinate z = R0φ, is a good
approximation. Moreover, in this case the equilibrium toroidal
field Bz = B0 is nearly uniform and hence torodicity can be
neglected in the lowest-order approximation. Accordingly, the
position of a point in the surface of section can be described
by cylindrical coordinates (r, θ, z), as sketched in figure 1.

Alternatively, a rectangular system can be used with
the coordinates: x = r cos θ and y = r sin θ , with the
tokamak wall characterized by x2 + y2 = b2. The equation
for the equilibrium magnetic field in such large aspect ratio
tokamaks is

B(x, y) = B0ẑ + ∇ψ(x, y) × ẑ. (15)

Therefore, regarding the spatial coordinates x and y as
canonically conjugate variables, with the z-coordinate playing
the role of time, the magnetic field line equations can be written
as Hamilton equations

dx

dz
= ∂ψ

∂y
, (16)

dy

dz
= −∂ψ

∂x
, (17)

with the flux function ψ(x, y) as the Hamiltonian. Since ψ

is a constant of motion for axisymmetric systems, the system
is integrable and a map can be constructed by the procedures
described in section 2.

We first present a simple integrable map for the bulk
plasma. Accordingly, we associate the flux function with the
harmonic oscillator Hamiltonian

ψ(x, y) = 1
2y2 + 1

2x2, (18)

resulting in the map of equations (12) and (13). At first glance,
this choice would seem too specific and even too trivial to
explain an actual tokamak equilibrium field. However, since
the argument of the sines and cosines in the map of (12) and (13)
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(a) (b)

Figure 2. (a) Scheme of a single-null divertor. (b) One-dimensional potential for the divertor map, for c = 0.200 and a = 0.235.

has no radial dependence, as one travels from the origin radially
outwards, the safety factor of the corresponding flux surfaces,
q(r) = 2π/�, is a constant. Since each surface is the locus
of points with the same value of the Hamiltonian function
ψ(r) = r2/2, the flux surface radius is r = √

2ψ . Therefore,
to give q the desired r-dependence, one needs only to give the
discretization parameter a ψ-dependence. Map (12) and (13)
can be changed by allowing � to be a function of ψ . In this
way we can describe the equilibrium structure of a plasma with
an arbitrary safety factor radial profile q(r). Once we know
the latter it is possible to choose the time step �(r) = 2π/q(r)

for each value of r . However, this simple relationship between
� and q is only valid for circular surfaces. For other surface
topologies, � may depend on q in more complicated ways.

The trajectory integration method can also be used to
derive an explicit, integrable map for the field lines in a
tokamak with a single-null divertor. As stated before, the
prerequisite for use of the trajectory method is that all the
fixed points lie on the same line (e.g. the x-axis). In a single-
null divertor, the magnetic axis and the hyperbolic saddle
(X-point) are the fixed points of interest and the straight line
connecting them is also the symmetry line for the divertor
plate (figure 2(a)). A one-dimensional potential function that
produces this topology has two wells with a barrier with a
maximum located between the divertor plate and the plasma
boundary. To simply achieve this configuration we can use
three parabolas spliced together so that their slopes match at
the connection points [42],

V (x) =




1
2x2, x < xA,

− 1
2 (x − c)2 + d, xA � x � xB,

1
2 (x − a)2 + b, x > xB,

(19)

where there are two chosen parameters a and c. The parameters
xA = c/2 and xB = (c + a)/2 are the connection points, with
b = (2ac − a2)/4 and d = c2/4 being parameters adjusted
to make the parabolas join smoothly (figure 2(b)). The two
elliptic points are at x = 0 and x = a and the hyperbolic point
is at x = c. All these points have y = 0.

We can obtain the field line trajectories for each parabolic
function by the general procedure outlined in the previous
section. Accordingly, we turn the time parameter t into a
discrete time step �. This yields a map for each region of

the potential (19):

xn+1 =




xn cos � + yn sin �, xn < xA,

(xn − c) cosh � + yn sinh � + c, xA � xn � xB,

(xn − a) cos � + yn sin � + a, xn > xB,

(20)

yn+1 =




−xn sin � + yn cos �, xn < xA,

(xn − c) sinh � + yn cosh �, xA � xn � xB,

−(xn − a) sin � + yn cos � xn > xB.

