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A discontinuous Galerkin method for approximating the Vlasov–Poisson system of equa-
tions describing the time evolution of a collisionless plasma is proposed. The method is
mass conservative and, in the case that piecewise constant functions are used as a basis,
the method preserves the positivity of the electron distribution function and weakly
enforces continuity of the electric field through mesh interfaces and boundary condi-
tions. The performance of the method is investigated by computing several examples
and error estimates of the approximation are stated. In particular, computed results
are benchmarked against established theoretical results for linear advection and the
phenomenon of linear Landau damping for both the Maxwell and Lorentz distributions.
Moreover, two nonlinear problems are considered: nonlinear Landau damping and a ver-
sion of the two-stream instability are computed. For the latter, fine scale details of the
resulting long-time BGK-like state are presented. Conservation laws are examined and
various comparisons to theory are made. The results obtained demonstrate that the dis-
continuous Galerkin method is a viable option for integrating the Vlasov–Poisson
system.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The single species Vlasov–Poisson system is a nonlinear kinetic system that models time evolution of a collisionless plas-
ma consisting of electrons and a uniform background of fixed ions under the effects of a self-consistent electrostatic field and
possibly an externally supplied field. The Vlasov equation models the transport of the electrons that are coupled to the elec-
trostatic potential through Poisson’s equation.

The unknown electron distribution function, a phase space density, is denoted by f = f(x,v, t), where the independent vari-
ables x, v, t are position, velocity, and time, respectively. For a given t, the quantity f(x,v, t)dxdv denotes the number of elec-
trons contained in the infinitesimal phase space volume element dxdv centered about (x,v) at time t. Upon a proper
renormalization, f can be interpreted as a probability distribution function for the electrons over the phase space.

The Vlasov–Poisson system has solutions that can exhibit a variety of dynamical phenomena [7,43,66]. One of the most
well-known effects is filamentation or ‘phase mixing’ as it is sometimes called, which occurs when different characteristics
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surfaces associated to the nonlinear transport (Vlasov) equation wrap in the phase space. This effect results in stiff gradients,
since f generally takes on disparate values along different characteristics.

Related to filamentation is the interesting phenomenon of Landau damping [41]: electrostatic disturbances can be inter-
preted as the interaction between plasma waves and electrons with a resulting net energy transfer from the wave to elec-
trons leading to an exponential collisionless damping of the electric field modes in time. Because of such phenomena, the
Vlasov–Poisson equation can be challenging to simulate numerically.

Existing numerical techniques for solving the Vlasov–Poisson system can be divided into two groups: (i) those that
approximate the system in the phase space directly and (ii) those that transform the system into a different coordinate space.
The numerical approaches that treat the phase space directly do not, however, usually involve discretizing the Vlasov equa-
tion. Rather most of these methods take advantage of the characteristic structure of the Vlasov equation, which implies that
the plasma particles evolve along trajectories that satisfy a given set of ordinary differential equations. The most widely used
particle scheme is the Particle-in-Cell (PIC) method [9,26,37], which represents ensembles of particles as a finite number of
macro-particles. Each macro-particle is then assumed to evolve along a characteristic trajectory, where the electric field
defining the trajectory is computed via any standard scheme. The PIC method seems to give reasonable results in cases
where the tail of the distribution is negligible and a large number of particles is not necessary. Otherwise, the method suffers
from numerical noise that is proportional to 1=

ffiffiffi
n
p

, where n is the number of particles.
Other methods based on the discretization of the phase space have also been proposed. In [10], an operator splitting

method was introduced and shown to be both efficient and accurate for solving a wide range of problems. A continuous finite
element method was developed in [69,70] and was shown to achieve results similar to those obtained in [10]. A positive and
mass conservative scheme was employed in [32] to solve both linear and nonlinear damping problems in one- and two-
dimensional physical space. This method is defined at a given time step by first building a piecewise constant approximation
over a mesh of the phase space using the approximation obtained from the previous time step and two correction terms
whose values are found by solving two fixed point problems. The piecewise approximation is then used in conjunction with
a slope limiter to reconstruct a local polynomial approximation of f for each cell in the mesh.

Transform methods based on Fourier or Hermite series have also been used, e.g. in [3,28,35] and more recently in [30]. In
[39,40], the phase space was transformed using a Fourier transform and a splitting method was employed to advance the
approximation in time. This method also included a filamentation filtering step for the purpose of smoothening the fila-
ments. The numerical results obtained using this method seem reasonable only for problems in which filamentation is
not a dominant effect, where perhaps the nonlinearity either slows down or prevents the onset of filamentation. However,
this method may be inadequate for problems where the physics of interest depends upon the filamentary nature of the dis-
tribution, such as is the case for Landau damping.

The objective of this paper is to propose a coupled Upwind Penalty Galerkin (UPG) method for the approximation of the
Vlasov–Poisson system and to evaluate its numerical efficacy. Our UPG method gives a unified approach for approximating
both the hyperbolic and elliptic parts of the Vlasov–Poisson system. Specifically, the Vlasov equation is discretized using the
standard Upwind Galerkin (UG) scheme for conservation laws [21–23] and the Poisson equation is discretized using one of
the three discontinuous Galerkin (DG) interior penalty available schemes [57,60,67]. Stability and convergence estimates for
the UPG method were presented in [36] for the six-dimensional phase space In the same reference, the method was shown to
be both locally and globally mass conservative.

More specifically, the semi-discrete UPG approximation fh to the electron distribution function is defined to be the solu-
tion of a first-order, nonlinear, ordinary differential equation (ODE) system. Moreover, it has been shown that the method
preserves positivity of fh when piecewise constant basis functions are used to approximate the solution to the Vlasov–Pois-
son system.

In this manuscript we show the numerical efficacy of the DG method by performing accuracy, convergence, and conser-
vation tests on computed UPG approximate solutions to a variety of linear and nonlinear problems where sufficient data or
information of the true nonlinear solutions has been established. The computed results for these problems are benchmarked
against known theoretical results and are compared to results obtained using established methods.

For computing plasma problems the UPG method offers several advantages. In particular, the local nature of the method
facilitates adaptive mesh refinements with easy adaptation to parallelization techniques. By taking advantage of these ben-
efits, regions of the phase space where the electron distribution experiences strong filamentation or boundary layer effects
can be resolved by local mesh refinements. The discontinuous nature of the method also helps to resolve the stiff gradients
associated with filamentation, since requiring the approximation to be continuous in these cases can be too restrictive and
typically lead to excessive numerical diffusion and oscillatory behavior. Due to the fact that the method imposes boundary
conditions weakly, a variety of boundary conditions can easily be accommodated.

