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We present a Hamiltonian derivation of a class of reduced plasma two-dimensional fluid models, an
example being the Charney–Hasegawa–Mima equation. These models are obtained from the same
parent Hamiltonian model, which consists of the ion momentum equation coupled to the continuity
equation, by imposing dynamical constraints. It is shown that the Poisson bracket associated with
these reduced models is the Dirac bracket obtained from the Poisson bracket of the parent model.
© 2010 American Institute of Physics. �doi:10.1063/1.3356103�

I. INTRODUCTION

Modeling plasma dynamics, with kinetic or fluid ap-
proaches, often amounts to investigating reduced, relatively
tractable, models that capture the essential ingredients of the
phenomenon under consideration while neglecting, for ex-
ample, irrelevant spatial or temporal scales. Obtaining valu-
able reduced models provides a practical computational ad-
vantage when numerical simulations of a phenomenon have
to be carried out. Reduced models are sometimes derived
from parent models through a well-defined reduction proce-
dure that amounts to approximation directly at the level of
the model equations, after having introduced some ordering
based on physical arguments. Ideally, the reduced model
should inherit some essential properties from the parent
model. It has been recognized that the ideal part of such
parent models possess a Hamiltonian �although noncanoni-
cal� character, consisting of a Hamiltonian functional, which
can be identified as the total energy of the system, and a
noncanonical Poisson bracket.1 Paradigmatic examples are
the Vlasov–Maxwell equations2–5 and the ideal magnetohy-
drodynamics equations,6 which both possess such a Hamil-
tonian structure. If one starts a derivation from a Hamil-
tonian parent model, then the final reduced model should
also possess a Hamiltonian structure. If this were not the
case, some faulty dissipation would enter the reduced model,
and lead to qualitatively different interpretation of physical
behavior. For instance, numerical simulations of a reduced
model with spurious dissipative terms might converge to at-
tracting states, which would be ruled out if the Hamiltonian
structure were present.

When the physical arguments invoked to reduce the par-
ent model take the form of constraints on the dynamics, the
method of Dirac brackets �see, e.g., Refs. 7–10�, provides a
systematic method for obtaining a Hamiltonian reduced
model from a Hamiltonian parent model. This method is gen-
eral and works in the case of noncanonical Hamiltonian sys-
tems, which is the type of systems that arises when the mod-
els are formulated in terms of Eulerian variables, frequently
used in plasma physics. Dirac brackets have proven to be

useful for both finite and infinite-dimensional,11–13 for the
derivation of balance models in geophysical fluid
dynamics,14,15 as a numerical �simulated annealing� method
for calculating vortex states,16 and also for describing the
dynamics of fluids with free boundaries.17 The purpose of the
present paper is to show how a class of reduced models,
which will be Hamiltonian by construction, can be obtained
from a Hamiltonian fluid parent model. Relevant examples
of reduced models belonging to this class include the
Charney–Hasegawa–Mima equation,18,19 describing the
propagation of drift waves in plasma and the Euler equation
for an incompressible fluid.

Here, a slab geometry with Cartesian coordinates is
adopted and the dynamics of a plasma is confined to a plane
transverse to an imposed magnetic field. Given a uniform
and constant magnetic field B=Bẑ, the parent model de-
scribes the ion fluid dynamics in terms of its density and
velocity fields. This model has a noncanonical Hamiltonian
form.6 The question addressed is how to derive reduced mod-
els describing the evolution of a few fields �for instance, the
density or the electrostatic potential�, given some physical
constraints dictated by experimental relevance, while pre-
serving the Hamiltonian character of the parent model. In
order to perform the reduction, two constraints are consid-
ered: first, an incompressibility assumption on the ion fluid
and second, a relation between the density and the electro-
static potential �or equivalently of the streamfunction of the
incompressible part of the ion velocity field�. This last con-
straint can eventually be ascribed to a relation that couples
the ion and the electron fluid through a quasineutrality as-
sumption. We show using Dirac brackets that the Poisson
bracket of the reduced fluid models can be constructed and
the noncanonical Hamiltonian structure of these reduced
models are recovered in a systematic way.