(21)

The field line trajectories lie on circles for the first and
third regions, and hyperbolae in the second region. We are
interested, in particular, in the lines that stem from the X-point
(its invariant manifolds). The circles are expected to join
the hyperbolae so as to describe flux surfaces that confine
the tokamak plasma in the first region of closed surfaces.
The plasma boundary should join the lines intersecting
at the X-point forming a figure-eight shaped separatrix.
The separatrix region and, in particular, curves outside the
separatrix are expected to become a chaotic field line region
when a non-integrable perturbation is added. The circles,
hyperbolae and lines must join smoothly at the connection
points, insofar as their slopes are equal in each region [42].

This discretization procedure works well for points near
the potential extrema, but it fails near the connection points
xA and xB . This is because the map equation used must
be changed at the exact instant of transition from region to
region. Consider, for example, the fixed point (x, y) =
(c, 0), corresponding to the X-point of the single-null divertor.
Placing an initial condition (x0, y0) exactly on a line forming
the separatrix we find that, after some iterations, the orbit
crosses the connection point xA and would continue in a line.
However, since it has entered the region x < xA, the orbit
should have followed a circle corresponding to the plasma
boundary.

Hence, in order to have a discretization scheme which
works near this connection point, we have to keep track of the
time interval the orbit spends in each of the regions adjacent to
x = xA. Thus, we adjust the discretization period from � to
the correct value for each region. Let (xn, yn) and (xn+1, yn+1)

be the coordinates just before and just after traversing the
connection point xA, respectively. Starting from (xn, yn),
the time it takes for the trajectory to reach the connection
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point x = xA, presumably less than �, can be obtained as
follows: the connection points coordinates (xA, yA) are given,
by equations (20) and (21), respectively, according to

xA = (xn − c) cosh tA + yn sinh tA + c, (22)

yA = (xn − c) sinh tA + yn cosh tA, (23)

where tA is the time elapsed between the map points (xn, yn)

and (xA, yA), which follows by elimination from the above
equations:

tA(xn, yn) = cosh−1

[
(xA − c)(xn − c) − yAyn

(xn − c)2 − y2
n

]
. (24)

Moreover, we can eliminate tA and get the relation

yA = −[(xA − c)2 − (xn − c)2 + y2
n]

1/2
. (25)

Since the time it takes to go from (xA, yA) to (xn+1, yn+1)

is � − tA, for the region x < xA, equations (20) and (21) give

xn+1 = xA cos(� − tA) + yA sin(� − tA), (26)

yn+1 = −xA sin(� − tA) + yA cos(� − tA). (27)

The complete form of the integrable divertor map is presented
in appendix A. In appendix B we show by direct calculation
that the Jacobian of this map is equal to unity. Hence, with
this procedure, the symplectic property of the map is not lost
during the connections between different regions.

A similar procedure is followed for the other connection
point (xB, yB). In general, for each connection point, we have
two time step adjustments, one for each sense of transition.
For two connection points, as in the case of the single-null
divertor map, we have seven map pieces: one for each region
and four for the transitions between these regions. We note
that, although the solutions for each region are simple, the
matching requirements at each connection point make the
problem highly nonlinear, since the coordinates and times
for the connection points depend on the coordinates in a
complicated way. In spite of this, in each region the map is
both area preserving and integrable, the physical requirement
required for a description of the field line structure. (see
appendix A for the explicit form of the map for each of the
seven regions.)

A Poincaré plot of the integrable map described above
is shown in figure 3 for map parameters a = 0.235 and
c = 0.200. Since the topology does not depend on the time step
value, for now we fix � = 1 for all surfaces. We normalized
the x and y values with respect to the minor radius of the
Brazilian tokamak TCABR (b = 0.22 m, which is not to be
confused with the potential adjustable parameter). The curves
on the left side of xA and on the right side of xB are circles,
and the curves between these points are hyperbolae.

4. Application to a plasma column with an external
conducting ring

The method we are proposing for obtaining integrable maps
uses a variable time step �, related to the safety factor profile
q(r), which should be given a priori. In the case of a large
aspect ratio tokamak in the absence of a poloidal divertor,

Figure 3. Invariant surfaces obtained from the integrable divertor
map with the same time step � = 1 for all surfaces and parameters
c = 0.200 and a = 0.235. The surfaces in light grey, black and dark
grey are internal to the separatrix, on the separatrix and external to
the separatrix, respectively.

where the cylindrical approximation (rn, θn, zn) is acceptable,
the safety factor is given by

q(p)(r) := dφ

dθ
= r

R0

B0

B
(p)

θ (r)
, (28)

where we used the magnetic field line equations (15) and
assumed a cylindrical equilibrium tokamak field B(p) =
(0, B

(p)

θ (r), B0). The superscript (p) refers to quantities related
to a cylindrical plasma column.

