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We introduce a new matter action principle, with a wide range of applicability, for the Vlasov equation in

terms of a conjugate pair of functions. Here we apply this action principle to the study of matter in Bianchi

cosmological models in general relativity. The Bianchi models are spatially-homogeneous solutions to the

Einstein field equations, classified by the three-dimensional Lie algebra that describes the symmetry group

of the model. The Einstein equations for these models reduce to a set of coupled ordinary differential

equations. The class A Bianchi models admit a Hamiltonian formulation in which the components of the

metric tensor and their time derivatives yield the canonical coordinates. The evolution of anisotropy in the

vacuum Bianchi models is determined by a potential due to the curvature of the model, according to its

symmetry. For illustrative purposes, we examine the evolution of anisotropy in models with Vlasov matter.

The Vlasov content is further simplified by the assumption of cold, counter-streaming matter, a kind of

matter that is far from thermal equilibrium and is not describable by an ordinary fluid model nor other more

simplistic matter models. Qualitative differences and similarities are found in the dynamics of certain

vacuum class A Bianchi models and Bianchi type I models with cold, counter-streaming Vlasov-matter

potentials analogous to the curvature potentials of corresponding vacuum models.
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I. INTRODUCTION

According to observations, our Universe is both spatially
homogeneous and isotropic on large scales [1,2]. However,
in this paper a more general case is considered in which the
Universe is taken to be spatially homogeneous but aniso-
tropic [3,4]. We further assume that our models contain
matter governed by the Vlasov equation [5–7], which
opens the possibility that it can be anisotropic in momen-
tum space as well. Spatially-homogeneous cosmological
models, which are also known as Bianchi cosmologies [4],
are classified into nine types based on a standard classifi-
cation of three-dimensional Lie algebras [8] that determine
the symmetry of the model.

The presence of matter influences the dynamics of the
model. In this paper, we study Vlasov matter: collisionless
particles interacting only through their mutual gravita-
tional effect. We introduce a new action principle for
such matter, applicable in a wide variety of contexts.

Hamiltonian methods have long had important roles in
general relativity [9,10]. In a model that is filled with
Vlasov matter in a spatially-homogeneous way, the pres-
ence of matter appears as an additional potential term in the
Hamiltonian [11]. These additional potentials are not as
steep as the curvature potentials of the vacuum Bianchi
cosmologies, so the evolution of anisotropy is always
under the influence of the matter potential, in contrast to
the vacuum cases [11]. In this paper, vacuum Bianchi
cosmologies and type I models with Vlasov matter are
compared in order to clarify the distinction between simi-
larly shaped curvature and matter potentials.
There are two main reasons for studying Bianchi cos-

mologies. First, universes that are spatially homogeneous
but anisotropic are the simplest generalization of the
spatially-homogeneous and isotropic universes, because
there are no models that are everywhere isotropic and
spatially inhomogeneous [3]. From the theoretical point
of view, it is of interest to see how the dynamics of a model
universe is changed by this first step away from the spa-
tially isotropic cosmologies. Second, due to the spatial
homogeneity, the Einstein equations are reduced to a set
of coupled ordinary differential equations, which can be
viewed as a finite-dimensional dynamical system.
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A reason for studying matter described by the Vlasov
equation is that this model allows for phase-space degrees
of freedom. Consequently, with it the dynamics of non-
thermalized matter can be explored. The reduction to a set
of ordinary differential equations is also possible with this
kind of matter description within the Bianchi cosmology
context. We believe that physically meaningful cosmologi-
cal models should have realistic matter models. Although
both the Bianchi cosmologies and the Vlasov matter we
consider are simplistic, they are less so than the common
practice of merely describing matter dynamics by a
perfect fluid. We thus agree with several others in this
goal (see [12]).

A spatially-homogeneous spacetime is foliated by
spacelike hypersurfaces, on which the metric tensor g is
invariant under the transitive action of an isometry group.
If the group is a simply transitive Lie group (and thus three
dimensional), symmetry is characterized by three linearly-
independent, spatial Killing vector fields f�ðiÞg3i¼1. Their

constant structure coefficients Ck
ij determine the nature of

the symmetry:

½�ðiÞ; �ðjÞ� ¼ Ck
ij�ðkÞ; (1)

where the Einstein summation convention is used, as it will
be throughout the paper. The three-dimensional Lie groups
(actually their Lie algebras) are classified into nine Bianchi
types. This classification of the symmetry of the spacelike
hypersurfaces defines the Bianchi cosmological models,

which were further subclassified as class A and class B
models by Ellis and MacCallum [13]. The models of
interest in this paper, the class A models, are characterized
by Ck

ik ¼ 0. The structure coefficients used in this paper

for the class A models are in common standard forms that
are summarized in Table I.
When a class A Bianchi-type symmetry is imposed on

the vacuum Einstein equations, the equations become a
coupled set of ordinary differential equations that can be
written in Hamiltonian form. The potential terms arise
from the curvature of the model, which is dictated by the
symmetry. The curvature potential terms in the various
Hamiltonians (see Table II) result in qualitatively distinct
evolutions of anisotropy in the vacuummodels [4]. In order
to discuss the influences of the curvature potentials, it is
necessary to understand the dynamics of the model uni-
verse in the absence of the curvature potential terms,
namely, the vacuum Bianchi type I model. For this model,
the corresponding Hamiltonian is integrable, and the ex-
plicit solutions are known as the Kasner solutions. In the
other Bianchi models, the presence of a curvature potential
affects the dynamics. The Kasner solutions are important
because the dynamics of the other models can be approxi-
mated as a series of Kasner solutions with different Kasner
parameters [4]. The curvature potentials are so steep that
they can be approximated as moving potential walls within
which the point that represents the state of the Universe
moves as an approximate Kasner solution whose parame-
ters change when the Universe point bounces off the walls.