The paper is organized as follows: in Sec. II, we recall
the Hamiltonian structure of the parent model and introduce
new dynamical variables that are particularly convenient for
the problem under consideration. In Sec. III, the essential
elements of Dirac’s theory of constrained Hamiltonian sys-
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tems are briefly reviewed and the explicit derivation of the
Dirac bracket for the reduced models is carried out. In
Sec. IV, we focus on the specific examples of the Euler equa-
tion for an incompressible fluid and the Charney–Hasegawa–
Mima equation. We also discuss here the model derived by
Terry and Horton.20 Conclusions are drawn in Sec. V.

II. EXPANSION OF THE ION FLUID DYNAMICS
AROUND EQUILIBRIUM

We start the derivation from a parent model with two
dynamical equations: one describing the transverse dynamics
of the ion velocity field v�x ,y , t� and the other describing the
dynamics of the ion density field n�x ,y , t�

v̇ + �v · ��v = − �� + v � B , �1�

ṅ = − � · �nv� , �2�

where the dot indicates the partial derivative with respect to
time t. We have used units such that the ion mass is M =1, its
charge e=1, and the amplitude of the magnetic field B=1.
The total energy of the ions, given by the sum of their kinetic
energy plus the potential energy provided by the electrostatic
potential �, is a conserved quantity that is also a good can-
didate for the Hamiltonian of the system of Eqs. �1� and �2�,
viz.,

H�n,v� =� d2x�n
v2

2
+ n�� . �3�

The dynamics is determined by the Poisson bracket6,21

�F,G	 = −� d2x�Fv · �Gn − �Fn · Gv

− 
� � v + ẑ

n
� · Fv � Gv� , �4�

where we denote the functional derivatives of a given ob-
servable F�n ,v� by subscripts, i.e., Fv=�F /�v and Fn

=�F /�n. In our context we assume that the electrostatic po-
tential � is determined by the dynamics of the electrons
which leads to a function ��ne�, where ne is the electron
density. From the quasineutrality condition, n=ne, the
Hamiltonian becomes

H�n,v� =� d2x�n
v2

2
+ ��n�� , �5�

where ���n�=��n�. We notice that for an external potential
�, we obtain ��n�=n� as in Eq. �3�. Another example is
obtained by neglecting the inertia of the electrons so that
their density obeys a Boltzmann law ne=n0 exp �, where
n0=n0�x ,y�=1−��x ,y� is the electron density at equilibrium,
given by a constant plus a space dependent part that we will
later assume to be small. Hence, ��n�=log�n / �1−��� and
consequently ��n�=n�log�n / �1−���−1	.

We perform the following change of variables
�n ,v�� �ñ ,� ,D� defined by

ñ = n ,

�� = ẑ · � � v ,

�D = � · v ,

where � denotes the Laplacian. For simplicity, we use n
instead of ñ in what follows. In terms of the new variables
�n ,� ,D�, Hamiltonian �5� becomes

H�n,�,D� =� d2x�n
 ����2 + ��D�2

2
+ ��,D�� + ��n�� ,

�6�

where �f ,g�= ẑ ·�f ��g and the bracket �4� becomes

�F,G	 =� d2x�FnGD − FDGn +
�� + 1

n
���−1F�,�−1G��

+ ��−1FD,�−1GD� + ��−1FD · ��−1G�

− ��−1F� · ��−1GD�� .

We first assume that the variables evolve slowly with
time, which is equivalent to adding a prefactor of 1 /� to the
Hamiltonian, and we introduce an �-ordering for the dynami-
cal variables. The hypothesis is that the system of interest is
near an equilibrium state whose spatial variations are of or-
der �

n = 1 + �n1,

� = ��1,

D = �D1.

The expansion of the Poisson bracket up to order O��0� is
given by

�F,G	 =
1

�2� d2x�Fn1
GD1

− FD1
Gn1

− FD1
�−1G�1

+ F�1
�−1GD1

� −
1

�
� d2x�F�1

�−1L�−1G�1

+ FD1
�−1L�−1GD1

− FD1
�−1	�−1G�1

+ F�1
�−1	�−1GD1

� , �7�

with the linear operators L and 	 defined by

Lf = ���1 − n1, f� ,

	f = − � · ����1 − n1� � f� ,

where we omit their dependence on ��1−n1. Observe, L is
antiself-adjoint �L†=−L�, while 	 is self-adjoint �	†=	�.