Now, we assume a peaked plasma current profile with
density j = jz(r)ẑ, where

jz(r) = IP(γ + 1)

πa2

(
1 − r2

a2

)γ

�(a − r), (29)

and where IP is the total plasma current, � is the Heaviside
function, a is the cylindrical plasma radius (not to be confused
with the potential parameter) and γ is a constant ultimately
determined by comparison with experiments. The equilibrium
poloidal magnetic field can be obtained from Ampére’s law,
yielding

B
(p)

θ (r) = µ0IP

2πr

[
1 − �(a − r)

(
1 − r2

a2

)γ +1
]

. (30)

We have chosen parameters representative of the Brazilian
tokamak TCABR [44]: major radius R0 = 0.61m, minor
radius b = 0.22 m, plasma radius a = 0.18 m, plasma current
IP = 65 kA, toroidal magnetic field at the magnetic axis
B0 = 1.20 T and γ = 4.5. The equilibrium poloidal magnetic
field described above can be expressed in the rectangular
coordinates (x, y) as

B(p)
x (x, y) = B

(p)

θ (r)
y√

x2 + y2
, (31)

B(p)
y (x, y) = −B

(p)

θ (r)
x√

x2 + y2
, (32)

where r =
√

x2 + y2 and tan θ = y/x.

6
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Figure 4. (a) Dependence of the safety factor with the horizontal initial conditions (x, y) = (x0, 0) for the plasma column (dashed black
curve), the plasma plus a circular loop (solid black curve) and for the integrable divertor map using appropriate values for �(ψ) (dashed
grey curve). (b) The same for the vertical initial conditions (x, y) = (xS, y0) (xS is the horizontal coordinate of the X-point) for the plasma
plus a circular loop (solid black curve) and for the integrable divertor map using appropriate values for �(ψ) (dashed grey curve).

We design our single-null divertor with an X-point lying
on the x-axis located at (x, y) = (xS, 0). The closed magnetic
surfaces in the region of the divertor will be produced by a
concentric current ring at a position (x, y) = (x ′, 0), carrying
a current Id in the z-direction. The field generated by this ring
can be considered, in a cylindrical approximation, as the field
of an infinite wire and is given, in rectangular coordinates, by

B(d)
x (x, y) = µ0yId

2π [(x − x ′)2 + y2]
, (33)

B(d)
y (x, y) = −µ0(x − x ′)Id

2π [(x − x ′)2 + y2]
, (34)

where the superscript (d) refers to quantities related to the
divertor current ring. We take the resultant field to be the linear
superposition of the fields produced by the plasma cylindrical
column and the current ring, which is acceptable insofar as
we neglect the plasma response to the external magnetic field.
The X-point occurs at the point where the resultant poloidal
field is zero. So, making B

(p)
y (xS, 0) = −B(d)

y (xS, 0), we can
obtain the expression

IP

Id
= xS

(x ′ − xS)
, (35)

which relates the positions of the X-point and divertor ring
with the plasma and divertor current. We imagine an X-point
position between x = a (the cylindrical plasma radius)
and x = b (the tokamak minor radius), i.e. xS = 0.2 m.
The external current ring position has a significant outward
displacement with respect to the tokamak wall x ′ = 0.235 m.
Substituting these values in (35), we find the value of an
external current Id = 11.4 kA.

We numerically integrate the field line equations in order
to study the magnetic field line dynamics in the presence of
the external current ring:

dx

dz
= B

(p)
x + B(d)

x

B0
, (36)

dy

dz
= B

(p)
y + B(d)

y

B0
. (37)

Solving the above equations we obtain the safety factor related
to the initial condition used. The relation between the safety
factor and initial conditions lying on thex-axis, for a cylindrical
plasma in the presence of an external current ring, is depicted
as the solid black curve in figure 4(a). The dashed black
curve in figure 4(a) is obtained from equation (28) for the
cylindrical plasma in the absence of the external current ring.
The relation between the safety factor and the vertical initial
conditions lying on x = xS is depicted as the solid black curve
in figure 4(b) for integration of (36) and (37).

Now, it remains to find the step size � for the map
that matches the value of the function ψ , so as to apply the
procedure explained in the previous section. However, the
dependence of � on q is not explicit, as it is for circular
surfaces, and must be determined numerically, point by point,
for several initial conditions, as presented in figures 4(a)
and (b). To compute ψ for these initial conditions we test
several values of � until we find one which presents the safety
factor q, as close as possible to those shown in figures 4(a)
and (b). After that, we apply equations (9) and (19) to
calculate ψ(x0, 0) or ψ(xS, y0), for horizontal or vertical initial
conditions, respectively. The results of the step size �(ψ),
for the three regions of the map, are displayed in figure 5.
The dependence of the safety factor on the initial conditions
obtained for the integrable divertor map is depicted as the
dashed grey curve in figures 4(a) and (b), where we use
the � values for the respective ψ shown in figure 5. We
observe excellent agreement between the solid black curve
(from numerical integration) and dashed grey curve (from the
integrable map).