TABLE I. The structure coefficients (structure constants) of class A Bianchi models [4]. These
coefficients are given in standard form and of course may vary under linear transformations of
the basis vectors.

Type Structure Constants

I Ck
ij ¼ 0

II C1
23 ¼ �C1

32 ¼ 1 (other: 0)

VI0 C1
23 ¼ �C1

32 ¼ 1, C2
13 ¼ �C2

31 ¼ 1 (other: 0)
VII0 C1

23 ¼ �C1
32 ¼ �1, C2

13 ¼ �C2
31 ¼ 1 (other: 0)

VIII C1
23 ¼ �C1

32 ¼ �1, C2
31 ¼ �C2

13 ¼ 1, C3
12 ¼ �C3

21 ¼ 1 (other: 0)

IX Ck
ij ¼ �ijk (the Levi-Civita symbol)

TABLE II. The curvature potentials. These potentials are calculated using a diagonal metric in a group-invariant basis: g�� ¼
diagð�N2ðtÞ; A2ðtÞ; B2ðtÞ; C2ðtÞÞ. The �ðtÞ, ��ðtÞ are defined by A ¼ e�þ�þþ

ffiffi
3

p
�� , B ¼ e�þ�þ�

ffiffi
3

p
�� , and C ¼ e��2�þ . (Note: for

calculations using a general form of the metric, see [14]).

Type Vc ¼ e�vcð��Þ
I VI ¼ 0
II VII ¼ A3

2BC ¼ 1
2 e

�e4ð�þþ
ffiffi
3

p
��Þ

VI0 VVI ¼ 1
2ABC ðA2 þ B2Þ2 ¼ 2e�e4�þcosh2ð2 ffiffiffi

3
p

��Þ
VII0 VVII ¼ 1

2ABC ðA2 � B2Þ2 ¼ 2e�e4�þsinh2ð2 ffiffiffi
3

p
��Þ

VIII VVIII ¼ 1
2 ðA

3

BC þ B3

CA þ C3

ABÞ � ðABC � BC
A � CA

B Þ ¼ e�ð2e�2�þ coshð2 ffiffiffi
3

p
��Þ � e4�þ þ e4�þ coshð4 ffiffiffi

3
p

��Þ þ 1
2 e

�8�þÞ
IX VIX ¼ 1

2 ðA
3

BC þ B3

CA þ C3

ABÞ � ðABC þ BC
A þ CA

B Þ ¼ e�ð�2e�2�þ coshð2 ffiffiffi
3

p
��Þ � e4�þ þ e4�þ coshð4 ffiffiffi

3
p

��Þ þ 1
2 e

�8�þÞ
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This approximation is known as qualitative cosmology
[4,15–17].

The paper is organized as follows: In the next section,
the Hamiltonian approach to Vlasov matter, based on a pair
of conjugate potential functions, is presented in a general
context. This variational principle, although based on ear-
lier works [18–20], is new. Spatially-homogeneous uni-
verses are discussed in a general way, and the Vlasov
Hamiltonian is given in a form compatible with the sym-
metry. In the ensuing section, the evolution of anisotropy in
the presence of Vlasov matter is analyzed by comparing
and contrasting certain vacuum Bianchi models with those
having Vlasov matter in a type I model. (A cold, counter-
streaming distribution function that supports the spatial
symmetry is assumed.) The last section is devoted to con-
clusions and suggestions for further research.

II. FORMULATION

A. Variational principle and derivation of Hamiltonian

In Vlasov theory [20–23], matter is modeled by a phase-
space distribution function denoted by Fðx�; p�Þ, where
the fx�g are the positions of the particles and the fp�g are
their 4-momenta. The systems that are studied here consist
of particles of the same mass, so that a mass-shell con-
straint will be imposed:

g��p�p� ¼ �m2 and p0 > 0: (2)

For the purposes of this exposition, we set a gauge condi-
tion on the spacetime metric g�� such that g00 ¼ �1 and

g0i ¼ 0 for i ¼ 1, 2, 3 (we later generalize this gauge). The
invariant volume element in 4-momentum space is reduced
to the following volume element on the 3-momentum mass
shell, with components pi:

d3pffiffiffiffiffiffiffi�g
p

�p0 ; with �p0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þgijpipj

q
and g :¼detjg��j:

(3)

Because of the gauge choice and the mass-shell constraint,
it is convenient to define an on-shell distribution function,

fðx�; piÞ :¼ Fðx�; pi; �p0ðx�; piÞÞ; (4)

where �p0 ¼ � �p0 is the momentum defined in Eq. (3). The
notation �p� will be used to indicate the three variables

