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A mechanism for fast magnetic reconnection in collisioslglasma is studied for understand-
ing sawtooth collapse in tokamak discharges. Nonlineawtirof the tearing mode driven
by electron inertia is analytically estimated by invokimg tenergy principle for the first time.
Decrease of potential energy in the nonlinear regime (wtrexésland width exceeds the elec-
tron skin depth) is found to be steeper than in the lineammegresulting in acceleration of the
reconnection. Release of free energy by such ideal fluidandéads to unsteady and strong
convective flow, which theoretically corroborates the fi@edriven collapse model of the saw-
tooth crash [D. Biskamp and J. F. Drake, Phys. Rev. [7&t971 (1994)].

1 Introduction

Sawtooth collapse in tokamak plasmas has been a puzzlingpptena for decades. Although
them = 1 kink-tearing mode is essential for onset of this dynami@jd&mtsev’s full reconnec-
tion model [1] and nonlinear growth of the resistive= 1 mode [2] (both based on resistive
magnetohydrodynamic theory) fails to explain the shortapsle times{ 100us) as well as
partial reconnections observed in experiments. Sincetrgsy is small in high-temperature
tokamaks, two-fluid effects are expected to play an imporie for triggeringfast(or explo-
sive magnetic reconnection as in solar flares and magnetogphéystorms.

In earlier works[[3] 4], the linear growth rate of the kinlkate&ng mode in the collisionless
regime has been analyzed extensively by using asymptotiching, which shows an enhance-
ment of the growth rate due to two-fluid effects, even in theealge of resistivity. Furthermore,
direct numerical simulation$|[5] 6] 7] of two-fluid modelsoshacceleration of reconnection
in the nonlinear phase, which indicates explosive tendsnentil numerical error or artificial
dissipation terminates them.

However, theoretical understanding of such explosive phama is not yet established due
to the lack of analytical development. In contrast to thestgguilibrium analysis developed
for resistive reconnections|[2, 8], the explosive procdsobisionless reconnection should be
a nonequilibrium problem, in which inertia is not negligibh the force balance and hence
leads to acceleration of flow. The convenient assumptiosteddyreconnection is no longer
appropriate.

Recent theories [9, 10, 11] emphasize the Hamiltonian eaifitwo-fluid models and try to
gain deeper understanding of collisionless reconnectidhe ideal limit.

The purpose of the present work is to predict explosive dgnaoitthe kink-tearing mode
analytically by developing a new approach that is based ertiergy principle [12]. For sim-
plicity, we will consider only the effect of electron inaatiwhich is an attractive mechanism for
triggering fast reconnection in tokamaks; estimates of¢ltennection rate are favorable [13],
nonlinear acceleration is possible [6], and even the migateipartial reconnection may be ex-
plained by an inertia-driven collapse modell[L4] 15]. While address the same problem as
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Ref. [6], the estimated nonlinear growth is quantitativeifferent from that of Ref.[[6]. Our
result is confirmed by a direct numerical simulation andntgplications for sawtooth collapse
are discussed in the final section.

2 Freeenergy source of tearing induced by electron inertia

We analyze the following vorticity equation and (collisiess) Ohm’s law for velocity field
v =e, X Vo(z,y,t) and magnetic field3 = Vi(z,y,t) X e, + Boe,:
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where[f, g] = (Vf xVg)-e.. The parametel, denotes the electron skin depth, which is much
smaller than the system sizé. (< L,). Since the frozen-in flux for Eql](2) is not magnetic
flux ¢ but the electron canonical momentum defined/by= ¢ — d>V?%¢, the effect of electron
inertia permits magnetic reconnection within a thin layerd,) despite a lack of resistivity. In
the same manner as Refl [6], we consider a static equilibsiaie,

