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A mechanism for fast magnetic reconnection in collisionless plasma is studied for understand-
ing sawtooth collapse in tokamak discharges. Nonlinear growth of the tearing mode driven
by electron inertia is analytically estimated by invoking the energy principle for the first time.
Decrease of potential energy in the nonlinear regime (wherethe island width exceeds the elec-
tron skin depth) is found to be steeper than in the linear regime, resulting in acceleration of the
reconnection. Release of free energy by such ideal fluid motion leads to unsteady and strong
convective flow, which theoretically corroborates the inertia-driven collapse model of the saw-
tooth crash [D. Biskamp and J. F. Drake, Phys. Rev. Lett.73, 971 (1994)].

1 Introduction

Sawtooth collapse in tokamak plasmas has been a puzzling phenomena for decades. Although
them = 1 kink-tearing mode is essential for onset of this dynamics, Kadomtsev’s full reconnec-
tion model [1] and nonlinear growth of the resistivem = 1 mode [2] (both based on resistive
magnetohydrodynamic theory) fails to explain the short collapse times (∼ 100µs) as well as
partial reconnections observed in experiments. Since resistivity is small in high-temperature
tokamaks, two-fluid effects are expected to play an important role for triggeringfast(or explo-
sive) magnetic reconnection as in solar flares and magnetospheric substorms.

In earlier works [3, 4], the linear growth rate of the kink-tearing mode in the collisionless
regime has been analyzed extensively by using asymptotic matching, which shows an enhance-
ment of the growth rate due to two-fluid effects, even in the absence of resistivity. Furthermore,
direct numerical simulations [5, 6, 7] of two-fluid models show acceleration of reconnection
in the nonlinear phase, which indicates explosive tendencies until numerical error or artificial
dissipation terminates them.

However, theoretical understanding of such explosive phenomena is not yet established due
to the lack of analytical development. In contrast to the quasi-equilibrium analysis developed
for resistive reconnections [2, 8], the explosive process of collisionless reconnection should be
a nonequilibrium problem, in which inertia is not negligible in the force balance and hence
leads to acceleration of flow. The convenient assumption ofsteadyreconnection is no longer
appropriate.

Recent theories [9, 10, 11] emphasize the Hamiltonian nature of two-fluid models and try to
gain deeper understanding of collisionless reconnection in the ideal limit.

The purpose of the present work is to predict explosive growth of the kink-tearing mode
analytically by developing a new approach that is based on the energy principle [12]. For sim-
plicity, we will consider only the effect of electron inertia, which is an attractive mechanism for
triggering fast reconnection in tokamaks; estimates of thereconnection rate are favorable [13],
nonlinear acceleration is possible [6], and even the mysterious partial reconnection may be ex-
plained by an inertia-driven collapse model [14, 15]. Whilewe address the same problem as
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Ref. [6], the estimated nonlinear growth is quantitativelydifferent from that of Ref. [6]. Our
result is confirmed by a direct numerical simulation and its implications for sawtooth collapse
are discussed in the final section.

2 Free energy source of tearing induced by electron inertia

We analyze the following vorticity equation and (collisionless) Ohm’s law for velocity field
v = ez ×∇φ(x, y, t) and magnetic fieldB = ∇ψ(x, y, t)× ez +B0ez:

∂∇2φ

∂t
+ [φ,∇2φ] + [∇2ψ, ψ] = 0, (1)

∂(ψ − d2e∇
2ψ)

∂t
+ [φ, ψ − d2e∇

2ψ] = 0, (2)

where[f, g] = (∇f×∇g)·ez. The parameterde denotes the electron skin depth, which is much
smaller than the system size (de ≪ Lx). Since the frozen-in flux for Eq. (2) is not magnetic
flux ψ but the electron canonical momentum defined byψe = ψ−d2e∇

2ψ, the effect of electron
inertia permits magnetic reconnection within a thin layer (∼ de) despite a lack of resistivity. In
the same manner as Ref. [6], we consider a static equilibriumstate,

φ(0) = 0, ψ(0)(x) = ψ0 cosαx, (3)

on a doubly-periodic domainD = [−Lx/2, Lx/2] × [−Ly/2, Ly/2] (whereα = 2π/Lx), and
analyze nonlinear evolution of the tearing mode whose wavenumber in they-direction isk =
2π/Ly at its early linear stage. For sufficiently smallk such that

πk2/4α3 = L3
x/8L

2
y ≪ de ≪ Lx, (4)

this instability is similar to them = 1 kink-tearing mode in tokamaks (which is marginally
stable in the ideal MHD limit,de = 0). FIG. 1 shows contours ofψ calculated by direct
numerical simulation, whereǫ denotes maximum displacement in thex-direction. As shown in
FIG. 2, the growth ofǫ accelerates when̂ǫ = ǫ/de > 1 which is faster than exponential [6].