�pi ¼ pi along with the functional form of �p0 ¼ � �p0.
Since matter is assumed to be collisionless, F is constant

along geodesics, and so F and f are governed by the
relevant Vlasov equation. The off-shell Vlasov equation
is simply the geodesic equation for the particle paths (the
momentum one-form p is the mass m times the particle
velocity):

p� @F

@x�
� 1

2
g��;�p�p�

@F

@p�

¼ 0: (5)

The on-shell Vlasov equation is obtained by using Eq. (2).
It can be expressed as

@f

@t
þ ff; �p0g3 ¼ 0; (6)

where f�; �g3 is the three-dimensional Poisson bracket:

ff; �p0g3 ¼ 1

�p0

�
�pi @f

@xi
� 1

2
g��;i �p� �p�

@f

@pi

�
: (7)

The metric tensor g in the Vlasov equation is determined
by the Einstein equations (where the coupling constant is
taken to be unity):

R�� � 1

2
Rg�� þ�g��

¼ T�� :¼
Z d3pffiffiffiffiffiffiffi�g

p
�p0

�p� �p�fðx�; piÞ: (8)

The action functional that gives Eq. (8) is

S ¼ SHilbert þ S� þ Smatter

¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
R� 2�

Z
d4x

ffiffiffiffiffiffiffi�g
p þ Smatter: (9)

The Hilbert action SHilbert gives the Einstein tensor and S�
gives the cosmological term upon variation with respect to
g�� and when necessary integrating by parts and ignoring
the boundary terms [1,2]:

1ffiffiffiffiffiffiffi�g
p �SHilbert

�g�� ¼ R�� � 1

2
Rg�� and

1ffiffiffiffiffiffiffi�g
p �S�

�g�� ¼ �g��:
(10)

Smatter must satisfy

1ffiffiffiffiffiffiffi�g
p �Smatter

�g�� ¼ �T��: (11)

An action using Smatter must also yield the Vlasov equation.
In order to put the Vlasov equation into a variational

form, we express the distribution function by a conjugate
pair of phase-space functions ðM;N Þ, using the four-
dimensional Poisson bracket f�; �g4 [18–20]:

Fðx�; p�Þ ¼ fM;N g4 :¼ @M
@x�

@N
@p�

� @M
@p�

@N
@x�

: (12)

Mðx�; p�Þ and N ðx�; p�Þ are each required to satisfy
Vlasov equations, which are compactly written as�

M
N

� �
;
1

2
g��p�p�

�
4
¼ 0: (13)

The Vlasov equation for Fðx�; p�Þ [24],
fF; 12g��p�p�g4 ¼ ffM;N g4; 12g��p�p�g4 ¼ 0; (14)

is derived by making use of the Jacobi identity [19,20]. The
on-shell restriction can be achieved by defining
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�ðx�; piÞ :¼ Mðx�; pi; �p0ðx�; piÞÞ;
�ðx�; piÞ :¼ N ðx�; pi; �p0ðx�; piÞÞ:

(15)

Therefore, the on-shell distribution function is expressed
by the on-shell pair:

fðx�; piÞ ¼ f�; �g3: (16)

The equations that � and � have to satisfy are also derived
by imposing the mass-shell condition on Eqs. (13),

@

@t

�
�
�

�
þ

�
�
�

� �
; �p0

�
3
¼ 0; (17)

from which the on-shell Vlasov equation for fðx�; piÞ is
derived:

@

@t
f�; �g3 þ ff�;�g3; �p0g3 ¼ 0: (18)

Again, the derivation rests on the Jacobi identity.
There is a gauge group associated with the introduction

of the pairs ðM;N Þ or ð�; �Þ. For example, a transforma-
tion of the form ( ��ð�; �Þ, ��ð�; �Þ) that satisfies the
Jacobian condition @ð ��; ��Þ=@ð�; �Þ ¼ 1, ensures that
f ��; ��g3 ¼ f�; �g3. A full discussion of the gauge group
associated with this ‘‘potential’’ decomposition, including
both dependent and independent variables, will be pre-
sented in a subsequent paper.

Now that the distribution function is expressed by the
introduction of a conjugate pair of phase-space functions,
the matter action for the Vlasov-Einstein system can be
written down. The action principle in terms of these vari-
ables is canonical, that is the evolution of those variables is
manifestly determined by a canonical Poisson bracket. We
check the variational formulations in both off-shell and on-
shell forms and describe how they are naturally related to
each other.

If there is no mass-shell constraint, the matter action is
simply

Soff½M;N ; g��� ¼ �
Z

d4x d4pg��p�p�fM;N g4;
(19)

and the functional derivatives are

1ffiffiffiffiffiffiffi�g
p �Soff

�g�� ¼ �
Z d4pffiffiffiffiffiffiffi�g

p p�p�fM;N g4 ¼ �T��;

(20)

and

�Soff=�M ¼ 0
�Soff=�N ¼ 0

�
,

8>>><
>>>:
�
p� @

@x�� 1
2g

��
;�p�p�

@
@p�

�
N ¼ 0;�

p� @
@x�� 1

2g
��

;�p�p�
@

@p�

�
M ¼ 0:

(21)