We choose surfaces of section with z = 2πR0n, where n

is a positive integer, to plot the magnetic field lines for specified
initial conditions. A comparison between magnetic surfaces
obtained by numerical integration and those obtained from the
integrable divertor map, with the same initial conditions for
both cases, is shown in figure 6. The vertical line indicates the
position of the divertor plate. From the figure, it is seen that
the map is not exact, but does a reasonable job of representing
the surfaces.

7
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(a) (b)

(c)

Figure 5. Relation between the step size (�) and the function ψ used in the integrable divertor map in each of the three regions of phase
space.

Figure 6. Magnetic surfaces for the numerical integration of field
line equations of a circular plasma plus a current ring (grey) and for
the integrable divertor map (black) with the same horizontal initial
conditions.

5. Divertor map with a non-integrable perturbation

A main function of the divertor in a tokamak is to exhaust
particles and energy from the plasma core in a controlled way.
For that, it is necessary to have a peripheral region of chaotic
magnetic field lines that comprise the plasma boundary and the
X-point, and this chaotic region should intersect the divertor
plate. Chaos in the tokamak peripheral region can be externally

produced by an ergodic limiter, which is an arrangement of
currents external to the plasma creating a perturbing magnetic
field that is strong in the vicinity of the tokamak wall (figure 1).
Hence, the creation of a region of chaotic field lines is most
pronounced in the plasma edge and the scrape-off layer.

Many field line maps have been proposed to describe the
formation of a chaotic region due to the presence of an ergodic
limiter [13, 45–47]. These models involve the composition of
two maps, M = MI ◦MP, where MI is an integrable map for
describing the equilibrium dynamics and MP is a symmetry-
breaking perturbative map due to the limiter currents. In this
work, we take MI to be the integrable divertor map obtained
in the previous section.

The perturbation map, MP, is obtained from the field
generated by an ergodic limiter mounted over the tokamak
chamber, designed as a ring-shaped coil of length g and with
m pairs of straight sections in the toroidal direction, such that
currents flow in opposite senses for two adjacent segments, as
depicted in figure 1. Because the limiter is supposed to act
only on the thin toroidal section it occupies (small g), limiters
are similar to the kicked systems described in section 2. Thus,
one expects a map to give reasonable results.

The perturbing map is written in the coordinates (ρ, α),
which are related to the poloidal coordinates (r, θ) through
ρ = b − r and α = bθ , where b is the minor radius of the
tokamak chamber. According to the model proposed by Martin
and Taylor [48], the field line entering the ergodic limiter at

8
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Figure 7. Poincaré maps for perturbation currents (a) Ih = 0.20%IP and (c) Ih = 0, 31%IP. In (b) and (d) are shown the amplification of
the region indicated by a black square in (a) and (c) for the divertor plate, respectively. The initial conditions lie on the x-axis and coincide
with the unperturbed separatrix. The black line represents a position imagined for the collector plate.

(ρ1, α1) emerges from it at (ρ2, α2) where

α2 = α1 − Ce−mρ1/b cos
(mα1

b

)
, (38)

ρ2 = ρ1 +
b

m
ln

∣∣∣∣cos

[
mα1

b
− mC

b
e−mρ1/b cos

(mα1

b

)]∣∣∣∣
− b

m
ln

∣∣∣cos
(mα1

b

)∣∣∣ , (39)

and C = µ0gmIh/πbB0, where Ih is the current flowing
through the limiter segments, b is the radial position of the ring
and B0 is the equilibrium toroidal field. In our simulations
we use a limiter ring with length g = 0.08 m, m = 5 pairs
of segment currents, the same toroidal magnetic field used
in the previous section, B0 = 1.20 T, and a limiter radial
position coincident with the minor radius of tokamak chamber
b = 0.22 m. The number m = 5 is chosen in order to cause a
principal resonance in the external surfaces, with high safety
factor.

