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We derive the gauge-free Hamiltonian structure of an extended kinetic theory, for which the intrinsic spin
of the particles is taken into account. Such a semi-classical theory can be of interest for describing, e.g.,
strongly magnetized plasma systems. We find that it is possible to construct a generalized noncanonical
Poisson bracket on the extended phase space, and discuss the implications of our findings, including
stability of monotonic equilibria.
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High energy density plasma physics has become a popular sub-
ject (see, e.g., [1] and references therein). In such systems, quan-
tum mechanical effects, such as wave function dispersion and/or
statistical effects, can become important (for a recent experimen-
tal example, see [2]), and much of these plasmas can be rightly
termed quantum plasmas. Much of the early literature on quantum
plasmas has focused on condensed matter systems with a back-
ground lattice structure and the linear effects that follows (see,
e.g., [3]). However, recent developments show a different direc-
tion, where the nonlinear aspects of such systems are in focus [4,
5]. Examples of recent results include quantum ion-acoustic waves
[6], Jeans instabilities in quantum plasmas [7], trapping effects [8],
magnetization by photons [9] and relativistic effects [10,11]. Typi-
cally, the quantum hydrodynamic equations are derived by starting
from the Schrödinger equation and making the Madelung ansatz
[12]. However, a method that more closely resembles the classical
case is to use kinetic equations as a starting point (see Ref. [12]
for a comparison between the different approaches). The field of
quantum kinetic theory [13] in many ways started with the am-
bitions of Wigner, as presented in Ref. [14], to bridge the gap
between classical Liouville theory and statistical quantum dynam-
ics [15–17]. Thus, the development of quantum kinetic theory was
partly due to an interest in obtaining a better understanding of
the quantum-to-classical transition [18] (see also [19]). However,
another important aspect of quantum kinetic theory is as a com-
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putational tool for, e.g., quantum plasmas [5], condensed matter
systems [20,21], and, in general, quantum systems out of equilib-
rium [22], and in that respect shares many commonalities with
quantum optics [23]. As shown in [24–28], spin is such an effect,
the one of particular interest here.

When developing new models it can be important to show that
they are Hamiltonian – all of the most important models of physics
have this property, when phenomenological or other dissipation
is neglected. If this is not the case, the non-Hamiltonian nature
of these models gives rise to spurious dissipation that may not
be readily identifiable or quantifiable. Thus, one role of Hamil-
tonian or action principle formulations is to filter out deficient
models, a role that is not straightforward to play for matter models
given in terms of Eulerian or spatial variables. Such models possess
noncanonical Hamiltonian form, i.e. they are Hamiltonian but the
conventional variables are not a canonically conjugate set and con-
sequently the Poisson bracket possesses noncanonical form – yet it
retains its Lie algebraic properties of antisymmetry, bilinearity, and
the Jacobi identity. (See e.g. [29–32]. Also see [33,34] for recent
work applicable to plasmas.)

For the kinetic theory of interest here we show it has a non-
canonical Hamiltonian structure that is a generalization of that
given in [30,35,36]. (See also [37].) We present the noncanonical
Poisson bracket, prove directly that it satisfies the Jacobi identity,
find Casimir invariants for the theory, and present an energy-like
theorem that demonstrates that all equilibria with monotonically
decreasing distributions are stable.

We consider the nonrelativistic spin Maxwell–Vlasov equation
for f (x,v, s, t), an electron phase space density:
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∂ f

∂t
= −v · ∇ f +

[
e

m

(
E + v

c
× B

)
+ 2μe

mh̄c
∇(s · B)

]
· ∂ f

∂v

+ 2μe

h̄c
(s × B) · ∂ f

∂s
(1)

where m and e > 0 are the electron mass and charge, respectively,
2π h̄ is Planck’s constant, μe = gμB/2 is the electron magnetic mo-
ment in terms of μB , the Bohr magneton, and the electron spin
g-factor. Eq. (1) is coupled to the dynamical Maxwell equations,

∂B

∂t
= −c∇ × E, (2)

∂E

∂t
= c∇ × B − 4π J (3)

through the current J = J f + c∇ × M, which has “free” and spin
magnetization parts:

J f := −e

∫
d3 v d3s v f , (4)

M := −2μe

h̄

∫
d3 v d3s s f . (5)

Extension to multiple species is straightforward.
Note, Eqs. (1), (2), and (3), with (4) and (5), are to be viewed

classically and consequently a full nine-dimensional phase space
integration, d9z = d3x d3 v d3s, is considered for f . Later we will
see how a spin quantization constraint can be applied.