Since we consider a system of equal mass particles, (19)
has to be put on shell. This can be done by restricting M
and N to be on shell and integrating (19) over p0, either
before or after the variation. (In other words the on-shell
constraint and the variation commute.) The integration
over p0 is best achieved with the use of the function [25]

�þð�g��p�p� �m2Þ :¼ 2�ðp0Þ�ð�g��p�p� �m2Þ
¼ 1

�p0
�ðp0 � �p0Þ: (22)

However, care should be taken with the independent
dynamical variables. If variations are done before the on-
shell constraint, then the independent dynamical variables
are of course g��, M, and N , but if variations are done
after the on-shell constraint, they are g��, �, and �. If the
variational derivatives are taken before the on-shell con-
straint, the functional derivatives are found to be

1ffiffiffiffiffiffiffi�g
p �S

�g�� ¼ �
Z d4pffiffiffiffiffiffiffi�g

p p�p�fM;N g4|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼:Fðx�;p�Þ

�þðon shellÞ

¼ �T��; (23)

and

�S=�M ¼ 0

�S=�N ¼ 0

�

,

8>>><
>>>:

��
p� @

@x�� 1
2g

��
;�p�p�

@
@p�

�
N

�
�þðon shellÞ ¼ 0;��

p� @
@x�� 1

2g
��

;�p�p�
@

@p�

�
M

�
�þðonshellÞ ¼ 0:

(24)

The on-shell delta functions in (24) can be eliminated by
integrating them with respect to p0, which results in (17).
The calculation of (23) is not as straightforward as (20),
because the g�� in �þðon shellÞ is subject to the variation.
The calculation is lengthy, but all the extra terms vanish to
give (23) [11].
On the other hand, the mass-shell constraint can be

imposed before variations. For this case, the action is
given by

Son½�; �; g��� ¼ 2
Z

d4x d3p

�
�
@�

@t
� �p0f�; �g3

�
; (25)

whose functional derivatives are

1ffiffiffiffiffiffiffi�g
p �Son

�g�� ¼ �
Z d3pffiffiffiffiffiffiffi�g

p
�p0

�p� �p�f�; �g3 ¼ �T��; (26)

and

�Son=�� ¼ 0
�Son=�� ¼ 0

�
,

�
@�=@tþ f�; �p0g3 ¼ 0;
@�=@tþ f�; �p0g3 ¼ 0:

(27)
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Note that the integrand of (25) is reminiscent of the phase-
space action, ‘‘p _q-H,’’ since � and � are canonically
conjugate to each other and �p0 ¼ � �p0 is the energy of a
particle with f�; �g3 being the particle distribution on
phase space. Consequently, (27) has the Hamiltonian form

@�

@t
¼ �H

��
and

@�

@t
¼ ��H

��
: (28)

B. Vlasov matter in a spatially-homogeneous spacetime

Since the spacetime structure and the matter configura-
tion are related by the Einstein equations, the matter term is
subject to symmetry conditions. If some spacetime sym-
metry is assumed, the form of a distribution function is
restricted so that its corresponding stress-energy tensor has
the same symmetry as the spacetime. It is sufficient, in the
presence of a Killing vector field 	�, that [26]

@F

@x�
	� � @F

@p�

	�
;�p� ¼ 0: (29)

The quantity

Y :¼ pð�Þ (30)

is a constant along the geodesic particle paths. If the
Killing vector is spatial, Eq. (29) becomes

ff; Yg3 ¼ ff;pð�Þg3 ¼ 0: (31)

Under spatial homogeneity, it is natural to use a left-

invariant vector basis fXð�Þg and its dual basis f�ð�Þg [4].
The vector basis is chosen so that the spatial fXðiÞg are

tangent to the spatially-homogeneous sections, and fXð0Þg
is perpendicular to them. The vector basis satisfies the
commutation relations

½Xð0Þ;XðiÞ� ¼ 0; (32)

½XðiÞ;XðjÞ� ¼ �Cs
ijXðsÞ: (33)

Similarly, the dual basis (with �ð0Þ ¼ dt) satisfies

d�ð0Þ ¼ 0 (34)

d�ðiÞ ¼ 1
2C

i
st�

ðsÞ ^ �ðtÞ: (35)

The components of the metric tensor in this basis are
functions only of t:

g�� ¼ gðXð�Þ;Xð�ÞÞ ¼ g��ðtÞ: (36)

Momentum is expressed as

h� ¼ �pðXð�ÞÞ; i:e:; �p ¼ h��
ð�Þ: (37)

Note, however, that the h� are not canonical coordinates in

general, because

fhi; hjg3 ¼ Cl
ijhl; (38)

while canonical coordinates would satisfy fpi; pjg3 ¼ 0.