The composition of the perturbing map MP with the
integrable divertor map MI is performed as follows:

1. Calculate the value of ψ for a field line position at iteration
step n from ψn = ψ(xn, yn) = 1

2y2
n + V (xn), and choose

the � value that will be used in the next iteration of MI

through the relation �n = �(ψn), as given in figure 5;
2. Apply the integrable divertor map with step size �n, so as

to find the position of the field line just before entering the
limiter region, formally given by (x∗, y∗) = MI(xn, yn);

3. Iterate the perturbing map (xn+1, yn+1) = MP(x
∗, y∗)

(making the necessary changes of variables) for the field
line to emerge from the limiter region. Repeat the steps
above to get the next iteration of the composed map
M = MI ◦ MP.

The effect of MP is to cause a strong perturbation of
the external surfaces, rendering the separatrix into a chaotic
layer as can be seen in figures 7(a) and (c), where we
use the perturbation currents Ih = 0.20%IP and Ih =
0.31%IP, respectively. The initial conditions are taken on the
x-axis, with maximum value coincident with the unperturbed
separatrix xS. Although there are no initial conditions on open
surfaces, the Poincaré maps show that field lines are no longer
confined to the closed surface region, which would happen for
the unperturbed case. Instead, some lines escape, but always
to the specific region of the divertor plate.

Because the safety factor goes to infinity as one
approaches the separatrix, there is an accumulation of resonant
modes in this region. This accumulation creates a large
number of islands chains concentrated on a thin chaotic layer
immersed in a chaotic sea, as we can see in figures 7(b) and (d)
(amplifications of the black squares are shown in figures 7(a)
and (c), respectively). We can see in figure 7(b) a concentration
of points close to the last surviving island chain, which is due
to a stickiness effect. The manifolds of this chain have an
important influence on the escape of field lines to the plate.
As the perturbation becomes larger, the last chain becomes
totally destroyed and the next island chain emerges as the one
responsible for stickiness, as shown in figure 7(d). The same

9
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effects were observed in recent work dealing with a tokamak
with reversed magnetic shear and an ergodic limiter [14, 49].

6. Traces of field line escape on the divertor plate

The field line escape structure is closely related to the plasma
particle deposition on the divertor plate, since we assume the
particles follow the field lines as a guide. The map gives a
field line position as it crosses the Poincaré section. However,
to study field line escape we need to know where a field line
reaches the divertor plate, which normally happens between
iterations. To obtain the Poincaré map we discretized the
continuous Hamiltonian system. However, we can use this fact
to find the position of lines between iterations by an inverse
procedure of turning the discrete map equations back into a
continuous system for the one iteration before escape occurs.

The x-coordinate of the plate (xp) is chosen as xp = b.
Every time we have xn < xp and x∗ > xp, we interpret
this to mean the field line reaches the plate between these
iterations. We use the continuous equations to find the final
position (xp, yF, tF) of the field line. Since xp is greater than
the connection point xB , the final position of the field line is
given, according to the continuous version of equations (20)
and (21), by

xp = (xn − a) cos tF + yn sin tF + a, (40)

yF = −(xn − a) sin tF + yn cos tF, (41)

where tF is the time elapsed between the map points (xn, yn)
and the final position (xp, yF). From equations (40) and (41)
we obtain the vertical position of the field line

yF = [(xn − a)2 − (xp − a)2 + y2
n]

1/2
, (42)

and the time tF as

tF = cos−1

[
(xp − a)(xn − a) + yFyn

(xn − a)2 + y2
n

]
. (43)

The number of map iterations N corresponds to the
number of toroidal turns completed by the line before reaching
the plate. The time tF elapsed between the last iteration n and
the escape to the plate is related to the final toroidal angle �F

for which the escape occurs. The value of �F is given by

�F = 2π
tF

�n

. (44)

The number of toroidal turns necessary for the field line to
strike the divertor plate is also called the connection length
CL, and is given by

CL = N +
tF

�n

, (45)

where N is the number of map iterations.

6.1. Connection lengths

Specifically, we define the connection length to be the length of
a field line (measured in number of toroidal turns) that begins
at the lower part of the divertor plate (negative values of y)

and ends at the upper part of the plate (positive values of y).
We calculate the connection lengths of field lines for initial
conditions on the divertor plate (x0 = xp), in the vicinity of
where the (unperturbed) separatrix intersects the divertor plate.
The lines depart from the plate with negative y values and
strike the plate with positive y values. The separatrix intersects
the plate at two symmetric positions yS+ = 0.019685 and
yS− = −0.019685. We take initial conditions close to yS− and
write �y0 = y0 − yS− as the displacement of initial condition
with respect to the lower branch of which the unperturbed
separatrix intersects the plate.