The Hamiltonian functional for the theory is

H[E,B, f ] =
∫

d9z

(
m

2
v2 + 2μe

h̄c
s · B

)
f

+ 1

8π

∫
d3x

(
E2 + B2) (6)

which can be shown directly to be conserved, but this will become
obvious after the Hamiltonian structure is given. Similarly, it can be
shown that the total momentum,

P =
∫

d9z f mv + 1

4πc

∫
d3x E × B, (7)

is conserved, whence it is evident that spin carries no linear mo-
mentum.

The noncanonical spin Maxwell–Vlasov bracket is composed of
several parts:

{F , G}sMV =
∫

d9z f

(
[F f , G f ]c (8)

+ [F f , G f ]B (9)

+ [F f , G f ]s (10)

+ 4πe

m
(F E · ∂v G f − G E · ∂v F f )

)
(11)

+ 4πc

∫
d3x (F E · ∇ × G B − G E · ∇ × F B), (12)

where

[ f , g]c := 1

m
(∇ f · ∂v g − ∇g · ∂v f ), (13)

[ f , g]B := − eB

m2c
· (∂v f × ∂v g), (14)

[ f , g]s := s · (∂s f × ∂s g), (15)

with standard partial derivatives denoted by ∂v := ∂/∂v and func-
tional derivatives by F f := δF/δ f , etc. Term (10) of { , }sMV is new
and accommodates the spin; it is not surprising that it has an in-
ner bracket based on the so(3) algebra [38]. The remaining terms

(8), (9), (11), and (12) produce the usual Vlasov–Maxwell theory
[30,35–37,39]. It is a simple exercise to show that Eqs. (1), (2), and
(3) are given as follows:

∂ f

∂t
= { f , H}sMV ,

∂B

∂t
= {B, H}sMV ,

∂E

∂t
= {E, H}sMV .

This is facilitated by the identity
∫

d9z f [g,h] = − ∫
d9z g[ f ,h],

which works for all three brackets of (13), (14), and (15).
There are two approaches to obtaining a Hamiltonian descrip-

tion. The usual one is by constructing an action principle by postu-
lating a Lagrangian density with the desired observables and sym-
metry group, and then effecting a Legendre transformation, when
possible, to obtain a Hamiltonian theory. Alternatively one can pos-
tulate an energy functional and Poisson bracket as we have done
here. When exploring new territory with this latter approach, one
must prove directly the Jacobi identity {{F , G}, H} + {{G, H}, F } +
{{H, F }, G} ≡ 0 for all functionals F , G , and H . With the former
approach this is guaranteed if the action principle and Legendre
transform exist and one can perform a chain rule calculation to ob-
tain a bracket in terms of the desired observables. This was done
for the Maxwell–Vlasov bracket in [36], where it is necessary to as-
sume the existence of a vector potential. However, with the bracket
approach one need not assume the existence of a vector poten-
tial, and one can proceed in a self-contained gauge-free manner to
show that the Maxwell–Vlasov bracket satisfies
{{F , G}MV , H

}
MV + cyc

= e

m2c

∫
d6z f ∇ · B

[(
∂ F f

∂v
× ∂G f

∂v

)
· ∂ H f

∂v

]
. (16)

This result was quoted in [30] (details of this early explicit
(and tedious) calculation will be given elsewhere). Thus, although
the Maxwell–Vlasov Hamiltonian theory is gauge-free, it requires
∇ · B = 0.