Figure 1: Contours ofψ whenǫ = 4.2de
(de/Lx = 0.01 andLy/Lx = 4π)

Figure 2: Growth of ǫ̂ = ǫ/de
(de/Lx = 0.01 andLy/Lx = 4π)

In order to assess the free energy available from the equilibrium state, we solve the con-
servation law (2) forψe = ψ − d2e∇

2ψ by introducing an incompressible flow mapGt :
D → D, which depends on time and corresponds to the identity map (G−∞ = Id) when



t = −∞. Let (x, y)(t) = Gt(x0, y0) be orbits of fluid elements labeled by their position
(x0, y0) at t = −∞. Then, the velocity field (orφ) is related toGt by ∂Gt/∂t(x0, y0) =
ez × ∇φ(x, y, t). Provided that we regardGt as an unstable fluid motion emanating from the
equilibrium state (3), we can solve (2) byψe(x, y, t) = ψe(Gt(x0, y0), t) = ψ

(0)
e (x0), where

ψ
(0)
e (x) = (1 + d2eα

2)ψ0 cos(αx) ≃ ψ(0)(x). By adapting Newcomb’s Lagrangian theory [16],
we define the Lagrangian for the fluid motionGt as

L[Gt] =K[Gt]−W [Gt], (5)

where

K[Gt] =
1

2

∫

D

|∇φ|2d2x and W [Gt] =
1

2

∫

D

(

|∇ψ|2 + d2e|∇
2ψ|2

)

d2x. (6)

One can confirm that the variational principleδ
∫

L[Gt]dt = 0 with respect toδGt yields the
vorticity equation (1).

Note thatW plays the role of potential energy and the equilibrium state(3) initially stores it
as free energy. In the same spirit as the energy principle [12], if the potential energy decreases
(δW < 0) for some displacement mapGt, then such a perturbation will grow with the release
of free energy.

3 Energy principle for linear stability analysis

In our linear stability analysis, the equilibrium state is perturbed by aninfinitesimaldisplace-
ment,Gt(x0, y0) = (x0, y0) + ξ(x0, y0, t), whereξ is a divergence-free vector field onD. We
seek a linearly unstable tearing mode in the form

ξ(x, y, t) = ∇

[

ǫ(t)ξ̂(x)
sin ky

k

]

× ez, (7)

with a growth rateǫ(t) ∝ eγt. We normalize the eigenfunction̂ξ(x) by max |ξ̂(x)| = 1 so
thatǫ(t) is equal to the maximum displacement in thex-direction and, hence, measures the half
width of the magnetic island.

Upon omitting “(0)” from equilibrium quantities,ψ(0),ψ(0)
e , J (0), etc., to simplify the notation,

the eigenvalue problem can be written in the form

−
[

(

γ2/k2 + ψ′2
e

)

ξ̂′
]

′

+ k2
(

γ2/k2 + ψ′2
e

)

ξ̂ = d2eψ
′

eJ
′′′ξ̂ + ψ′

ed
2
e∇

2 1

1− d2e∇
2
∇2(ψ′

eξ̂), (8)

where∇2 should be interpreted as∇2 = ∂2x − k2 and the prime (′) denotes thex derivative.
Note, (8) ranks as a fourth order ordinary differential equation (unlessde = 0) because of the
integral operator(1 − d2e∇

2)−1 on the right hand side. By multiplying the both sides of (8) by
ξ̂ and integrating over the domain, we get−γ2I(2) = W (2) where

I(2) =

∫ Lx/2

−Lx/2

dx
1

k2

(

|ξ̂′|2 + k2|ξ̂|2
)

, (9)

W (2) =

∫ Lx/2

−Lx/2

dx

[

− (ψ′

eξ̂)
∇2

1− d2e∇
2
(ψ′

eξ̂) + ψ′

eψ
′′′|ξ̂|2

]

. (10)

The functionalsγ2I(2) andW (2) are, respectively, related to the kinetic and potential energies
for the linear perturbation. Hence, by invoking the energy principle [12] (or the Rayleigh-Ritz



method), we can search for the most unstable eigenvalue (γ > 0) by minimizingW (2)/I(2) with
respect tôξ.

Since we assume the ordering (4) that corresponds to the kink-tearing mode, the eigenfunc-
tion ξ̂ is approximately constant except for thin boundary layers at x = 0,±Lx/2 and has dis-
continuities around them because of the singular property of (8) in the limit of (γ/k), k, de → 0.
The electron inertia effect wouldsmooth outthese discontinuities.