@ =0, ¥vO(x) =1 cosaz, (3)

on a doubly-periodic domai = [-L,/2, L,/2| x [-L,/2, L, /2] (wherea = 27/L,), and
analyze nonlinear evolution of the tearing mode whose wawdrer in they-direction isk =
27 /L, at its early linear stage. For sufficiently smaluch that

mk* 4’ = L3812 < d. < Ly, (4)

this instability is similar to then = 1 kink-tearing mode in tokamaks (which is marginally
stable in the ideal MHD limitd, = 0). FIG.[ shows contours af calculated by direct
numerical simulation, wheredenotes maximum displacement in thelirection. As shown in
FIG.[2, the growth ot accelerates wheh= ¢/d. > 1 which is faster than exponential [6].
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Figure 1: Contours of) whene = 4.2d, Figure 2: Growth ofée = ¢/d.
(d./L, =0.01 andL,/L, = 4n) (d./L,=0.01andL,/L, = 4n)

In order to assess the free energy available from the equitibstate, we solve the con-
servation law[(R) fory, = ¢ — d?V*y by introducing an incompressible flow mag, :
D — D, which depends on time and corresponds to the identity itap( = Id) when



t = —oo. Let(z,y)(t) = Gi(zo,y0) be orbits of fluid elements labeled by their position
(x0,y0) att = —oo. Then, the velocity field (op) is related toG; by 0G;/0t(zo,yo) =

e, x Vo(z,y,t). Provided that we regar@, as an unstable fluid motion emanating from the
equilibrium state[{B), we can solvEl (2) by (z, y,t) = ¥e(Gy(z0, yo), t) = ¥ (o), where
0O (2) = (1 + d2a®)iy cos(az) ~ ¢ (z). By adapting Newcomb’s Lagrangian theory![16],
we define the Lagrangian for the fluid moti6# as

L[Gt] :K[Gt] - W[Gt]a (5)

where
quA=%AJVM%% and Wﬂ%h=%éﬂv¢ﬁ+ﬁnﬁmﬂd%. (6)

One can confirm that the variational principld’ L|G;]dt = 0 with respect to)G; yields the
vorticity equation[(lL).

Note thatl plays the role of potential energy and the equilibrium s@jenitially stores it
as free energy. In the same spirit as the energy principle iflthe potential energy decreases
(6W < 0) for some displacement mag,, then such a perturbation will grow with the release
of free energy.

3 Energy principlefor linear stability analysis

In our linear stability analysis, the equilibrium state exforbed by annfinitesimaldisplace-
ment, G, (o, yo) = (z0,y0) + &(z0, 0,t), Where€ is a divergence-free vector field dn. We
seek a linearly unstable tearing mode in the form

€lo.0n0) = ¥ |00 ™5 xe, )

with a growth ratee(t) « . We normalize the eigenfunctiof{z) by max |é(z)| = 1 so
thate(¢) is equal to the maximum displacement in thdirection and, hence, measures the half
width of the magnetic island.

Upon omitting “©)” from equilibrium quantitiesy©, 4", J© etc., to simplify the notation,
the eigenvalue problem can be written in the form

— [P/ 02 €] + 2 (/0 4 2) € = AT E+ VI VWD), (8)
whereV? should be interpreted 882 = 92 — k? and the prime’] denotes the: derivative.
Note, [8) ranks as a fourth order ordinary differential ggqua(unlessi, = 0) because of the
integral operatof1 — d?V?)~! on the right hand side. By multiplying the both sides[df (8) by
¢ and integrating over the domain, we get27® = W® where
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The functionalsy?/® andV® are, respectively, related to the kinetic and potentiargiee
for the linear perturbation. Hence, by invoking the energggple [12] (or the Rayleigh-Ritz



method), we can search for the most unstable eigenvalueq) by minimizingiW ) /1) with
respect t&.