One can construct an action principle for the spin Maxwell–
Vlasov theory of the form of [40–42] and then proceed to the
bracket {F , G}sMV (see e.g. [43]), but we find it easier to prove the
Jacobi identity directly. Writing {F , G}sMV = {F , G}MV + {F , G}s and
using :=: to denote the cyclic sum we have
{{F , G}sMV , H

}
sMV :=: {{F , G}MV , H

}
MV + {{F , G}s, H

}
MV

+ {{F , G}MV , H
}

s + {{F , G}s, H
}

s

:=: {{F , G}s, H
}

MV + {{F , G}MV , H
}

s, (17)

where the second equality follows because of (16) (assuming
solenoidal B) and the fact that {F , G}s is a Lie–Poisson bracket
(see e.g. [31,44]). Thus it only remains to show that the cross
terms cancel, which is facilitated by a theorem in [30]; viz., when
functionally differentiating {F , G}MV and {F , G}s , which are needed
when constructing the cross terms, one can ignore the second
functional derivative terms. These cancel by virtue of the symme-
try of the second variation and antisymmetry of the bracket. Using
the symbol =̇ to denote equivalence modulo the second variation
terms, we obtain

δ{F , G}MV

δ f
=̇ [F f , G f ]c + [F f , G f ]B

+ 4πe

m
(F E · ∂v G f − G E · ∂v F f ), (18)

δ{F , G}s

δ f
=̇ [F f , G f ]s, (19)
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while all other needed functional derivatives vanish. Thus

{{F , G}MV , H
}

s :=:
∫

d9z

(
f
[[F f , G f ]c + [F f , G f ]B , H f

]
s

+ 4πe

m
f [F E · ∂v G f − G E · ∂v F f , H f ]s

)
,

(20)
{{F , G}s, H

}
MV :=:

∫
d9z

(
f
[[F f , G f ]s, H f

]
c

+ f
[[F f , G f ]s, H f

]
B

− 4πe

m
f H E · ∂v [F f , G f ]s

)
. (21)

The first line of (20) and the first two lines of (21) cancel by virtue
of the Jacobi identities for the brackets [ , ]c,B,s on functions, while
the second line of (20) and the last term of (21) cancel upon per-
mutation.

Having established the Jacobi identity, we search for Casimir
invariants, functionals that commute with all other functionals. Us-
ing the equations obtained from {C, F } = 0 for all F , we obtain

Cfs =
∫

d9z C
(

f , s2), (22)

C E =
∫

d3xκE(x)

(
∇ · E + 4πe

∫
d3 v d3s f

)
, (23)

C B =
∫

d3xκB(x)∇ · B, (24)

where C , κE , and κB are arbitrary functions of their arguments.
The Casimir Cfs is a consequence of the fact that the solution to
(1) is a volume preserving rearrangement, i.e. that the solution can
be written as the initial condition on the characteristics. It is not
difficult to see that (1) can be written in conservation form on the
full nine-dimensional space. The s2 dependence of the Casimir Cfs

is the lift of the so(3) spin Casimir to the kinetic theory. Such in-
ner Casimirs always give rise to Casimirs of the field theory. The
Casimir C E clearly implies Poisson’s equation, an initial condition
that would remain preserved should we change the Hamiltonian
functional. It is a local Casimir because of the arbitrary function
κE (x), which is used here to make the point that it is conserved
point-wise. The local quantity C B is technically not the same as
the others because its vanishing is required for the Jacobi iden-
tity. However, this is only technical because {C B , F } = 0, for all F ,
whether or not ∇ · B = 0.

A consequence of the Casimir Cfs is that s2 is constant on
level sets (contours) of f , which can be viewed as a classical
prequantization property. If we suppose f has the from f =
c(s2) fc(x,v, s, t), then it follows that if fc satisfies (1) then f does.
Choosing

f = δ
(|s| − h̄/2

)
fc(x,v, s, t) (25)

we enforce the usual quantization condition and our integrals re-
duce from integrations over d9z to d3x d3 v dΩ , where dΩ denotes
the spin sphere as in e.g. [27]. Because of the pure antisymmetry
of the so(3) structure constants, Liouville’s theorem on characteris-
tics follows immediately; however, for general cosymplectic forms,
J , i.e. for brackets of the form [ f , g] = ∂ f /∂ wi J i j(w)∂ g/∂ w j , one
can insert a factor of