In figure 8(a) we see the connection lengths for the
unperturbed case. The negative values of �y0 correspond to
open surfaces external to the separatrix, while positive values
of �y0 correspond to closed surfaces internal to the separatrix.
The only high connection length occurs for the separatrix
(�y0 = 0), while all other field lines escape after few toroidal
turns. In figure 8(b) we display the connection lengths for
the perturbation parameter Ih = 0.20%IP and in figure 8(c)
for Ih = 0.31%IP. We observe a fractal-like structure in the
dependence of the connection lengths on the initial conditions,
as reported in [20].

This means that field lines with low connection lengths
(less than, e.g. ∼10) and very high connection lengths (more
than ∼103 for example) may have initial conditions that are
very close. A large number of infinite connection lengths
indicates a strong concentration of singular surfaces in a
chaotic layer. Since, for the unperturbed case, the only singular
surface is the separatrix, there is only one infinite connection
length field line in figure 8(a). The perturbation causes the
formation of a chaotic layer in the external region with a
considerable number of island chains, each chain with its own
singular surfaces. Consequently, we observe high connection
lengths only for �y0 < 0, i.e. for initial conditions outside the
unperturbed separatrix. The connection lengths obtained with
Ih = 0.31%IP (figure 8(b)), are typically less than those with
Ih = 0.20%IP (figure 8(c)).

6.2. Magnetic footprints

Magnetic footprints are the set of strike points of field lines
at the divertor plate, (�F, yF), which follows because the
final horizontal coordinate is always xp; i.e. they correspond
to marks on the divertor plate caused by lines that escape.
The displacement �yF is measured from the point where the
unperturbed separatrix intersects the plate, �yF = yF − yS+.
Positive values of �yF correspond to final vertical positions
outside the unperturbed separatrix.

Figure 9(a) depicts footprints for the unperturbed case,
without taking the final toroidal angle modulo 2π . In this case
the value of �F/2π is equal to the connection length value.
When we represent the same footprint with �F modulo 2π , as
in figure 9(b), the plot typically overrides all the points between
the dashed vertical lines in figure 9(a). The almost horizontal
lines in figure 9(b) with �yF ∼ 0 are caused by lines close to
the unperturbed separatrix on the inner and outer sides of it.

When the perturbation is taken into account, the structure
in figure 9(b) becomes more complicated, as seen in
figures 9(c) and (d), for Ih = 0.20%IP and Ih = 0.31%IP,
respectively. The structure now occupies an area of the plate
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Figure 8. Connection lengths as a function of the displacement �y0 (with respect to ys−) for (a) the unperturbed case, (b) Ih = 0.20%IP and
(c) Ih = 0.31%IP.

with an apparent fractal structure. The continuity between
�F = 2π and �F = 0 is no longer verified because of the
impulsive kick-like perturbation. Moreover, upon increasing
the perturbation parameter the footprint becomes wider, as
seen by comparing figures 9(c) and (d). This widening is
a consequence of the chaotic layer enlargement shown in
figure 7. This localized perturbation produced by an ergodic
limiter gives rise to magnetic footprints rather different from
those observed for equilibrium perturbed by continuous coils
[12, 28, 40, 45].

7. Conclusions

In this paper we used a general method, presented in [42],
which was developed to tailor-make integrable symplectic
maps with specified fixed points in magnetostatic and
Hamiltonian mechanics applications. The main points of this
method were reviewed and applied to construct a symplectic
poloidal divertor map. This integrable map describes the
magnetic field line topology at the scrape-off layer of a large
aspect ratio tokamak with a chosen safety factor profile and
a poloidal divertor. We adjusted the time step parameter
introduced in the divertor map according to the safety factor
of the integrable flux surfaces. Results from our divertor
map compare well with the Poincaré maps obtained through
numerical integration of the field line equations.

We introduced external resonant non-axisymmetric
magnetic perturbations, described by another symplectic map,
in order to study flux surface breakup, and the corresponding

connection lengths and the magnetic footprints on the divertor
plate. The obtained divertor map is the composition of two
symplectic maps: one that describes an MHD equilibrium with
an X-point, whereas the other represents the resonant non-
axisymmetric perturbation that creates a chaotic layer around
the outermost remaining flux surface.
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Appendix A. Integrable divertor map

The complete set of mapping equations for the integrable part
of the divertor map is the following:

1. For (xn − c) cosh � + yn sinh � + c < xA < xn:

xn+1 = xA cos(� − tA) + yA sin(� − tA), (A1)

yn+1 = −xA sin(� − tA) + yA cos(� − tA), (A2)

where

tA = cosh−1

[
(xA − c)(xn − c) − yAyn

(xn − c)2 − y2
n

]
, (A3)

yA = −[(xA − c)2 − (xn − c)2 + y2
n]

1/2
. (A4)

11



Nucl. Fusion 50 (2010) 034003 T. Kroetz et al

Figure 9. Magnetic footprints on the divertor plate for unperturbed case (a) for the final angle of field lines �F non-modulo-2π and (b) for
�F modulo-2π . For the perturbed case the magnetic footprints are shown with �F modulated for perturbation currents (c) Ih = 0.20%IP

and (d) Ih = 0.31%IP. The quantity (�yF) gives the displacement of the initial condition with respect to ys+.