Since we assume the ordering (4) that corresponds to thet&aring mode, the eigenfunc-
tion ¢ is approximately constant except for thin boundary layéts = 0, +7L,/2 and has dis-
continuities around them because of the singular propé&@)an the limit of (v/k), k, d. — 0.
The electron inertia effect woukimooth outhese discontinuities.
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Figure 3: Test function that mimics the un-

stable tearing mode Figure 4: The linear growth rate calcu-

lated by simulationd./L, = 0.01)

Let usa priori choose the piecewise-linear test function shown in EIG. @.s@bstituting
this function into [9) and[{10), we can makg® negative and keep® finite as follows:
I® ~4/dk* W ~ —2(1/3 + 9¢~?) d.BY, whereB,, = o’y and we have extracted only
the leading-order term. The linear growth rate is thereéstemated as

v = [-We /10 =\ J0.7767,2 = 0.8817, 7, (11)

wherer; ! = d.kB,,. This result agrees with the general dispersion relatioiveid by asymp-
totic matching([3, 4]. Of course, our analytical estimatéhaf growth rate depends on how good
the chosen test function mimics the genuine eigenfunctidenvertheless, the result predicted
by the simple function in FIG]3 shows a satisfactory agregmth the numerically calculated
growth rate (see FIG] 4) in the smalkegion corresponding to the ordering (4).

4 Variational estimate of explosive nonlinear growth

Next, we consider the nonlinear phase of the linear instaldiscussed above. We remark
in advance that a higher-order perturbation analysis ot Hgrangian (i.e., weakly nonlinear
analysis)[[177] will not be successful. Such a perturbatiqua@sion will fail to converge when
the displacement (or the island width) reaches the boundary layer widthd,), since the
eigenfunction has a steep gradight~ f/de inside the boundary layers (see FIG. 3). The
naive perturbation analysis is, therefore, only validfot ¢ < d., while e actually exceeds,
without saturation as in FIG] 2.

To avoid difficulties of a rigorous fully-nonlinear analgsiwe again take advantage of the
variational approach. Namely, we devise a trial fluid motjparameterized by the amplitude
€) that tends to decrease the potential enéfgys much as possible. When such a motion is
substituted into the Lagrangidd (5), it is expected to bdinearly unstable.

Owing to the symmetry of the mode pattern, it is enough toutische boundary layer at
x = 0 and, moreover, focus on only the 1st quadrént; « and0 < y < L, /2. In a heuristic
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Figure 5: Deformation of contours @f. by the displacement map_(12)

way based on the simulation result, we consider a displasemepG. : (zo,v0) — (z,v)
where the displacement in thedirection is prescribed by

9e(o), 0<yo<Z—1 (i)
xr = 3704‘%(3/0—%) [20 — ge(20)], %—% <yo<%+é7 (if) (12)
220 — ge(x0), R TN (i)

The regions (i)-(iii) are indicated in FIG] 5(left) and wetlhiermore defing. as

e ¢z, 0 < z9 < d,,
ge(xo) = deelg:_l, de < xo <d.+e, (13)
Ty — €, de + € < x.

As illustrated in FIG[b(right), this displacement map defe the contours af. into a Y-shape.
From this deformation we find that the potential energy desee as follows:

~3
SWI[G] = — Lnyodg [% + 0(62)} , (14)

in a nonlinear regimel, < ¢ < L,. To obtain the estimaté€_(l14) that is likely close to the
steepest descent, we have technically chosen thelmap @& ba the following observations:

e Around the X points, the flux). of the red regions of FIG.]5(left) is squeezed into the
boundary layers in FIG.]5(right). On the other hand, the flugXpanded around the O
points and the areas of the blue regions of EIG. 5(left) armat doubled in FIG.I5(right).
Sincev, ~ 1) except for the boundary layers, both deformations are fdardkcrease
magnetic energyl /2) [ |V [*d?z ase® whend, < € < L,.

e As is also shown in Ref[[6], a strong current spike develog&lie the boundary layers
[i.e., the red regions in FIG] 5(right)] in the form 8f~ ¢ B, log |z /d.| for é = ¢/d. > 1,
which increases the current enerdy2) [ d2J?d*z (whereJ = —V?¢). However, this
logarithmic singularity is square-integrable and the entrenergy change is, at most, of
the second orde?(¢é?) in (14).



¢ Onlyinthe intermediate region (ii) located between the ¥ @points, does the potential
energy tend to increase. But, we can omit the detailed asaly¢his region by taking its
width [ to be sufficiently smalli << L,. We are allowed to use this approximation as far
as the kink-tearing orderin@l(4) is concerned, in whichs the longest length scale.