Recently, an alternative DG formulation for the Boltzmann–Poisson system was introduced in [11–15] for simulations of
hot electron transport for one and two space dimensional nanometer scale devices, where kinetic corrections are known to
be very significant. In [19] a DG scheme was constructed for the Vlasov–Boltzmann equation by means of a maximum prin-
ciple satisfying a limiter for conservation laws [71,72], and it was shown to be high order accurate and positivity-preserving,
not only for piecewise constant basis functions but also for higher order polynomial approximations. Consequently a new
approximation of the Vlasov system based on a UPG scheme for higher order polynomial basis functions is currently being
developed and tested [16,17]. Thus, the DG method is well-suited to approximate a range of plasmas spanning from the col-
lisionless to the highly collisional regimes.
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For completeness of this introduction we include some historical remarks regarding DG methods. The initial development
of these numerical approximating schemes for hyperbolic and elliptic equations occurred independently, but nearly simul-
taneously. In 1973, the first DG scheme for linear hyperbolic equations was introduced by Reed and Hill for approximating a
neutron transport equation [55]. This work was followed by Lesaint and Raviart [42] in 1974, where a priori error estimates
were proved for the DG method applied to two-dimensional, linear hyperbolic problems. The DG schemes for hyperbolic
problems were further studied in the series of papers [21–23], which culminated in the introduction of the local discontin-
uous Galerkin (LDG) method [24]. The generality of the LDG method was further extended to the multidimensional setting
under more relaxed assumptions on the data in [20]. One of the first DG schemes for approximating the solutions to second-
order elliptic equations was introduced in 1971 by Nitsche [53] where Dirichlet boundary conditions were enforced weakly
rather than strongly through the use of a penalty term. Shortly thereafter, applications of the penalty method to Laplace’s
equation were proposed by Babuška et al. in [4–6].

The use of penalty terms across interior faces as a means of enforcing continuity among adjacent elements was intro-
duced in [67,68] using a symmetric interior penalty Galerkin (SIPG) finite element method. A non-symmetric interior penalty
method (NIPG) similar to the SIPG method was proposed and analyzed in [57]. The incomplete interior penalty method
(IIPG) was introduced in [27,60,61] and is very similar to the SIPG and NIPG methods.

The outline of this paper is as follows. In Section 2, we describe the Vlasov–Poisson system and give a brief discussion of
Landau damping. In Section 3, the UPG method for the approximation of the Vlasov–Poisson system is derived and the error
estimates associated to the approximation of the system are stated. In Section 4, several numerical simulation results are
presented and analyzed, including a study of the free streaming operator (simple advection), Landau damping for Maxwell-
ian and Lorentzian equilibria, strong nonlinear Landau damping and a careful study of a symmetric two-stream instability,
all for the case of repulsive potential forces. In Section 5, we comment on the efficiency of the UPG method, draw some con-
clusions, and remark on future work. Finally, an Appendix dedicated to the analysis of dispersion relations for the Lorentzian
and two-stream equilibria is included.

2. The Vlasov–Poisson system

The Vlasov–Poisson system considered in this work has been scaled by the usual characteristic time and length scales, i.e.,
time is scaled by the inverse plasma frequency x�1

p , length by the Debye length kD, and velocity accordingly by a thermal
velocity vth = xpkD.

Using this nondimensionalization, the Vlasov–Poisson problem is as follows: for the divergence free vector in (x,v) phase
space
aðx; v; tÞ ¼ ðv;�Eðv ; tÞÞ for ðx;v ; tÞ 2 X� ½0; T�; ð1Þ
find the electron distribution function f(x,v, t) and the electric field E(x, t) with corresponding electrostatic potential U(x, t)
such that, for fixed T > 0,
0 ¼ @t f þ divða f Þ ¼ @t f þ v � rxf � E � rv f ; in X� ð0; T�; ð2aÞ

E ¼ �rxU; �DxU ¼ 1�
Z

Rn
f dv ; in Xx � ð0; T�; ð2bÞ
subject to an initial condition on f and boundary conditions on f and U. The domain of definition of the initial boundary value
problem X :¼ Xx � Rn, where the physical domain Xx � Rn can either be bounded or all of Rn with n = 1,2,3. The boundary
condition given for f depends on Xx. If Xx ¼ Rn, then the condition f ? 1 must be enforced both as jxj?1 and as jvj?1. If
Xx is bounded, then a condition must be imposed on f along the inflow boundary CI, defined by
CI ¼ fðx; vÞ 2 @Xx � Rnjv � mx < 0g; ð3Þ
with mx being the unit outward normal vector to @Xx. Often fI is given in some parts of the boundary and may be periodic in
other parts of the boundary region CI. In this manuscript we assume periodic boundary conditions in space and the decaying
boundary condition in velocity.

The Poisson equation must also be endowed with spatial boundary conditions, either Dirichlet, Neumann, Robin, or peri-
odic, on different disjoint regions of the boundary @Xx. We denote the Dirichlet portion of the boundary by @Xx,D. If the mea-
sure of the Dirichlet boundary is zero, i.e. j@ Xx,Dj = 0, and one has homogeneous or periodic boundary conditions such thatR
@Xx
rU � mx ¼ 0, then in order to maintain a well-posed problem that keeps the existence and uniqueness of the correspond-

ing Poisson boundary value problem, one needs to add to the solution space the compatibility (neutrality) conditionR
Xx
ð1�

R
Rn f dvÞdx ¼ 0, or equivalently

R
Xx

R
Rn f dxdv ¼ jXxj on each connected component of the spatial domain X.