2. For xn < xA and xn cos � + yn sin � < xA:

xn+1 = xn cos � + yn sin �, (A5)

yn+1 = −xn sin � + yn cos �. (A6)

3. For xn < xA < xn cos � + yn sin �

xn+1 = (xA − c) cosh(� − t∗A) + y∗
A sinh(� − t∗A) + c,

(A7)

yn+1 = (xA − c) sinh(� − t∗A) + y∗
A cosh(� − t∗A),

(A8)

where

t∗A = cos−1

[
xAxn + yAyn

x2
n + y2

n

]
, (A9)

y∗
A = [x2

n − x2
A + y2

n]
1/2

. (A10)

4. For xA < xn < xB and xA < (xn −c) cosh �+yn sinh �+
c < xB

xn+1 = (xn − c) cosh � + yn sinh � + c, (A11)

yn+1 = (xn − c) sinh � + yn cosh �. (A12)

5. For xn < xB < (xn − c) cosh � + yn sinh � + c:

xn+1 = (xB − a) cos(� − tB) + yB sin(� − tB) + a,

(A13)

yn+1 = −(xB − a) sin(� − tB) + yB cos(� − tB),

(A14)

where

tB = cosh−1

[
(xB − c)(xn − c) − yByn

(xn − c)2 − y2
n

]
, (A15)

yB = [(xB − c)2 − (xn − c)2 + y2
n]

1/2
. (A16)

6. For xn > xB and (xn − a) cos � + yn sin � + a > xB :

xn+1 = (xn − a) cos � + yn sin � + a, (A17)

yn+1 = −(xn − a) sin � + yn cos �. (A18)

7. For (xn − a) cos � + yn sin � + a < xB < xn:

xn+1 = (xB − c) cosh(� − t∗B) + y∗
B sinh(� − t∗B) + c,

(A19)

yn+1 = (xB − c) sinh(� − t∗B) + y∗
B cosh(� − t∗B),

(A20)

where

t∗B = cos−1

[
(xB − a)(xn − a) + y∗

Byn

(xn − a)2 + y2
n

]
, (A21)

y∗
B = −[(xn − a)2 − (xB − c)2 + y2

n]
1/2

. (A22)
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Appendix B. Proof of the symplectic character of
the map

The Jacobian determinant of a 2D symplectic map must be
equal to unity. In this appendix we show the symplectic
character of the divertor map presented above. In order to
shorten the exposition we will present these calculations only
for two representative cases, namely those valid for region 1
and the connection between regions 2 and 1.

Appendix B.1. Map for region 1

For points in region 1 which do not cross the frontier to region 2
we have, from equations (A5) and (A6), that the the Jacobian
determinant, given by equation (3), is

det(J ) = ∂xn+1

∂xn

∂yn+1

∂yn

− ∂xn+1

∂yn

∂yn+1

∂xn

, (B1)

and the partial derivatives are

∂xn+1

∂xn

= cos � +
∂�

∂xn

K1, (B2)

∂xn+1

∂yn

= sin � +
∂�

∂yn

K1, (B3)

∂yn+1

∂xn

= − sin � +
∂�

∂xn

K2, (B4)

∂yn+1

∂yn

= cos � +
∂�

∂yn

K2, (B5)

where
K1 = −xn sin � + yn cos �, (B6)

K2 = −xn cos � − yn sin �. (B7)

On substituting (B2)–(B5) into (B1), the Jacobian
determinant can be written as

det(J ) = 1 +
∂�

∂xn

(K1 cos � − K2 sin �)

+
∂�

∂yn

(K2 cos � + K1 sin �) (B8)

= 1 + yn

∂�

∂xn

− xn

∂�

∂yn

. (B9)

The stepsize � can only be a function of ψn, and, since
ψn = y2

n/2 + x2
n/2, we have

∂�

∂xn

= ∂�

∂ψn

∂ψn

∂xn

= xn

∂�

∂ψn

, (B10)

∂�

∂yn

= ∂�

∂ψn

∂ψn

∂yn

= yn

∂�

∂ψn

, (B11)

such that the Jacobian determinant is

det(J ) = 1 + xnyn

∂�

∂ψn

− xnyn

∂�

∂ψn

= 1. (B12)

The Jacobian determinant for the other two maps which act
in regions 2 and 3 without crossing the connection points, given
by equations (A11)–(A12) and (A17)–(A18), respectively, can
be found in a similar way to be equal to unity.