With the momentum coordinates hi and the time variable t,
the spatially-homogeneous distribution function has the
form,

f ¼ fðt; hiÞ; (39)

so that f does not depend explicitly on the spatial coor-
dinates. The first term of (25) gives zero upon variation
with respect to g��, and f�; �g3 can be replaced by f. The
Vlasov equation can therefore be rewritten, reflecting the
symmetry, as follows:

@f

@t
þ @f

@ha
Cd

abhd
@ �h0

@hb
¼ 0; with

�h0 ¼ � �h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ gijhihj

q
: (40)

It is immediately seen that in type I (where Cc
ab ¼ 0), the

solution of the Vlasov equation is independent of time:
f ¼ fðh1; h2; h3Þ.
Based on the matter action, we derived in the previous

subsection, the Hamiltonians for the class A Bianchi cos-
mologies with Vlasov matter are obtained. The calculation
is simplified by restricting to the diagonal case: The
positive-definite spatial metric gij will be taken to be

diagonal in a basis that is invariant under the symmetry
transformation described by the Lie group of the particular
Bianchi model [27]. This is not a gauge choice; it imposes
physical limitations on the model (see [13,28,29]) not only
because the standard form for the structure coefficients of
the Lie algebra are used, but also because of restrictions
which must be placed on the particle momenta (as de-
scribed below). At this point, it is necessary to keep all
diagonal components of the metric as variables (rather than
setting g00 ¼ �1 as we had done earlier) in order to
formulate explicit Hamiltonians:

g�� ¼ gðXð�Þ;Xð�ÞÞ ¼ diagð�N2ðtÞ; A2ðtÞ; B2ðtÞ; C2ðtÞÞ:
(41)

As we said, this restriction to the diagonal case, when the
standard forms from Table I are used for theCi

jk, is really a

restriction in a sense that some physical effects are then not
allowed. The T�� based on the distribution function must

also be diagonal; for example, it is sufficient that the
distribution function be an even function of h1, h2, and
h3. After obtaining the Hamiltonian, we can specify the
form of N, by choosing an appropriate time coordinate.
Thus, the Hamiltonian systems we obtain in this section are
three-degrees-of-freedom systems. Note that the compo-
nents of the metric tensor depend only on t due to the use of
the invariant basis.
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The action functional is

SHilbert þ S� þ Smatter

¼
Z

dt

�
� 2

N
ð _A _BCþ _AB _Cþ A _B _CÞ

þ ðterms withCi
jkÞ

�
� 2�

Z
dtNABC

� 2
Z

dt
Z

d3hNfðt; hkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ h21

A2
þ h22

B2
þ h23

C2

s
; (42)

where _ is d=dt and where ‘‘terms with Ci
jk’’ appear as a

curvature potential term Vc in the Hamiltonian. By per-
forming the Legendre transform on the Lagrangian, the
Hamiltonian is obtained. Since there is no _N, N is treated
as a Lagrangian multiplier, and the variation with respect to
N gives the Hamiltonian constraint:

0 � H :¼ N

8ABC
ðA2
2

A þ B2
2
B þ C2
2

C � 2AB
A
B

� 2BC
B
C � 2CA
C
AÞ þ NVcðA; B;CÞ
þ 2N�ABCþ 2N

Z
d3hfðt; hkÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ h21

A2
þ h22

B2
þ h23

C2

s
: (43)

It is often convenient to use the variables �ðtÞ, ��ðtÞ,
which are defined by

A¼ e�þ�þþ
ffiffi
3

p
�� ; B¼ e�þ�þ�

ffiffi
3

p
�� ; C¼ e��2�þ :

(44)

In terms of these coordinates, the curvature potentials are
as shown in Table II. Note that the dependence on � is
always of the form Vc ¼ e�vcð��Þ. The coordinates of
(44) are called the Misner parametrization [30]. The physi-
cal meaning of these dynamical variables is clear: e� is the
universe scale factor, and the �� characterize spatial an-
isotropy. In terms of the Misner parametrization, the
class A Hamiltonians have the following form:

H¼N

�
1
24e

�3�ð�
2
�þ
2

�þþ
2
��Þþ2�e3�þVcþVm

�
:

(45)

The equipotential curves for Vc in the �þ � ��-plane are
depicted in Fig. 1.
The term that comes from the presence of Vlasov matter

is also a potential, which is denoted by Vm in Eq. (45). The
matter potential is

Vm ¼ 2e��
Z

d3hf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2e2� þ ðh21e�2�þ�2

ffiffi
3

p
�� þ h22e

�2�þþ2
ffiffi
3

p
�� þ h23e

4�þÞ
q

: (46)

In massless cases, the dependence on � can be separated
from that on �� since

Vm ¼ e��vmð��Þ (47)

where

vm ¼ 2
Z

d3h

� f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21e

�2�þ�2
ffiffi
3

p
�� þ h22e

�2�þþ2
ffiffi
3

p
�� þ h23e

4�þ
q

:

(48)

III. RESULTS: VLASOV EFFECTS

In this section, we give a description of how a cosmo-
logical model containing Vlasov matter may mimic or may
differ from an apparently similar vacuum model. The
results will be described, but the details of the calcula-
tions—both analytical and numerical—will be left for a
subsequent paper. The general behavior in the sense of
qualitative cosmology will be described, where the effects
of the potentials are either negligible or act as hard walls.
Keep in mind that these results were obtained for the case
where � ¼ 0 and m ¼ 0.