Macroscopic fluid quantities of interest are easily computed from f. The electron density q = q(x, t), current density
j = j(x, t), kinetic energy density Ekðx; tÞ and electrostatic energy density Eeðx; tÞ are defined by
qðx; tÞ ¼
Z

Rn
f ðx;v ; tÞdv ; ð4Þ

jðx; tÞ ¼
Z

Rn
vf ðx;v ; tÞdv ; ð5Þ
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Ekðx; tÞ ¼
1
2

Z
Rn
jv j2f ðx;v ; tÞdv ; ð6Þ

Eeðx; tÞ ¼
1
2
jEðx; tÞj2: ð7Þ
These quantities satisfy a number of respective conservation laws (see e.g. [56]). In particular, it is well-known that the Vla-
sov–Poisson system conserves total particle number, momentum, energy, and the Casimir invariants, which are given,
respectively, by
N ¼
Z

Xx�Rn
f ðx; v; tÞdxdv ¼

Z
Xx

qðx; tÞdx; ð8Þ

P ¼
Z

Xx�Rn
vf ðx; v; tÞdxdv ¼

Z
Xx

jðx; tÞdx; ð9Þ

H ¼ 1
2

Z
Xx�Rn

jv j2f ðx;v ; tÞdxdv þ 1
2

Z
Xx

jEðx; tÞj2 dx ð10Þ

¼
Z

Xx

ðEkðx; tÞ þ Eeðx; tÞÞdx;

C ¼
Z

Xx�Rn
Cðf Þdxdv ; ð11Þ
The notation Cðf Þ in (11) refers to an arbitrary function of f and includes the ‘enstrophy’ when Cðf Þ ¼ f 2, entropy when
Cðf Þ ¼ �f ln f , or particle number, as in (8), when Cðf Þ ¼ f . We will check the invariance of these quantities in our nonlinear
computations, particularly in Section 4.2.2.

Interesting properties of the Vlasov–Poisson system result by considering a linear perturbation df(x,v, t) to an equilibrium
distribution feq(v) over the 2D-phase space [0,L] � (�1,1), L > 0. Specifically, suppose that f = feq + df, where feq is a given
equilibrium probability distribution, df and U are L-periodic in x, and the initial average value of df over X is zero. Eqs.
(2a) and (2b) imply that df satisfies
@tðdf Þ þ vðdf Þx � Eðdf Þv ¼ Ef 0eq ½0; L� � ð�1;1Þ� ð0; T�; ð12aÞ
E ¼ �Ux ½0; L� � ð0; T�; ð12bÞ

Uxx ¼
Z

Rn
df dv ½0; L� � ð0; T�: ð12cÞ
Supposing jE(df)vj � 1 and dropping this term from (12a) leads to
@tðdf Þ þ vðdf Þx ¼ Ef 0eq ½0; L� � ð�1;1Þ� ð0; T�; ð13aÞ
E ¼ �Ux ½0; L� � ð0; T�; ð13bÞ

Uxx ¼
Z

Rn
df dv ½0; L� � ð0; T�: ð13cÞ
The linear system of (13a)–(13c) was analyzed by using the Laplace transform in the famous paper of Landau [41], by expan-
sion in terms of continuum eigenfunctions in [66], and by a tailored integral transform introduced in [49,50]. Landau showed
that an electric field mode Ek(x, t) decays exponentially in the long-time limit, which we investigate in Section 4.1.2 for two
well-known equilibria: the Maxwellian
fM ¼ ð2pTÞ�n=2e�v2=2T ; ð14Þ
and the Lorentzian,
fLðvÞ ¼
1
p

c
v2 þ c2 : ð15Þ
3. Method formulation

In this section, we derive the UPG method for the Vlasov–Poisson system. The derivation proceeds by first discretizing the
Vlasov equation using the standard UG discretization for transport equations [20]. Here it is assumed that the electric field is
given and hence the divergence-free flow field a(x,v, t) = (v,�E(x, t)), defined in (1) for the Vlasov Eq. (2a), is known. After-
wards, the DG discretization for the Poisson equation is considered.

It is assumed that any mesh for the phase space, where by mesh we mean a partitioning of the phase space into convex
sets called elements, is the Cartesian cross product of a mesh for the physical domain and a mesh for the velocity domain.
Under this assumption, the physical and velocity domains can be independently refined. Given a mesh for the phase space,
the UG method then defines an approximate solution to the true Vlasov solution in such a way that at any given time the
approximate solution restricted to each element of the mesh is a polynomial function. However, the approximate solution
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is not required to be continuous across the intersections of any two adjacent elements, so it is a piecewise defined polyno-
mial function with respect to the mesh at any given time.

In order to compute the approximation to the electrostatic potential from Poisson’s equation (2b), for a given distri-
bution function, one may use one of three interior penalty methods that weakly enforce both approximate continuity
across the interior mesh faces and Dirichlet boundary regions. These three alternative methods, symmetric interior pen-
alty Galerkin (SIPG) [67,68], non-symmetric interior penalty Galerkin (NIPG) [57], and incomplete interior penalty Galer-
kin (IIPG) [60,61] are discussed in detail and a priori error estimates for each of them are given in the respective
references. The only difference among the three methods is in the value of one specific parameter that arises in the
weak formulation that is common to each of them. Thus, for a given space charge function, each penalty Galerkin meth-
od defines a piecewise polynomial approximation of the true solution to the Poisson equation using a mesh in the spa-
tial domain.

The spatial domain mesh used in the discretization of Poisson’s equation is required to be the same as that used in the UG
discretization of the Vlasov equation. This requirement is a practical one, both in terms of analysis and implementation.
However, the polynomial degree of the potential approximation on a given element of the spatial mesh is not required to
equal the degree, with respect to x, of the polynomial approximation of the distribution f.

Thus, the UPG method of approximation to the Vlasov–Poisson system is defined by coupling together the UG method
of approximation to the Vlasov equation with interior penalty methods of approximation to the Poisson equation. This
nonlinear semi-discrete approximation results in a first-order nonlinear ODE system, the solution of which determines
the approximation fh of f. The resulting ODE system is readily solved using an explicit conservative time-integrator
such as the Runge–Kutta method. Moreover, in the process of computing fh, both the approximation Eh of the electric
field E and the approximation Uh of the potential U are computed by one of the penalty methods for the elliptic
equation.

3.1. Preliminaries

We assume the computational domain in velocity space is a bounded set Xv and that the approximate solution to f(x,v, t)
is assumed to vanish in @Xv. It is then, implicitly for our simulation, assumed that the velocity support of the approximation
to the true solution f of the Vlasov–Poisson system is contained in Xv for all times. This is a reasonable assumption for prob-
lems with spatial periodic boundary conditions, as it is expected that most of the density associated with the approximation
to f will be contained in a sufficiently large fixed set Xv. The error due to this assumption only depends on the density of the
true solution f computed on the complement of Xv in Rn.