√
det J restricted to symplectic leaves to de-

fine a proper ‘volume’ measure (see e.g. [31]).
Having found the Casimir invariants we can write down a vari-

ational principle for equilibria and then proceed to investigate sta-
bility by the technique introduced in [45] (see also [46]), which
has become known as the energy-Casimir method (see e.g. [31,47,

48]). First we seek extrema of the quantity F := H +Cfs +C E +C B ,
which must give rise to equations for equilibria:

δF

δ f
= K + 4πeκE + C f

(
f , s2) = 0, (26)

δF

δE
= E − 4π∇κE = 0, (27)

δF

δB
= B − 4π∇kaB = 0, (28)

where C f := ∂C /∂ f , K := mv2/2 + 2μes · B/h̄c and we de-
fine the ‘particle energy’ by E := K + 4πκE . Evidently −4πκE

is the electrostatic potential and B must be an external field, i.e.
J = ∇ × B = 0 (cf. the results for the Maxwell–Vlasov case [49,50]).
Assuming C f has an inverse, we obtain the following for the equi-
librium distribution function:

fe(E ) = C −1
f

(−E , s2). (29)

If we chose C to be proportional to the usual entropy expression
f ln f , neglect the dependence on s2, and assume E = 0, an ac-
ceptable choice, then we obtain the Maxwell–Boltzmann-like equi-
librium of [27]. Proceeding to the second variation we obtain

δ2F = 1

2

∫
d9z C f f (δ f )2 + 1

8π

∫
d3x

(
(δE)2 + (δB)2)

= −1

2

∫
d9z

(δ f )2

∂ fe/∂E
+ 1

8π

∫
d3x

(
(δE)2 + (δB)2), (30)

where the second equality of (30) follows upon differentiating the
condition E +C f = 0 with respect to f . From (30) we immediately
draw the formal conclusion that equilibria that are monotonically
decreasing functions of E are stable, because δ2F serves as a Lya-
punov functional. More rigorous versions of this have been proved
for the Vlasov equation in both the plasma and astrophysical con-
texts (see e.g. [51]).

Only a limited class of equilibria come from δF = 0, viz. cur-
rent free equilibria. Such equilibria minimize the total magnetic
field energy subject only to the constraint ∇ · B = 0. Similarly,
the need for invertibility of C f selects out only monotonic fe(E ),
which follows from minimizing the total ‘particle’ energy at fixed
volume-preserving rearrangement constraint (see e.g. [49,50,52]).
Thus the limited class of equilibria contains minimally constrained
equilibria, and their stability assures us that these ‘vacuum’ states
are stable, a notion consistent with and akin to thermodynamic
stability. This serves as a check that our spin theory is reason-
able, but does not imply that these are the only stable equilibrium
states. For example, in the context of the Vlasov–Poisson system
multi-bumped equilibria can be stable by the Penrose criterion (see
e.g. [53]) and similar stability analyses can be addressed for a vari-
ety of equilibria of our system. We also point out that the complete
set of equilibria can be gotten from a constrained variational prin-
ciple with ‘dynamically accessible variations’ [31], but this will not
be considered further here.

In summary, the formulation of an extended kinetic theory
for electrons, taking into account the intrinsic spin and the rele-
vant magnetization effects, was considered. In particular, the semi-
classical limit, valid for length scales large compared to the size
of the electron wave function was given. Based on the extended
phase space, the Hamiltonian structure was discussed, and a non-
canonical Poisson bracket was found that satisfies the Jacobi iden-
tity. Furthermore, we obtained the related Casimir invariants and
showed the stability of all equilibria with monotonically decreasing
distributions. Our findings could act as a guiding tool for further
extended Hamiltonian theories, including quantum effects from
Pauli or Dirac theory, for which a gauge-line has to be included in
the phase of the definition of the corresponding Wigner function



Author's personal copy

M. Marklund, P.J. Morrison / Physics Letters A 375 (2011) 2362–2365 2365

[54,55]. Moreover, the stability of the equilibria can be an impor-
tant principle in future numerical studies of strongly magnetized
systems.
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