From the Hamiltonian (45), we see that

_� ¼ @H

@
�

¼ � N

12
e�3�
�; (49)

_�� ¼ @H

@
��
¼ N

12
e�3�
�� ; (50)

_
� ¼ � @H

@�

¼ N

�
1

8
e�3�ð�
2

� þ 
2
�þ þ 
2

��Þ �
@

@�
ðVm þ VcÞ

�
:

(51)

Presuming that _� is monotonic, � is used as the ‘‘time’’
variable. In that case, the dynamics of the model will be
governed by the behavior of ��ð�Þ. The motion of the
universe point (a point in the �þ � ��-plane) is with
speed w, using � as the ‘‘time variable’’:

w2 ¼
�
d�þ
d�

�
2 þ

�
d��
d�

�
2
: (52)

The Hamiltonian of Eq. (45) is used in the Hamiltonian
constraint (43) to find
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w2 ¼ 1� 24e3�ðVc þ VmÞ=
2
�: (53)

When the potentials may be neglected, w ¼ 1; this
motion corresponds to the Kasner model. In this sense,
the models may be thought of as a series of Kasner epochs
which transition from one Kasner state to another when the
universe point interacts with a potential wall. Note also that
when the potentials may be neglected, _
� is proportional
to H and therefore vanishes.

The vacuum Bianchi models of types II,VI0, and IX will
be compared with type I models containing Vlasov matter.
(See also [31].) Since the type I models do not have a
curvature potential, this procedure emphasizes the effects
of the matter potential. From Fig. 1, we see that the
qualitative effects of the curvature potentials in the
vacuum models II, VI0, and IX are characterized by
one wall, two walls, and three walls, respectively. The
equipotentials of Fig. 1 define these walls, which
move in time, and this movement will be described in
more detail later.

For the matter potential, the distribution function f
(which in the type I case is independent of time) is chosen
to be that of cold, counter-streaming matter:

fðhiÞ ¼K

8
½�ðh1�aÞþ�ðh1þaÞ�½�ðh2�bÞþ�ðh2þbÞ�

� ½�ðh3� cÞþ�ðh3þ cÞ�: (54)

An example of the potential functions�, � of Eq. (16) may
be easily calculated in this case, since in type I, the hi are
canonical variables:

� ¼ x1; (55)

� ¼ K

8
½Hðh1 � aÞ þHðh1 þ aÞ�½�ðh2 � bÞ þ �ðh2 þ bÞ�

� ½�ðh3 � cÞ þ �ðh3 þ cÞ�; (56)

whereH is the Heaviside or step function. Of course, other
forms for �, � which yield fðhiÞ are possible, and the
gauge group of these possibilities will be presented in a
subsequent paper.
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FIG. 1. Equipotential curves for class A curvature potentials.
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Vm for this model is

Vm ¼ 2Ke��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2e2� þ a2e�2�þ�2

ffiffi
3

p
�� þ b2e�2�þþ2

ffiffi
3

p
�� þ c2e4�þ

q
: (57)

This distribution function is for eight streams of particles,
counter-streaming by pairs. The choice (54) for f is moti-
vated by the cold, two-stream instability of plasma physics,
where a large amount of free energy is stored in an equi-
librium state that is released by linear instability. Studies of
counter-streaming matter in the Newtonian gravitational
case show that similar instabilities exist, and even explo-
sive instabilities may be expected [32,33]. Although this
particular choice is still simplistic, it is consistent with the
Bianchi symmetry and, importantly, it provides a tractable
example of the kind of effects to be expected when matter
is nonthermal and anisotropic in momentum space. We
note that although individual beams are cold, this model
does have a nonzero stress-energy tensor, which, because
this distribution function is even, is diagonal.

If a ¼ b ¼ 0, c > 0, the model is called one-wall
Vlasov. If a ¼ b > 0, c ¼ 0, it is called two-wall Vlasov.
Finally, if a ¼ b ¼ c > 0, it is called three-wall Vlasov.
These are the only models considered for inclusion in this
paper, with m ¼ 0 just for the sake of illustration. The
forms of the matter potentials, labeled V1, V2, V3, are
illustrated in Fig. 2.

These potentials are given analytically by the following:
One-wall Vlasov: a ¼ b ¼ 0, c > 0 with m ¼ 0

V1 ¼ 2Ke��ce2�þ : (58)

Two-wall Vlasov: a ¼ b � 0, c ¼ 0 with m ¼ 0

V2 ¼ 2
ffiffiffi
2

p
Kae��e��þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2 ffiffiffi

3
p

��Þ
q

: (59)

Three-wall Vlasov: a ¼ b ¼ c � 0 with m ¼ 0

V3 ¼ 2Kae��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e�2�þ coshð2 ffiffiffi

3
p

��Þ þ e4�þ
q

: (60)

These models of Vlasov matter in a type I cosmology
will be compared, respectively, to vacuum Bianchi models
of types II, VI0, and IX (compare Figs. 1 and 2). The
curvature potentials for the vacuum models are labeled
VII, VVI, and VIX; see Table II. The curvature potential
for a type I cosmology vanishes. Therefore, in all cases
when the universe point has an energy substantially above
the value of the potential, the model acts like a Kasner
model. The similarities and differences in the three situ-
ations described depend on whether the universe point is
strongly affected by the potential, in which case the uni-
verse point is said to bounce off a potential wall or be
influenced by it.
The first pair is vacuum type II compared to one-wall

Vlasov (in type I). The one-wall effective potential Veff ,
from Eq. (53), is proportional to e2�þ2�þ , so that the
equipotential walls move with speed

w1 ¼ 1: (61)