By introducing time-dependence é(¢), we also need to calculate the kinetic energy, which
eventually results in

log2 /m\3 (de\> nw2log?2 de\?
K[Gw)] =30 (E) (%) =% L,Bd, ) (15)

wheret = t/7,. Therefore the Lagrangiahl(5) reduces to

(dé)z U (16)
di 71

whereU(é) = —(3/m%log2)é® + O(¢%) = —0.439¢% + O(¢?). In the linear regimed( < 1),
we have already shown that the potential energy decreadé&as= —0.776¢%. The steeper
descent wher& (¢) = —0.439¢3 in the nonlinear regimes (> 1) indicates an explosive growth
of e during a finite time~ 7.

We remark that the nonlinear ford&(¢) = —U’(é) ~ O(e2) obtained here is different from
F(é) ~ O(é*) in the earlier work[[6]. While the similar fluid motion aroutite X and O points
is considered in Ref[[6], they directly integrate the wmtyi equation[(l) over the quadrant
[0, L./2] x [0, L,/2] and arrive at an equation of motialé/di? = F(é) ~ O(¢é*). However,
unless the assumed trial motion happens to be an exactasultiieir treatment may lead to a
wrong equation of motion that does not satisfy energy coasien.

In direct numerical simulation, we have calculated the piéenergyU(¢é) [or, equivalently,
the kinetic energydé/dt)?] as a function of. As shown in FIGLB, the decreasel6fé) agrees
with our scaling and does not support the scalihgr —¢° of Ref. [6].
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Figure 6: Potential energy (¢é) (whered. /L, = 0.01 andL, /L, = 47 in simulation)

5 Discussions

In this work, we have analytically elucidated the acceleratnechanism for collisionless re-
connection driven by electron inertia. Let us interpret msult for tokamak parameters. For
them = 1 kink-tearing mode in tokamaks;, ' = d.kB,, corresponds toy, ' = deoqiwao,



where¢] is the derivative of the safety factgrat theq = 1 surface andv,, is the toroidal
Alfvén frequency at the magnetic axis. In order for the rewection to be collisionless, the
time scalery should be shorter than the electron-ion collision time- 10d? /n, wheren is the
resistivity (at thegy = 1 surface) and., is magnetic permeability [13]. For sample parameters,
wao = 6.4 x10%71, T, = 6keV,n = 3.5 x 10m=3 andq; = 2.0m~! of TFTR [18], we obtain

7o = 90us andr, = 270us. Although the ratior, /7. can drastically change in proportion to
T.**n2, these two time scales are not so separated but possiblasimiokamak plasmas.

Nevertheless, the time scale of explosigrpredicted in this work is comparable to the ex-
perimental sawtooth collapse times100us [18]. Note, inclusion of resistivity into Ohm’s law
(@) causes an additional decrease of the potential enangythat would not prevent the release
of free energy by inertia. In fact, our simulations exhilwtitinear acceleration even with resis-
tivity satisfyingr, /7. < 1. While the model used here is very simple, our result can lemtaa
mechanism for sawtooth collapse.

As might be expected, this explosive growth will be decatztaventually before reaches
the equilibrium scale sizé, (when the free energy starts to be exhausted). In tokamaks, w
infer that the state of minimum potential energy is similarthe final state of Kadomtsev’s
model [1]. But, if dissipation were sufficiently small, it wigl also corresponds to the state
of maximum kinetic energy, where a strong convective flowags. As shown in numerical
simulations [[14[ 15], such a residual flow will cause a seaopndeconnection and restore a
magnetic field similar to the original equilibrium.

We expect further applications of this variational apptotde fruitful for predicting strongly
nonlinear and nonequilibrium dynamics of sawtooth cokethat other analytical methods fail
to clarify. In addition to the theoretical estimation of tiast collapse time, a legitimate deriva-
tion of a partial reconnection model (as well as associaissl bf stored energit?’) would be
made possible by extending the present analysis to mornstreavo-fluid equations in toka-
mak geometry.
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