Further, the conservative nature of the transport Eq. (2a) with the space dependent divergence-free flow field a, motivates
us to choose the computational scheme as follows:

Let fT hxghx>0 be a sequence of successively refined meshes of the bounded domain Xx � Rn and let fT hv ghv>0 be a se-

quence of successively refined meshes of the bounded domain Xv � Rn, where n = 1,2,3. Given the meshes T hx ¼ fKjxg
Nhx
jx¼1

and T hv ¼ fKjv g
Nhv
jv¼1, the elements Kjx and Kjv comprising each of the respective meshes are sets of the following types: inter-

vals, if n = 1; triangles or quadrilaterals, if n = 2; and tetrahedra, prisms or hexahedra, if n = 3. The corresponding spatial
refinement level hx and velocity refinement level hv are defined by hx ¼maxjxfdiamðKjx Þg and hv ¼ maxjv fdiamðKjv Þg,
respectively.

A sequence of successively refined meshes fT hgh>0 of the, now, computational domain X = Xx �Xv is generated by defin-
ing each mesh T h ¼ fKjgNh

j¼1 to be T h ¼ T hx � T hv , where the refinement level is h = (hx,hv). Thus, for any given element
Kj 2 T h there exists a unique pair of elements Kjx 2 T hx and Kjx 2 T hx such that Kj ¼ Kjv � Kjv , which is equivalent to the exis-
tence of an invertible mapping from j 2 {1, . . . ,Nh} to ðjx; jv Þ 2 f1; . . . ;Nhxg � f1; . . . ;Nhv g, where Nh ¼ Nhx Nhv .

The derivation of the following UPG method requires the use of the broken Sobolev space HsfT hg; s > 1=2, which is de-
fined as follows:
HsfT hg ¼ fw 2 L2ðXÞjwjKj
2 HsfKjg; 8Kj 2 T hg; ð16Þ
i.e., HsfT hg is the space of those functions that have elementwise weak derivatives up to, and including, the order s. Then for
nonnegative integers rx and rv, the discontinuous approximation space Drx ;rv ðT hÞ � HsfT hg is given by
Drx ;rv ðT hÞ ¼ fw 2 HsfT hgjwjKj
2 QrxfKjxg �Qrv fKjv g; 8Kj 2 T hg; ð17Þ
where Q
rðKÞ denotes the space of polynomials on a set K with degree less than or equal to r in each variable. Thus,

PrðKÞ � QrðKÞ, where PrðKÞ denotes the space of polynomials satisfying that the sum of the degrees of all the variables is
less than or equal to r.

The choice of QrðKÞ for basis functions is suitable for Cartesian meshes in both x-space and v-space, respectively, where
trace and inverse inequalities that are derived by mapping to the reference element in the approximating framework are
possible, as first introduced in [36].

However, one may use triangles in two-dimensions, and prisms or hexahedra in three-dimensions, for both x-space and v-
space, for which the natural choice of polynomial space would be PrxfKjxg � Prv fKjv g. We point out that this selection of
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approximating spaces is consistent with the divergence free, linear, and conservation form of the Vlasov equation, and the
fact that the choice of the mesh associated with the computational domain X = Xx �Xv is a set of product mesh elements
Kj ¼ Kjv � Kjv , for j 2 f1; . . . ;Nhg; ðjx; jvÞ 2 f1; . . . ;Nhxg � f1; . . . ;Nhv g and Nh ¼ Nhx Nhv . Such is clearly preserved by the Vlasov
flow and the corresponding approximation results for PrðKÞwill be valid. This choice may be preferable in higher dimensions
since the number of degrees of freedom of the basis functions in PrðKÞ is rn + 1, while for QrðKÞ is (r + 1)n, for n-dimensional
calculations.

The discontinuous nature of the space HsfT hg needs the introduction of mesh faces. If Kj is a boundary element, then
Fk = @Kj \ @X is called a boundary mesh face. If K1 and K2 are two intersecting elements whose common intersection lies
in the interior of X, then Fk = @K1 \ @K2 is said to be an interior mesh face. The set of all mesh faces is denoted by
F h ¼ fF1; . . . ; FPh

; FPhþ1; . . . ; FMh
g, where Fk is an interior face if 1 6 k 6 Ph and a boundary face if Ph + 1 6 k 6Mh. Each face

Fk 2 F h is associated with a unit normal vector mk. For k > Ph,mk is chosen to be the outward unit normal to @X. For 1 6 k 6 Ph,
we fix mk to be one of the two unit normal vectors to Fk. For every interior face Fk, the elements K1 and K2 will always be used
to denote the two unique elements such that Fk = K1 \ K2. Moreover, it is always assumed that K1 satisfies mK1 ¼ mk on Fk,
where mK1 denotes the outward unit normal to @K1. Then mK2 ¼ �mk on Fk.

The fact that each mesh T h is the product of a spatial mesh T hx and a velocity mesh T hv gives a specific structure to the
boundaries of the elements and to the set of mesh faces F h. It follows that for Kj ¼ Kjx � Kjv we have

@Kj ¼ ð@Kjx � Kjv Þ [ ðKjx � @Kjv Þ. We denote the set of mesh faces for T hx and T hv by F hx ¼ Fx
1; . . . ; Fx

Phx
; Fx

Phxþ1; . . . ; Fx
Mhx

n o
and F hv ¼ Fv

1 ; . . . ; Fv
Phv
; Fv

Phv þ1; . . . ; Fv
Mhv

n o
, respectively, where Fx

kx
is an interior face if 1 6 kx 6 Phx and a boundary face if

Phx þ 1 6 kx 6 Mhx , and Fv
kv

is an interior face if 1 6 kv 6 Phv and a boundary face if Phv þ 1 6 kv 6 Mhv . Then, given any arbi-
trary Fk 2 F h, either there exist an Fx

kx
2 F hx and a Kjv 2 T hv such that Fk ¼ Fx

kx
[ Kjv or there exist a Kjx 2 T hx and an Fv

kv
2 F hv

such that Fk ¼ Kjx [ Fv
kv

.
When considering functions in HsfT hg, we use the usual average and jump operators, respectively, defined for w 2 HsfT hg

along an interior face Fk by
�w ¼ 1
2
ððwjK1 ÞjFk

þ ðwjK2 ÞjFk
Þ; ½w� ¼ ðwjK1 ÞjFk

� ðwjK2 ÞjFk
: ð18Þ
The above definitions are also valid for vector-valued functions w 2 ½HsfT hg�2n, in which case it follows that
½w� � mk ¼ ðwjK1 ÞjFk

� mK1 þ ðwjK2 ÞjFk
� mK2 .