Figure 3: Test function that mimics the un-
stable tearing mode Figure 4: The linear growth rateγ calcu-

lated by simulation (de/Lx = 0.01)

Let usa priori choose the piecewise-linear test function shown in FIG. 3. By substituting
this function into (9) and (10), we can makeW (2) negative and keepI(2) finite as follows:
I(2) ≃ 4/dek

2,W (2) ≃ −2 (1/3 + 9e−2) deB
′2
y0, whereB′

y0 = α2ψ0 and we have extracted only
the leading-order term. The linear growth rate is thereforeestimated as

γ =
√

−W (2)/I(2) =
√

0.776τ−2
0 = 0.881τ−1

0 , (11)

whereτ−1
0 = dekB

′

y0. This result agrees with the general dispersion relation derived by asymp-
totic matching [3, 4]. Of course, our analytical estimate ofthe growth rate depends on how good
the chosen test function mimics the genuine eigenfunction.Nevertheless, the result predicted
by the simple function in FIG. 3 shows a satisfactory agreement with the numerically calculated
growth rate (see FIG. 4) in the smallk region corresponding to the ordering (4).

4 Variational estimate of explosive nonlinear growth

Next, we consider the nonlinear phase of the linear instability discussed above. We remark
in advance that a higher-order perturbation analysis of theLagrangian (i.e., weakly nonlinear
analysis) [17] will not be successful. Such a perturbation expansion will fail to converge when
the displacementǫ (or the island width) reaches the boundary layer width (∼ de), since the
eigenfunction has a steep gradientξ̂′ ∼ ξ̂/de inside the boundary layers (see FIG. 3). The
naive perturbation analysis is, therefore, only valid for0 ≤ ǫ≪ de, while ǫ actually exceedsde
without saturation as in FIG. 2.

To avoid difficulties of a rigorous fully-nonlinear analysis, we again take advantage of the
variational approach. Namely, we devise a trial fluid motion(parameterized by the amplitude
ǫ) that tends to decrease the potential energyW as much as possible. When such a motion is
substituted into the Lagrangian (5), it is expected to be nonlinearly unstable.

Owing to the symmetry of the mode pattern, it is enough to discuss the boundary layer at
x = 0 and, moreover, focus on only the 1st quadrant,0 < x and0 < y < Ly/2. In a heuristic



Figure 5: Deformation of contours ofψe by the displacement map (12)

way based on the simulation result, we consider a displacement mapGǫ : (x0, y0) 7→ (x, y)

where the displacement in thex direction is prescribed by

x =















gǫ(x0), 0 < y0 <
Ly

4
− l

2
, (i)

x0 +
2
l

(

y0 −
Ly

4

)

[x0 − gǫ(x0)],
Ly

4
− l

2
< y0 <

Ly

4
+ l

2
, (ii)

2x0 − gǫ(x0),
Ly

4
+ l

2
< y0 <

Ly

2
. (iii)

(12)

The regions (i)-(iii) are indicated in FIG. 5(left) and we furthermore definegǫ as

gǫ(x0) =











e−ǫ̂x0, 0 < x0 < de,

dee
x0−ǫ

de
−1, de < x0 < de + ǫ,

x0 − ǫ, de + ǫ < x0.

(13)

As illustrated in FIG. 5(right), this displacement map deforms the contours ofψe into a Y-shape.
From this deformation we find that the potential energy decreases as follows:

δW [Gǫ] =− LyB
′2
y0d

3
e

[

ǫ̂3

2
+O(ǫ̂2)

]

, (14)

in a nonlinear regimede ≪ ǫ ≪ Lx. To obtain the estimate (14) that is likely close to the
steepest descent, we have technically chosen the map (12) based on the following observations:

• Around the X points, the fluxψe of the red regions of FIG. 5(left) is squeezed into the
boundary layers in FIG. 5(right). On the other hand, the flux is expanded around the O
points and the areas of the blue regions of FIG. 5(left) are almost doubled in FIG. 5(right).
Sinceψe ≃ ψ except for the boundary layers, both deformations are foundto decrease
magnetic energy(1/2)

∫

|∇ψ|2d2x asǫ3 whende ≪ ǫ≪ Lx.

• As is also shown in Ref. [6], a strong current spike develops inside the boundary layers
[i.e., the red regions in FIG. 5(right)] in the form ofJ ≃ ǫ̂B′

y0 log |x/de| for ǫ̂ = ǫ/de ≫ 1,
which increases the current energy(1/2)

∫

d2eJ
2d2x (whereJ = −∇2ψ). However, this

logarithmic singularity is square-integrable and the current energy change is, at most, of
the second orderO(ǫ̂2) in (14).



• Only in the intermediate region (ii) located between the X and O points, does the potential
energy tend to increase. But, we can omit the detailed analysis of this region by taking its
width l to be sufficiently small:l ≪ Ly. We are allowed to use this approximation as far
as the kink-tearing ordering (4) is concerned, in whichLy is the longest length scale.