In contrast, the effective potential in the vacuum type II

case, from Table II, is proportional to e4�þ4ð�þþ
ffiffi
3

p
��Þ, so

that the speed of the wall is

wII ¼ 1
2: (62)

Consequently, the universe point in the vacuum type II case
will (in many cases) strike a potential wall and bounce
(once) in a very well-defined manner and then move away
from the wall. Qualitative cosmology is useful in this case.
In contrast, the universe point in the one-wall Vlasov
model and a potential wall both have the same speeds. If
the universe point is not moving exactly in the opposite
direction of a wall, it will bounce. After the bounce, the
universe point cannot escape the influence of the potential,
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FIG. 2. Equipotential curves for the Vlasov-matter potential with cold counter-streaming matter.
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since Eq. (53) shows that its velocity will in general be
less than 1. Therefore, qualitative cosmology is not a good
approximation. (Note, the one-wall case corresponds to an
invariant boundary in the analysis of [31].)

The two-wall Vlasov model and the type VI0 model
also have a qualitatively similar potential wall structure.
The effective potentials for these two cases, from Eq. (53),
is e3� times the potentials listed in Table II or Eq. (59):

Veff
VI ¼ 2e4�e4�þcosh2ð2 ffiffiffi

3
p

��Þ (63)

Veff
2 ¼ ke2�e��þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2 ffiffiffi

3
p

��Þ
q

: (64)

The speeds of the vertices of the equipotentials (that is,
when �� ¼ 0) are

wvert
VI ¼ 1 (65)

wvert
2 ¼ 2: (66)

The speeds of the walls, however, are governed by their
slopes far from the vertices. At large �� the effective
potentials are approximated by

Veff
VI � e4�e4�þþ4

ffiffi
3

p
�� (67)

Veff
2 � kffiffiffi

2
p e2�e��þþ

ffiffi
3

p
�� : (68)

The speeds of the walls, therefore are

wVI ¼ 1
2 (69)

w2 ¼ 1 (70)

(as in the previous case). Therefore the same comments
about the universe point hitting the potential walls apply:
Qualitative cosmology is a good approximation for the
type VI0 case but not for the two-wall Vlasov case.
(Note, as with the one-wall case, the two-wall case corre-
sponds to an invariant boundary in the analysis of [31].)

The three-wall Vlasov and the type IX vacuum Bianchi
models are somewhat more interesting. The type IX model
eventually collapses. Note also that the potential walls
have channels (see Fig. 1), which together with the steep-
ness of the walls produce what Misner calls the Mixmaster
Model [30]. The three-wall Vlasov model has an effective
potential of e3� times the potential of Eq. (60):

Veff
3 ¼ ke2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e�2�þ coshð2 ffiffiffi

3
p

��Þ þ e4�þ
q

: (71)

The speed of each vertex (for example when �� ¼ 0,
along the negative �þ-axis) is

wvert
3 ¼ 2: (72)

The speed of each wall is found by looking at the vertical
wall when �� ¼ 0, along the positive �þ-axis:

w3 ¼ 1: (73)

Again it is seen that the details of the motion of the
universe point cannot be approximated by qualitative
cosmology.
The details of the motions in the three Vlasov models as

contrasted with the corresponding vacuum models, in spite
of the apparent similarity of the potentials, will be left to a
subsequent paper. However, in the two-wall case, the speed
of the vertices of the equipotentials shows that partial
isotropization takes place (namely �� ! 0). The three-
wall Vlasov model has complete isotropization: The uni-
verse point goes to the origin.
To examine this isotropization more closely, we first

look at the stress-energy tensor, Eq. (8), for the three-
wall case in a type I model. In this case, the pi are the
same as the hi, and in our gauge,

ffiffiffiffiffiffiffi�g
p ¼ NABC.

Moreover, the on-shell condition implies

�p 0 ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ðp1=AÞ2 þ ðp2=BÞ2 þ ðp3=CÞ2

q
: (74)

The stress-energy tensor is diagonal, with components

T00 ¼ N2 K

ABC
� (75)

T11 ¼ A2 K

ABC

a2

�A2
(76)

T22 ¼ B2 K

ABC

b2

�B2
(77)

T33 ¼ C2 K

ABC

c2

�C2
; (78)

where the constants K, a, b, c are defined in Eq. (54)
and where

� :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ða=AÞ2 þ ðb=BÞ2 þ ðc=CÞ2

q
: (79)

In the limiting case of A ¼ B ¼ C (when�� ¼ 0), and if it
is approximately true that a ¼ b ¼ c, then the stress-
energy tensor becomes that of a perfect fluid with W the
energy density and P the pressure, given by

W ¼ K�

A3
; P ¼ Ka2

A5�
: (80)

Their ratio is the equation of state

P

W
¼ 1

3þ ðmA=aÞ2 : (81)

If m � 0, the pressure goes to zero at large A (so-called
‘‘dust’’), and if m ¼ 0, the factor 1=3 is that of a fluid of
massless particles. This is consistent with the results of
[31,34] that indicate that models of a class, which includes
our three-wall model, will isotropize in the asymptotic
future.
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As for the action integral, the h integration can be done
to get, in our diagonal type I model,

Smatter ¼ �2K
Z

N�dt

¼ �2K
Z

N
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ ða=AÞ2 þ ðb=BÞ2 þ ðc=CÞ2

q
dt

¼ �2K
Z 1ffiffiffiffiffiffiffiffiffiffiffi�g00

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ a2g11 þ b2g22 þ c2g33

q
dt:

(82)

The variations with respect to g�� give the stress-energy
tensor components displayed before.