3.2. Upwind Galerkin approximation of the Vlasov equation

Here we describe the UG scheme for the Vlasov equation in full generality for a 2n-dimensional (n = 1, 2 or 3) phase space
with inflow boundary conditions and piecewise polynomials of arbitrary degree approximating f. The simpler derivation of
the method for a two-dimensional phase space with periodic boundary conditions in x and a piecewise constant approxima-
tion to f is given explicitly in Section 3.5, since this method was used for the numerics of Section 4. Note, for this simpler
version the derivation does not require use of the set of mesh faces F h.

For a given time T > 0 and data trio (a, f0, fI), the Vlasov equation along with the corresponding initial and boundary con-
ditions are
@tf þ a � rf ¼ 0 X� ð0; T�; ð19aÞ
f ðt ¼ 0Þ ¼ f0 X; ð19bÞ
f ¼ fI CI � ð0; T�; ð19cÞ
where a ¼ ðv ;�EÞ 2 R2n; E 2 Rn is assumed given, r = (rx,rv), and X = Xx �Xv. It is assumed that Xx ¼ Pn
i¼1½0;Xi� and

Xv = [�Vc,Vc]n, where X1, . . . ,Xn,Vc > 0 are fixed. Following (3), we also define (keeping the same notation without loss of gen-
erality) the computational inflow boundary CI, associated with the computational domain X, by
CI ¼ fðx; vÞ 2 @Xja � m < 0g; ð20Þ
where m is the outward unit normal to @X. Then, CO = @XnCI.
For domains K � R2n, let (�, �)K denote the L2(K)-inner product. To distinguish integration over domains K � R2n�1, we use

the notation h�, �iK. A weak formulation for (19a)–(19c) is derived by multiplying Eq. (19a) by an arbitrary test function
w 2 H1ðT hÞ and integrating by parts over an arbitrary Kj 2 T h. This yields
ð@tf ;wÞKj
� ðf ;a � rwÞKj

þ hfw;a � mKj
i@Kj
¼ 0; 8t 2 ð0; T�; ð21Þ
with mKj
being the outward unit normal to @Kj and w� denoting the interior trace of Kj, i.e., w�ðx;vÞ ¼ lims#0�wððx;vÞ þ smKj

Þ.
Upon summing Eq. (21) over all Kj and weakly enforcing the inflow boundary condition, we get
ð@tf ;wÞX �
XNh

j¼1

ðf ;a � rwÞKj
þ
XPh

k¼1

hf ½w�;a � mkiFk
þ
X

Fk2CO

hfw;a � mkiFk
¼ �

X
Fk2CI

hfIw;a � mkiFk
: ð22Þ
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Approximating f by a function fh, which may be discontinuous across the interior faces, requires the introduction of a
numerical flux f u. A standard technique is to replace f by its ‘‘upwind value’’ f u on the interior faces [20], where f u along each
interior face Fk is defined by the given advecting flow field a(x,v, t) according to
f uðv ;v ; t;aÞ ¼ lim
s#0

f ððx; v; tÞ þ saðx; v; tÞÞÞ ¼
fjK1 ðx;v ; tÞ; if aðx; v; tÞ � mk P 0;
fjK2 ðx;v ; tÞ; if aðx; v; tÞ � mk < 0:

�

Consistency follows from condition (23), since f u(a) = f on Fk whenever f is continuous across each interior face Fk. We also
note that f u depends nonlinearly on a as, in general, if a1 and a2 are two flow fields having different values on Fk and if
g 2 HsfT hg is discontinuous across Fk, then gu(a1 + a2) – gu(a1) + gu(a2). Replacing f on the interior faces in (22) by its upwind
value f u leads to
ð@t f ;wÞX �
XNh

j¼1

ðf ;a � rwÞKj
þ
XPh

k¼1

hf u½w�;a � mkiFk
þ
X

Fk2CO

hfw;a � mkiFk
¼ �

X
Fk2CI

hfIw;a � mkiFk
;

which is the UG scheme for the Vlasov equation. Finally, defining the bilinear operator A by
Aðf ;w;aÞ ¼ �
XNh

j¼1

ðf ;a � rwÞKj
þ
XPh

k¼1

hf u½w�;a � mkiFk
þ
X

Fk2CO

hfw;a � mkiFk
ð23Þ
and the corresponding linear operator L, depending on the inflow data fI, by
Lðw;a; fIÞ ¼ �
X

Fk2CI

hfIw;a � mkiFk
; ð24Þ
yields a variational formulation for the semi-discrete problem of finding the fh 2 C1ð½0; T�;Drx ;rv ðT hÞÞ approximation to f,
satisfying,
ð@t fh;whÞX þAðfh;wh; aÞ ¼ Lðwh; a; fIÞ 8t 2 ð0; T�; ð25Þ
ðfhðx;v ;0Þ;whÞKj

¼ ðf0;whÞKj
8Kj 2 T h; ð26Þ
for all w 2 Drx ;rv ðT hÞ, with f0 and fI approximations of the initial data f(x,v,0) and the inflow boundary data on CI, respectively.
We note that (25) produces a first-order ODE system to be described below. Indeed, for each Ki ¼ Kix � Kiv 2 T h, let

wi
1; . . . ;wi

nb
be a basis for Qrx ðKix Þ � Q rv ðKiv Þ, where nb = (rx + 1)n � (rv + 1)n and then extend the domain of these functions

to X by defining each to be identically zero in XnKi. If bðtÞ ¼ b1
1ðtÞ; . . . ; b1

nb
ðtÞ; . . . ; bNh

1 ðtÞ; . . . ; bNh
nb
ðtÞ

� �
denotes the unique vec-

tor such that the UG approximation fh satisfies
fhðx;v ; tÞ ¼
XNh

j¼1

Xnb

m¼1

bj
mðtÞw

j
mðx;vÞ; ð27Þ
then fhjKj
¼
Pnb

m¼1b
j
mwj

m. Inserting (27) into (25) yields
XNh

j¼1

Xnb

m¼1

_bj
mðtÞ wj

m;wh

� �
X
þ
XNh

j¼1

Xnb

m¼1

bj
mðtÞA wj

m;wh; a
� �

¼ Lðwh; a; fIÞ; 8wh 2 Drx ;rv ðT hÞ: ð28Þ
Finally, since fwi
pg

nb ;Nh
p¼1;i¼1 is a basis for Drx ;rv ðT hÞ, then (28) is equivalent to
Xnb

m¼1

_bi
mðtÞ wi

m;w
i
p

� �
Ki

þ
X

j2NðiÞ

Xnb

m¼1

bj
mðtÞA wj

m;w
i
p; a

� �
¼ L wi

p;a; fI

� �
; 8i 2 f1; . . . ;Nhg; 8p 2 f1; . . . ;nbg; ð29Þ
where N(i) contains the indices of all neighboring elements of Ki.
Eq. (29) is seen to generate an equivalent matrix system, where nb rows of the matrix are generated at a time by sequen-

tially taking i to equal 1, . . .,Nh and for each i sequentially taking p to equal 1, . . .,nb in Eq. (29). This procedure results in the
matrix ODE system
A1
_bðtÞ þ A2ðaÞbðtÞ ¼ Lða; fIÞ; ð30Þ
where A1 is a constant matrix and A2(a) is the corresponding sparse matrix, both of which are of dimension nbNh � nbNh, and
L(a, fI) is a vector of length nbNh.