In Sec. III, we impose constraints on the Poisson bracket
�7� and compute the associated Dirac bracket.
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III. DIRAC BRACKETS

First we recall few basic facts about Dirac brackets in
infinite dimensions. If we impose N Eulerian constraints

��x�=0 for �=1, . . . ,N on a Hamiltonian system with a
Hamiltonian H and a Poisson bracket �· , ·	, the Dirac bracket
is obtained from the matrix C defined by the Poisson bracket
between the constraints

Cab�x,x�� = �
��x�,
��x��	 ,

where note C���x ,x��=−C���x� ,x�. The Dirac bracket is de-
fined by

�F,G	� = �F,G	 −� d2x� d2x��F,
��x�	C��
−1 �x,x��

��
��x��,G	 , �8�

where the C��
−1 �x ,x�� are defined by

� d2x�C��
−1 �x,x��C�
�x�,x��

=� d2x�C���x,x��C�

−1�x�,x��

= ��
��x − x�� ,

which implies C��
−1 �x ,x��=−C��

−1 �x� ,x�.
Dirac obtained Eq. �8� from a modified Hamiltonian

with Lagrange multipliers associated with each constraint

H� = H +� d2x���x�
��x� .

The computation of the dynamical equation associated with
this new Hamiltonian gives

�F,H�	 = �F,H	 +� d2x���F,
�	 +� d2x
��F,��	 ,

which is equal to

�F,H�	 
 �F,H	� � �F,H	 +� d2x���F,
�	 ,

where the symbol 
 means equality after the constraints is
imposed. The coefficients �� are obtained by demanding that

� are Casimir invariants of the bracket �· , ·	�, which leads
to the definition of the bracket �8�.

We impose two constraints on the dynamics. The first
one is incompressibility, which translates here into


1�x� = D1 = 0,

and the second one is an assumption relating the electron
density to the electrostatic field. This assumption takes the
form


2�x� = n1 − N��1� = 0,

where N is in general, a nonlinear pseudodifferential function
of �1, i.e., a function of �1 and its derivatives to arbitrary
order. The functional derivative of 
2 with respect to �1 is
given by

�
2�x�
��1�x��

= − N̂†��x� − x� ,

where N̂ is the Fréchet derivative of N defined by

N̂��1 = � d

d�
N��1 + ���1��

�=0
.

The Poisson brackets between the constraints are given by

C11�x,x�� = −
1

�
�−1L�−1��x − x�� , �9�

C12�x,x�� = −
1

�2 �1 − �−1N̂† + ��−1	�−1N̂†���x − x�� ,

�10�

C21�x�,x� =
1

�2 �1 − N̂�−1 + �N̂�−1	�−1���x − x�� , �11�

C22�x,x�� = −
1

�
N̂�−1L�−1N̂†��x − x�� . �12�

We take the convention that the linear operators act on the

first mentioned independent variable, e.g., N̂��x−x�� in-
volves the derivatives with respect to x, while L��x�−x�
involves the derivatives with respect to x�. The elements of
C−1 are determined by the following four relations: the first
two determine C11

−1�x ,x�� and C21
−1�x ,x��:

� d2x��C11�x,x��C11
−1�x�,x�� + C12�x,x��C21

−1�x�,x���

= ��x − x�� ,

� d2x��C21�x,x��C11
−1�x�,x�� + C22�x,x��C21

−1�x�,x��� = 0,

which upon using Eqs. �9�–�12� become

− ��−1L�−1C11
−1 − �1 − �−1N̂† + ��−1	�−1N̂†�C21

−1

= �2��x − x�� ,

�1 − N̂�−1 + �N̂�−1	�−1�C11
−1 − �N̂�−1L�−1N̂†C21

−1 = 0.

The expansion of the solution of the above equations, up to
order O��4�, is given by

C11
−1�x,x�� = − �3�1 − N̂�−1�−1N̂�−1L�−1N̂†

��1 − �−1N̂†�−1��x − x�� + O��4� ,

C21
−1�x,x�� = − �2�1 − �−1N̂†�−1��x − x��

+ �3�1 − �−1N̂†�−1�−1	�−1N̂†

��1 − �−1N̂†�−1��x − x�� + O��4� .