By introducing time-dependence inǫ(t), we also need to calculate the kinetic energy, which
eventually results in

K[Gǫ(t)] ≃
log 2

3de

(π

k

)3
(

dǫ

dt

)2

=
π2 log 2

6
LyB

′2
y0d

3
e

(

dǫ̂

dt̂

)2

, (15)

wheret̂ = t/τ0. Therefore the Lagrangian (5) reduces to

L[Gǫ(t)] ≃
π2 log 2

6
LyB

′2
y0d

3
e

[

(

dǫ̂

dt̂

)2

− U(ǫ̂)

]

, (16)

whereU(ǫ̂) = −(3/π2 log 2)ǫ̂3 + O(ǫ̂2) = −0.439ǫ̂3 + O(ǫ̂2). In the linear regime (̂ǫ ≪ 1),
we have already shown that the potential energy decreases asU(ǫ̂) = −0.776ǫ̂2. The steeper
descent whereU(ǫ̂) = −0.439ǫ̂3 in the nonlinear regime (ǫ̂≫ 1) indicates an explosive growth
of ǫ during a finite time∼ τ0.

We remark that the nonlinear forceF (ǫ̂) = −U ′(ǫ̂) ∼ O(ǫ̂2) obtained here is different from
F (ǫ̂) ∼ O(ǫ̂4) in the earlier work [6]. While the similar fluid motion aroundthe X and O points
is considered in Ref. [6], they directly integrate the vorticity equation (1) over the quadrant
[0, Lx/2] × [0, Ly/2] and arrive at an equation of motiond2ǫ̂/dt̂2 = F (ǫ̂) ∼ O(ǫ̂4). However,
unless the assumed trial motion happens to be an exact solution, their treatment may lead to a
wrong equation of motion that does not satisfy energy conservation.

In direct numerical simulation, we have calculated the potential energyU(ǫ̂) [or, equivalently,
the kinetic energy(dǫ̂/dt̂)2] as a function of̂ǫ. As shown in FIG. 6, the decrease ofU(ǫ̂) agrees
with our scaling and does not support the scalingU ∼ −ǫ̂5 of Ref. [6].

Figure 6: Potential energyU(ǫ̂) (wherede/Lx = 0.01 andLy/Lx = 4π in simulation)

5 Discussions

In this work, we have analytically elucidated the acceleration mechanism for collisionless re-
connection driven by electron inertia. Let us interpret ourresult for tokamak parameters. For
them = 1 kink-tearing mode in tokamaks,τ−1

0 = dekB
′

y0 corresponds toτ−1
0 = deq

′

1ωA0,



whereq′1 is the derivative of the safety factorq at theq = 1 surface andωA0 is the toroidal
Alfvén frequency at the magnetic axis. In order for the reconnection to be collisionless, the
time scaleτ0 should be shorter than the electron-ion collision timeτe = µ0d

2
e/η, whereη is the

resistivity (at theq = 1 surface) andµ0 is magnetic permeability [13]. For sample parameters,
ωA0 = 6.4×106s−1, Te = 6keV, n = 3.5×1019m−3 andq′1 = 2.0m−1 of TFTR [18], we obtain
τ0 = 90µs andτe = 270µs. Although the ratioτ0/τe can drastically change in proportion to
T

−3/2
e n2, these two time scales are not so separated but possibly similar in tokamak plasmas.
Nevertheless, the time scale of explosionτ0 predicted in this work is comparable to the ex-

perimental sawtooth collapse times∼ 100µs [18]. Note, inclusion of resistivity into Ohm’s law
(2) causes an additional decrease of the potential energy, one that would not prevent the release
of free energy by inertia. In fact, our simulations exhibit nonlinear acceleration even with resis-
tivity satisfyingτ0/τe < 1. While the model used here is very simple, our result can be a central
mechanism for sawtooth collapse.

As might be expected, this explosive growth will be decelerated eventually beforeǫ reaches
the equilibrium scale sizeLx (when the free energy starts to be exhausted). In tokamaks, we
infer that the state of minimum potential energy is similar to the final state of Kadomtsev’s
model [1]. But, if dissipation were sufficiently small, it would also corresponds to the state
of maximum kinetic energy, where a strong convective flow remains. As shown in numerical
simulations [14, 15], such a residual flow will cause a secondary reconnection and restore a
magnetic field similar to the original equilibrium.

We expect further applications of this variational approach to be fruitful for predicting strongly
nonlinear and nonequilibrium dynamics of sawtooth collapses that other analytical methods fail
to clarify. In addition to the theoretical estimation of thefast collapse time, a legitimate deriva-
tion of a partial reconnection model (as well as associated loss of stored energyδW ) would be
made possible by extending the present analysis to more realistic two-fluid equations in toka-
mak geometry.
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