Since the support of the functions wi
1; . . . ;wi

nb
is Ki, "i 2 {1, . . .,Nh}, it follows that A1 is a block-diagonal matrix, where each

block is an nb � nb matrix. This means that the inverse of A1 is easily computed. Thus, the UG approximation fh is equivalently
defined to be the unique solution to
_bðtÞ ¼ �A�1
1 A2ðaÞbðtÞ þ A�1

1 Lða; fIÞ; ð31Þ
where the initial condition b(0) is uniquely determined by (26). To solve this system in time, a conservative explicit time
stepping method such as the Runge–Kutta method can be used.
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3.3. Interior penalty approximations of the Poisson equation

In order to make this manuscript self-contained, we also discuss the interior penalty formulations for the Poisson
equation that weakly enforces approximate continuity across interior mesh faces and Dirichlet boundary regions. As al-
ready noted, the mesh T hx used to discretize the Poisson equation must be the same as that for the spatial domain used
for the Vlasov equation, but the polynomial degree rx for the Poisson equation need not be equal to the degree in x for
fh.

Hence, for given (i) source G 2 L2(Xx), (ii) boundary data UD 2 L2(@Xx,D) in the portion of the boundary referred as the
Dirichlet boundary @Xx,D, and (iii) rU � m = 0 (homogeneous Neumann) or periodic boundary conditions on @Xxn@Xx,D, the
boundary complement of the Dirichlet region, then the more general form of Poisson equation with a positive definite per-
mittivity term a discretized using the symmetric interior penalty (SIPG) method [67,68], incomplete interior penalty (IIPG)
method [27,60,61], or non-symmetric interior penalty (NIPG) [57] method is
�rx � ðarxUÞ ¼ G Xx; ð32aÞ
BxU ¼ UD @Xx;D; ð32bÞ
where a(x) is any positive-definite continuous function in (C1(Xx))n�n.
For K � Rn; n ¼ 1; 2, or 3, recall (�, �)K is the L2(K)-inner product with integration over K � Rn�1, while the notation h�, �iK is

for boundary integrals. In addition, we use the identity
XNhx

jx¼1

harxU � mKjx
; h�i@Kjx

¼
XPhx

kx¼1

harxU½h� þ ½rxU�ah; mkx iFkx
þ

X
Fkx2@Xx

hrxU � mkx ; hiFkx
; ð33Þ
where mKjx
is the outward unit normal to @Kjx .

Thus, the corresponding schemes SIPG, IIPG, and NIPG are all derived by multiplying (32a) by an arbitrary test function
h 2 HsfT hxg; s > 1=2, integrating by parts on each Kjx 2 T hx , and summing each of the resulting local equations. Whence, one
obtains the non-symmetric variational formulation given by
XNhx

jx¼1

ðarxU;rxhÞKjx
�
XPhx

kx¼1

harxU½h� þ ½arxU��h; mkx iFkx
�

X
Fkx2@Xx

harxU � mkx ; hiFkx
¼ ðG; hÞXx

; ð34Þ
where the identity (33) was used to represent the inner boundary integrals.
In particular, since the true solution for a bounded right-hand-side has at least the regularity U 2 H1ðXxÞ \ H2fT hxg, it fol-

lows that [U] � 0 and [rxU] � 0 along every interior face Fkx [31]. Thus, In order to get a good approximation for a regular
solution satisfying these two jump conditions, one adds ‘interior’ penalty terms that vanishes on the true solution U. These
terms are of the form
cs

XPhx

kx¼1

harxh½U�; mkx iFkx
; ð35Þ
where the values selected for cs for the SIPG, IIPG and NIPG methods are �1, 0 and 1, respectively. Similarly, such penaliza-
tion is also required for the Dirichlet boundary region @Xx,D as follows.

Indeed, we add to the bilinear form the interior penalty terms
XPhx

kx¼1

r
ðhjx Þ

n=2 h½U�; ½h�iFkx
; ð36Þ
which are now completed by weakly enforcing both approximate continuity across the interior mesh faces and Dirichlet
boundary regions @Xx.D, by including the penalization
X

Fkx2@Xx;D

r
ðhjx Þ

n=2 hU�UD; hiFkx
; ð37Þ
where r > 0 is an arbitrary penalty parameter that is usually set equal to unity. Note that homogeneous or periodic boundary
conditions vanish on boundary terms of the corresponding bilinear structure. Consequently, they do not require the bound-
ary penalization term.

Usually the penalization terms are denoted by the following non-symmetric bilinear form
JrðU; hÞ ¼
XPhx

kx¼1

r
ðhjx Þ

n=2 h½U�; ½h�iFkx
þ

X
Fkx2@Xx;D

r
ðhjx Þ

n=2 hU; hiFkx
: ð38Þ



1148 R.E. Heath et al. / Journal of Computational Physics 231 (2012) 1140–1174
Adding both penalty terms and (35) to the left-hand-side of (34) results in
XNhx

jx¼1

ðarxU;rxhÞKjx
�
XPhx

kx¼1

harxU½h� þ csarxh½U�; mkx iFkx
�

X
Fkx2@Xx

harxU � mkx ; hiFkx
þ
XPhx

kx¼1

r
ðhjx Þ

n=2 h½U�; ½h�iFkx

þ
X

Fkx2@Xx;D

r
ðhjx Þ

n=2 hU; hiFkx
¼ ðG; hÞXx

þ
X

Fkx2@Xx;D

r
ðhjx Þ

n=2 hUD; hiFkx
: ð39Þ
Eq. (39) completely defines each of the three interior penalty schemes.
Setting Acs ðU; hÞ equal to the first four terms on the left-hand-side of (39), where dependence on the parameter cs from