In the same way we obtain the expansions for C22
−1�x ,x�� and

C12
−1�x ,x��
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� d2x��C22�x,x��C22
−1�x�,x�� + C21�x,x��C12

−1�x�,x���

= ��x − x�� ,

� d2x��C12�x,x��C22
−1�x�,x�� + C11�x,x��C12

−1�x�,x��� = 0,

which upon using Eqs. �9�–�12� lead to

C22
−1�x,x�� = − �3�1 − �−1N̂†�−1�−1L�−1�1 − N̂�−1�−1

���x − x�� + O��4� ,

C12
−1�x,x�� = �2�1 − N̂�−1�−1��x − x�� − �3�1 − N̂�−1�−1

�N̂�−1	�−1�1 − N̂�−1�−1��x − x�� + O��4� .

Now, using the above and the following expressions:

�F,
1�x�	 =
1

�2 �Fn1
+ �−1F�1

− ��−1	�−1F�1

+ ��−1L�−1FD1
� ,

�F,
2�x�	 = −
1

�2 ��1 − N̂�−1�FD1
+ �N̂�−1L�−1F�1

+ �N̂�−1	�−1FD1
� ,

we get

� d2x� d2x��F,
1�x�	C11
−1�x,x���
1�x��,G	

=
1

�
� d2x�Fn1

+ �−1F�1
��1 − N̂�−1�−1N̂�−1L�−1N̂†

��1 − �−1N̂†�−1�Gn1
+ �−1G�1

� ,

� d2x� d2x��F,
1�x�	C12
−1�x,x���
2�x��,G	

=
1

�2� d2x�Fn1
+ �−1F�1

�GD1

−
1

�
� d2x���−1	�−1F�1

− �−1L�−1FD1
�GD1

− �Fn1
+ �−1F�1

�

��1 − N̂�−1�−1N̂�−1L�−1G�1
� ,

� d2x� d2x��F,
2�x�	C21
−1�x,x���
1�x��,G	

= −
1

�2� d2xFD1
�Gn1

+ �−1G�1
�

+
1

�
� d2xFD1

��−1	�−1G�1
− �−1L�−1GD1

�

− N̂�−1L�−1F�1
�1 − �−1N̂†�−1�Gn1

+ �−1G�1
� ,

� d2x� d2x��F,
2�x�	C22
−1�x,x���
2�x��,G	

=
1

�
� d2xFD1

�−1L�−1GD1
.

By summing these contributions and subtracting the re-
sult from the Poisson bracket �7�, as per Eq. �8�, we obtain
the following Dirac bracket:

�F,G	� = −
1

�
� d2x�� − N̂†�−1�F�1

+ N̂†Fn1
�

�L�� − N̂†�−1�G�1
+ N̂†Gn1

� .

If we define F̄ for any functional F��1 ,n1 ,D1� as

F̄��1� = F��1,N��1�,0� ,

the functional derivative of F̄ with respect to �1 is given by

F̄�1
= F�1

+ N̂†Fn1
.

Therefore, the Dirac bracket becomes

�F,G	� =
1

�
� d2x���1 − N��1��

���� − N̂†�−1F̄�1
,�� − N̂†�−1Ḡ�1

� . �13�

Finally, if we perform the following change of variables:

q1 = ��1 − N��1� ,

the Dirac bracket achieves the compact form

�F,G	� =
1

�
� d2xq1�Fq1

,Gq1
� , �14�

as obtained in Ref. 21. In particular, we notice that the Pois-
son bracket �14� does not depend explicitly on the constraint
function N. Therefore, all the models with constraints of the
form n1=N��1� share the same Poisson bracket when ex-
pressed in terms of the generalized vorticity variable q1.

IV. HAMILTONIANS

Having obtained a common Poisson bracket for our class
of systems, we now obtain Hamiltonians for various cases.

A. 2D Euler equation

When the electrostatic potential is set to zero, the expan-
sion of Hamiltonian �6� is given by
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H1�n1,v1� =
�

2
� d2xv1

2,

which in terms of the variables �1 and D1 is

H1 =
�

2
� d2x����1�2 + ��D1�2� .

As constraints we choose a constant density, i.e., N=0, and
incompressibility, i.e., D1=0. The resulting Dirac bracket is
given by

�F,G	� =
1

�
� d2x��1��−1F̄�1

,�−1Ḡ�1
� .