Appendix B.2. Map for the connection between regions 2
and 1

To map a point situated in region 2 at iteration n, to a position in
region 1 at the iteration n + 1 we use equations (A1) and (A2),
where yA and tA are given, respectively, by equations (A3)
and (A4). The partial derivatives appearing in the Jacobian
determinant read as
∂xn+1

∂xn

= ∂xA

∂xn

cos(� − tA) +
∂yA

∂xn

sin(� − tA)

+

(
∂�

∂xn

− ∂tA

∂xn

)
K ′

1, (B13)

∂xn+1

∂yn

= ∂xA

∂yn

cos(� − tA) +
∂yA

∂yn

sin(� − tA)

+

(
∂�

∂yn

− ∂tA

∂yn

)
K ′

1, (B14)

∂yn+1

∂xn

= −∂xA

∂xn

sin(� − tA) +
∂yA

∂xn

cos(� − tA)

−
(

∂�

∂xn

− ∂tA

∂xn

)
K ′

2, (B15)

∂yn+1

∂yn

= −∂xA

∂yn

sin(� − tA) +
∂yA

∂yn

cos(� − tA)

−
(

∂�

∂yn

− ∂tA

∂yn

)
K ′

2, (B16)

with K ′
1 and K ′

2 given by

K ′
1 = −xA sin(� − tA) + yA cos(� − tA), (B17)

K ′
2 = xA cos(� − tA) + yA sin(� − tA). (B18)

On applying these relations in (3) and grouping the
common terms, there results

det(J ) = ∂xA

∂xn

∂yA

∂yn

− ∂xA

∂yn

∂yA

∂xn

+

(
∂�

∂xn

− ∂tA

∂xn

) (
A

∂xA

∂yn

+ B
∂yA

∂yn

)

−
(

∂�

∂yn

− ∂tA

∂yn

) (
A

∂xA

∂xn

+ B
∂yA

∂xn

)
, (B19)

where

A = K ′
2 cos(� − tA) − K ′

1 sin(� − tA) = xA, (B20)

B = K ′
1 cos(� − tA) + K ′

2 sin(� − tA) = yA, (B21)

after having used equations (B17) and (B18).
Making use of definitions (22) and (23) and the relation

c = 2xA, the partial derivatives with respect to xA and yA can
be written as

∂xA

∂xn

= cosh tA + yA

∂tA

∂xn

, (B22)

∂xA

∂yn

= sinh tA + yA

∂tA

∂yn

, (B23)

∂yA

∂xn

= sinh tA − xA

∂tA

∂xn

, (B24)

∂yA

∂yn

= cosh tA − xA

∂tA

∂yn

, (B25)
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which, after substitution into the Jacobian determinant (B19),
causes the vanishing of all the partial derivatives with relation
to tA, resulting in a simpler expression

det(J ) = 1 +
∂�

∂xn

(xA sinh tA + yA cosh tA)

− ∂�

∂yn

(xA cosh tA + yA sinh tA) . (B26)

Now, given that � can only be a function of ψn =
y2

n/2 − (xn − c)2/2 + d, we have

∂�

∂xn

= ∂�

∂ψn

∂ψn

∂xn

= −(xn − c)
∂�

∂ψn

, (B27)

∂�

∂yn

= ∂�

∂ψn

∂ψn

∂yn

= yn

∂�

∂ψn

, (B28)

such that, on applying these relations into equation (B26), we
obtain

det(J ) = 1 − ∂�

∂ψn

{[ynyA + (xn − c)xA] sinh tA

+ [ynxA + (xn − c)yA] cosh tA}. (B29)

The definitions of xA and yA given by (22) and (23),
respectively, can be used once again in order to represent
sinh tA and cosh tA in terms of xA, yA, xn and yn, yielding

sinh tA = yn(xA − c) − yA(xn − c)

y2
n − (xn − c)2

, (B30)

cosh tA = (xn − c)(xA − c) − yAyn

(xn − c)2 − y2
n

, (B31)

which, using c = 2xA, make the term within braces in (B29)
vanish identically, such that the Jacobian determinant results
equal to unity. Similar calculations show that the maps for the
other connections are also symplectic.
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