(35) is noted as a subscript, we let the bilinear operator Bcs ðU; hÞ :¼ Acs ðU; hÞ þ JrðU; hÞ and the linear operator Hðh; G;UDÞ
be equal to the two terms on the right-hand-side of (39). Then the function Uh 2 Drx ðT hx Þ is the corresponding interior pen-
alty Galerkin approximation to the Poisson solution U, if
Bcs ðUh; hhÞ ¼ Hðhh; G;UDÞ; 8hh 2 DrxfT hxg: ð40Þ
Note, Bcs is positive definite (or coercive) even though each of Acs ðU; hÞ and Jr(U,h) separately are only positive semi-definite
[27,36,57,60,61]. In particular, Bcs generates an equivalent norm for the Hilbert space H1ðT hÞ,
khk2
NIPG ¼ Acs ðh; hÞ þ Jrðh; hÞ; h 2 H1ðT hÞ; ð41Þ
if the measure of the Dirichlet boundary j@Xx,Dj > 0. In the case of periodic or homogeneous Neumann boundary conditions
we need the compatibility condition

R
Xx

R
Rn f dxdv ¼ jXxj, for each connected component Xx of the spatial domain. In fact, the

approximation to the Vlasov equation is done with a conservative UPG scheme and high order Runge–Kutta schemes, and in
particular, for the case of periodic boundary conditions the compatibility condition at the numerical level is satisfied as well.

Finally it is possible to see that the bilinearity and positive definiteness of Bcs for either a portion of Dirichlet or full Neu-
mann or periodic boundary conditions, implies that (40) is equivalent to a uniquely solvable matrix system described next.
Let nb = (rx + 1)n and l ¼ l1

1; . . . ;l1
nb
; . . . ;lNhx

1 ; . . . ;lNhx
nb

n o
be the unique vector such that
Uh ¼
XNhx

jx¼1

Xnb

m¼1

ljx
mhjx

mðxÞ: ð42Þ
Upon substituting this representation into (40), we conclude that (40) is equivalent to
Bl ¼ H; ð43Þ
where B is an ðnb þ 1ÞNhx � ðnb þ 1ÞNhx invertible sparse matrix and H(G,UD) is a vector of length ðnb þ 1ÞNhx . However, B is
not block diagonal, as was the case for A1 in the Vlasov ODE system. Thus, if the spatial domain is two- or three-dimensional,
then using an iterative solver is in general the most efficient means of computing the solution l in (43). However, for the
one-dimensional spatial domain, l can be computed by using an LU-matrix decomposition algorithm to factor B. For conve-
nience, we write l = B�1H, even though in practice l might be computed using an iterative method.

3.4. Discontinuous Galerkin approximation of the Vlasov–Poisson system

The UPG method for the Vlasov–Poisson system results from combining the UG approximation of the Vlasov equation
together with the interior penalty approximation of the Poisson equation. Thus, the approximation fh(t) to the solution
f(x,v, t) of the Vlasov–Poisson system (2a) and (2b), at time t, results from an iteration as follows.

Let ~f hðtÞ be given, where ~f hð0Þ is the approximation of the initial distribution function. Then, an approximation
ah(t) = (v,�Eh(t)) to a(x,v, t) = (v,�E(x, t)) is determined by computing the corresponding approximation to � Eh(t), using
one of the interior penalty approximation schemes to compute an approximation Uh(t) to the potential UD(x, t) via the for-
mula l = B�1H(G,UD), where G is defined to be 1�

R ~f hðtÞdv .
Next, the approximate local field is computed by taking the local spatial potential gradients ðEhÞjKjx

¼ �rxðUhÞjKjx
on each

Kjx , which implies that EhðtÞ ¼ Ehð~f hðtÞÞ is discontinuous across the interior faces of T hx . Consequently, it follows that the
approximate flow field ahðtÞ ¼ ahð~f hðtÞÞ, or equivalently ah(t) = ah(b(t)), where b(t) is a well defined given function.

Summarizing, for any given ~f hðtÞ, first compute the approximate ah(t), and then the approximate solution fh(t) to the Vla-
sov–Poisson system by solving the ODE system (31) with a(t) replaced by ah(b(t)). This leads to the following definition.

Definition 1. The semi-discrete function fhðbðtÞÞ 2 C1ð½0; T�;Drx ;rv ðT hÞÞ is the UPG approximation to the Vlasov–Poisson
solution f, if fh(b(t)) :¼ fh as defined in (27) where b(t) satisfies the nonlinear system of ODEs
ðiÞ ðfhðbð0ÞÞ;whÞKj
¼ ðf0;whÞKj

; 8 Kj 2 T h;8 w 2 Drx ;rv ðT hÞ;

ðiiÞ ahðbðtÞÞ ¼ ðv;rxUhðlðtÞÞÞ with lðtÞ ¼ B�1HðbðtÞÞ;
ðiiiÞ _bðtÞ ¼ �A�1

1 A2ðahðbðtÞÞÞbðtÞ þ A�1
1 LðahðbðtÞÞ; fIÞ; ð44Þ
for all t 2 (0,T].
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System (44) can be solved for b(t) using any explicit time-integrator, following a classical Gummel map type iteration,
where at any given approximation bn�1, the b(tn�1) step (ii) is first computed since it does not involve time variation. Thus,
one obtains ah(b(tt�1)), which allows for the calculation of bn, the approximation to b(tn) by step (iii). In our simulations we
use a conservative high order Runge–Kutta time integrator.

This very same iteration scheme was previously proposed in [13] for the calculation of Boltzmann–Poisson solvers for
semiconductors, and related work by the same authors cited below. There the calculation of the Poisson equation is done
by a LDG scheme.

We also point out that an error estimate for this nonlinear scheme can be found in [36], which we state here in a concise
form. Let (f,U) be a solution pair of the Vlasov Poisson system (2b), with boundary and initial conditions as described above,
potential Uðt; �Þ 2 H�sðXxÞ for Xx � Rn, and distribution function f 2 C1ð½0; T�;H2sðT hÞÞ for X � R2n, for both �s; s > n. Also, let Fk

denote the interior faces associated with element Kk in X, with Fx
kx

denoting the corresponding one associated with the ele-
ments in the x-space Xx, as it was defined at the end of Section 3.1.