IV. CONCLUSION

In this work, the matter action for the Vlasov-Einstein
system for equal mass particles is constructed. As an
illustration of this action, we found a new kind of potential
Vm for Vlasov matter in the anisotropy plane of spatially-
homogeneous models (those of Bianchi class A with
diagonal metric).

Then, in order to investigate the similarities and the
differences between the Vlasov-matter potential and the
curvature potential, the type I universe with cold, counter-
streaming matter and the corresponding vacuum Bianchi
models were compared on the basis of the shape of the
potentials. Both kinds of potentials, the curvature poten-
tials Vc which arise from the requirement of spatial homo-
geneity in a vacuum model and the Vm, were classified by
the number of approximately straight equipotential sides.
The Vc in models of type II has one; in types VI0 and VII0
the Vc have two; and in type VIII and IX the Vc have three.
Their counterparts, one-wall, two-wall, and three-wall
Vlasov-matter potentials were constructed by selecting a
cold, counter-streaming matter distribution function in a
type I model. The Vc of a vacuum type II model was
compared with the one-wall Vlasov model. The Vc of a
vacuum type VI0 model was compared with the two-wall
Vlasov model. The Vc of a vacuum type IX model was
compared with the three-wall Vlasov model, since they
share triangular symmetry, in spite of the absence of
channels in the Vlasov case.

Aside from questions of recollapse and direction of
increase or decrease in anisotropy, it was seen that the
Vc and Vm had different effects because of the relative
speeds of the walls and the universe point described by
��ð�Þ. The dynamics of the vacuum Bianchi cosmologies
can be approximated as a series of Kasner eras where
the point representing the metric in the �� space moves
freely except for bounces off the potential walls. Because
Vm is not as sharp as Vc, and because the speed of its
walls was comparable to the speed of the universe point, it
would be difficult to separate out a potential-free region:
Consequently, contact with Vm could not be characterized

as a transition from a Kasner state to another Kasner state.
In a subsequent paper, details of the effects of Vlasov
matter on the evolution of anisotropy will be described
both for our present case of cold, counter-streaming matter
and matter which may be considered warm.
Early work on this subject was done by Misner [35] and

Matzner [36]. Their idea was to ask whether a kinetic
theory of matter would cause anisotropy to decay faster
than it would in a model with perfect fluid. They took a
general approach, in which the distribution function had a
thermal structure because their massless particles (which
they called neutrinos) were in thermal equilibrium with
other matter until a particular time when the temperature
dropped below a critical value. Then there was a period of
transition followed by the present epoch, when the neutri-
nos are essentially collisionless. Misner looked at type I
models. Matzner looked at type IX and type V models,
with and without rotation. They were able to get a general
idea of a potential due to the particles. This potential was a
triangular one, possibly with fewer than three walls, de-
pending on the form of the distribution function. Our
methodology differs from theirs. Our distribution function
in our main example also differs, but our general results are
in accord with theirs.
Rendall [34] has also studied the effects of Vlasov

matter in a Bianchi type I model. His results cover a
more general set of distribution functions than we consid-
ered in our particular example. In so far as our results
can be compared, they agree. Rendall did not use a
Hamiltonian formalism, and we feel that subsequent stud-
ies will benefit from our approach.
In conclusion, we list several possible areas for future

work. Examples of minor projects are as follows: First of
all, the distribution functions of Ehler’s type were used in
this work, and the dynamics of the more general distribu-
tion functions given in Eq. (3.25) of Ch. 3 of [11] should be
treated. It would be of interest to perform numerical
computations for these more general fðt; hkÞ. Second, our
system was simplified by assuming a diagonal metric (41),
and it could be generalized to include off-diagonal ele-
ments and possibly even rotating models. Third, our ex-
amples focused on massless cases for simplicity, and the
massive case should be investigated.
There are at least two major projects. First, we propose

to study further the problem of a Bianchi type IX model
with nonzero cosmological constant and Vlasov matter.
This case has Einstein’s static universe as an unstable fixed
point. Whether this point is a chaotic scatterer or not for
dust filled models was discussed in [37–41], which has no
additional anisotropic potential. The inclusion of Vm for
Vlasov matter might change the behavior of the scatterer,
and introduce possible chaotic effects. Second, we propose
the problem of the type I universe with the Vlasov-matter
potential Vm in the presence of a negative cosmological
constant. In this case, the Universe eventually recollapses
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and the potential walls recede, just as for the vacuum
type IX case. However, unlike what happens in the vacuum
type IX case, the universe point cannot catch up with the
retreating potential walls of Vm, since they can movewith a
speed comparable to that of the universe point. Therefore,

with a negative cosmological constant, the system can be
characterized as a transition from an initial Kasner state
to a final Kasner state with the intermediate dynamics
being complicated: that is, the system can be viewed as a
scattering problem.
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