This corresponds to the Hamiltonian and the Poisson bracket
of the two-dimensional �2D� Euler equation, which was
given in Refs. 3 and 22 in terms of the vorticity variable
q1=��1

H1 = −
1

2
� d2xq1�−1q1,

and

�F,G	� =� d2xq1�Fq1
,Gq1

� .

Since � does no longer play a role in the discussion, we drop
it in what follows.

B. Charney–Hasegawa–Mima equation

Now we assume a linear adiabatic response of the elec-
trons. Upon expanding ��n�=log�n / �1−����, this gives

N��1�=�1−� and N̂=1. The Dirac bracket becomes

�F,G	� =� d2x���1 − �1 + ��

���� − 1�−1F̄�1
,�� − 1�−1Ḡ�1

� ,

which is exactly the Poisson bracket found in Ref. 23 and
derived in Ref. 21. The expansion of Hamiltonian �6� is
given by21

H1 =
1

2
� d2x����1�2 + ��D1�2 + n1

2 + 2�n1� ,

which becomes

H1 =
1

2
� d2x����1�2 + �1

2� ,

when introducing the constraints n1=N��1� and D1=0.
We notice that for N��1�=�1 /� where � is small, we

recover the Hamiltonian structure of the asymptotic model
given in Ref. 24.

C. General setting

We consider a Hamiltonian which is given by the sum of
a kinetic energy plus a potential part

H =� d2x
���1�2

2
+ V�N��1�� , �15�

where

V�n� =� d2x��n� , �16�

is a quite general functional of the density n and � is arbi-
trary. With this Hamiltonian and the bracket of Eq. �13� or
�14�, the equation of motion for �1 is given by

�� − N̂��̇1 = − ���1 − N��1�,�� − N̂†�−1H̄�1
� ,

where

H̄�1
= − ��1 + N̂†Vn.

This equation which originates from a Hamiltonian system is
valid for any constraint N and any potential V. As stated
above, all these models share the same Poisson bracket �in
the generalized vorticity variable�. They differ in their
Hamiltonian. For V given by Eq. �16� and for � such that

���N��1�� = �1,

this equation simplifies,

�� − N̂��̇1 = ���1 − N��1�,�1� ,

which is verified for the two cases described above, the 2D
Euler and the CHM equations. As a consequence of our or-
dering, this choice of � is equivalent to the condition men-
tioned in Sec. II, namely that ���n�=��n�.

The question now becomes whether or not it is possible
to construct a potential V for a dynamical equation or an
electron response of interest. A rigorous answer is deter-
mined for the dynamical equation for the electric potential �
generated by the electrons. For example, in the nonlinear
drift wave model derived by Terry and Horton20 �see also
Refs. 25 and 26�, the electric potential is not only a function
of n but of all its derivatives, namely,

��n� = N−1�n� ,

where N−1 is the inverse of the relation n=N���. In particu-
lar, N���= �1+Oa��−�, where Oa=�0�c1+���y is an
antiself-adjoint operator. For such cases, the potential func-
tion � with ��=� cannot be constructed. General potential
functions of the form of that of Eq. �15�, such that

Vn = ��n�

can only be solved if N̂ is a self-adjoint operator. Thus the
Terry–Horton model is not a Hamiltonian model in our class.

V. CONCLUSIONS

We have shown how the theory of constrained Hamil-
tonian systems, developed by Dirac, provides an effective
way to include constraints into a Hamiltonian system, while
preserving the Hamiltonian character. In particular, we have
applied this theory to a case relevant for plasma physics, by
adopting as the parent model a fluid system consisting of the
ion momentum equation and the continuity equation, where
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the electron dynamics determines the electrostatic potential
as a function of the density. We derived the Poisson bracket
for the Euler and the Charney–Hasegawa–Mima equations as
the Dirac bracket of this dynamics, obtained by considering
an incompressibility condition and a general relation be-
tween the density and the velocity field as constraints. Given
the bracket thus obtained, different choices for the Hamil-
tonian functional lead to different models, and in this way a
general class of systems was derived, all of which preserve
the constraints and are Hamiltonian by construction.

We emphasize that the technique presented here is gen-
eral, and can be applied to derive new reduced Hamiltonian
models from more general parent models, models for which
the Hamiltonian structure becomes directly available.
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