Further, recall QrðKÞ is the space of polynomials on a set K of degree less than or equal to r (cf. (16) and (17)), and rx and rv

the degrees in x-space and v-space, respectively. Let the parameter k be the first eigenvalue to the Poisson equation in Xx; eUh

be the distributional solution to the perturbed Poisson equation for a source term qh, the charge density (v-average) asso-
ciated with fh, and let lx and lv be defined by
lx ¼minfrx þ 1;�sg and lv ¼minfrv þ 1; sg: ð45Þ
Then, we obtained the following error estimate for the 2n-dimensional semi-discrete formulation of the Vlasov Poisson sys-
tem in terms the difference of suitable norms of potentials U �Uh, fields E � Eh = �rU +rUh, and particle distribution
functions f � fh:
kU�Uhk2
NIPG 6 k�1kq� qhk

2
L2ðXxÞ þ c

h2lx�2

r2�s�2
x

keUhk2
L2ðXxÞ;

krU�rUhk2
L2ðXxÞ þ

XPhx

kx¼1

rvr
jhjx j

n=2 kU�Uhk2
L2ðFkx Þ

þ
X

Fkx2Xx;D

rxr
jhjx j

n=2 kU�Uhk2
L2ðFkx Þ

6 k�1kq� qhk
2
L2ðXxÞ þ c

h2lx�2

r2�s�2
x

keUhk2
L2ðXxÞ; ð46Þ

kf ðTÞ � fhðTÞk2
L2ðXÞ þ

Z T

0

XPh

k¼1

kjah � mkj1=2½f � fh�k2
L2ðFkÞ

þ
Z T

0
kjah � mkj1=2½f � fh�k2

0;C0
þ
Z T

0
kjah � mkj1=2½f � fh�k2

0;CI

6 Ch2lv�1 þ ofh;lx ;lvgðh
2lv�1Þ;
where r is the penalization parameter of (36) and (37) and the k � k2
NIPG was defined in the previous subsection at (41). In

addition, for a sufficiently smooth potential Uðt; �Þ 2 H�sðXxÞ for Xx � Rn and distribution function f(t, �) 2 H2s(X) for
X � R2n, where the order of smoothness is given by the parameters s and �s, this estimate is optimal.

We close this subsection by noting that very recently our iteration scheme was reproduced in [1,2] with a different Pois-
son solver. These authors perform error estimates for quadratic basis functions that preserve energy, but do not preserve the
positivity of f. Numerical simulations have yet to be performed for their scheme and the amount of degradation cause by the
lack of positivity remains to be ascertained.
3.5. Two-dimensional phase space with piecewise constant approximation

We end this section with a description of the simplified scheme for a two-dimensional phase space using piecewise con-
stant approximations to f. As noted above, this is a positivity preserving (monotone) scheme that was used for the plasma
simulations presented in Section 4. Such a piecewise constant basis function scheme can be easily extended to higher dimen-
sions. We point out that, in work currently under preparation [17,18], we extend the positivity condition to higher order
basis functions by new limiter techniques inspired by Cheng et al. [19] and Zhang and Shu [71,72], which are maximum prin-
ciple preserving and can be applied to both the Vlasov–Poisson and Vlasov–Maxwell systems. It remains a challenge to find a
proper scheme that would preserved positivity and higher order moments, like momentum and energy. In the future we
hope to compare our approach with extensive existing work on Vlasov–Maxwell system [44,64,65].

Here, the simplified spatial and velocity domains are Xx = [0,L] and Xv = [�Vc,Vc], with mesh points
0 ¼ x0 < x1 < � � � < xNhx�1 < xNhx

¼ L and �Vc ¼ v0 < v1 < � � � < vNhv �1 < vNhv
¼ Vc , where Nhx ;Nhv 2 N. Then for

jx ¼ 1; . . . ;Nhx and jv ¼ 1; . . . ;Nhv , take T hx ¼ fKjxg
Nhx
jx¼1 and T hv ¼ fKjv g

Nhv
jv¼1 by defining each spatial element Kjx ¼ ½xjx�1; xjx �

of size hjx ¼ xjx � xjx�1, and each velocity element Kjv ¼ ½v jv�1;v jv � of size hjx ¼ v jv � v jv�1, respectively. A mesh T h ¼ fKjgNh
j¼1
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of the phase space domain X is now generated according to Kj ¼ Kjx � Kjv , where the index j is defined by the element order-
ing j ¼ ðjv � 1ÞNhx þ jx, for jx ¼ 1; . . . ;Nhx and jv ¼ 1; . . . ;Nhv , so that T h contains a total of Nh ¼ Nhx Nhv elements. The corre-
sponding piecewise basis function is then given by setting hix ðxÞ ¼ 1, for x 2 Kix , and hix ðxÞ ¼ 0, otherwise, for
ix ¼ 1; . . . ;Nhx . Similarly a basis is also constructed for viv ðvÞ; iv ¼ 1; . . . ;Nhv . Then, taking wiðx;vÞ ¼ hix ðxÞviv ðvÞ, for
i = 1, . . .,Nh, generates the approximating space D0;0ðT hÞ ¼ spanfw1; . . . ;wNhg.

The corresponding upwind function fu defined in (23) on @KinC is now written in the simpler form
f uðx;v ; t;aÞ ¼
f�ðx; v; tÞ if aðx;v ; tÞ � mKi

P 0;
fþðx; v; tÞ if aðx;v ; tÞ � mKi

< 0;

(
ð47Þ
for f	ðx;v ; tÞ ¼ lims!0	 f ððx;vÞ þ smKi
; tÞ and the outward unit normal to Kj denoted by mKi

ðx;vÞ is simply defined by (0,�1) for
v ¼ v iv�1; ð0;1Þ for v ¼ v iv ; ð1; 0Þ for x ¼ xix and (�1,0) for x ¼ xix�1.

Therefore, the corresponding lowest order UG scheme is
ð@t f ;wÞX þ
XPh

k¼1

hf u½w�;a � mkiFk
þ
X

Fk2CO

hfw;a � mkiFk
¼ �

X
Fk2CI

hfIw;a � mkiFk
:

In particular, for the piecewise constant UG approximation, fhðx;v ; tÞ ¼
PNh

j¼1b
jðtÞwjðx;vÞ to f(x,v, t), clearly one obtains

ðfhÞjKj
¼ bjðtÞ, which implies
@t

Z
Kj

fh dvdx

 !
¼ hjx hjv

_bjðtÞ; ð48Þ
and the corresponding semi-discrete UG approximation fh ¼
PNh

j¼1b
jðtÞwj is the unique function in C1ð½0; T�;D0;0ðT hÞÞ satisfy-

ing the initial condition
R

Ki
fhðx;v ;0Þ ¼

R
Ki

f0; 8i 2 f1; . . . ;Nhg and " t 2 (0,T], and
hjx hjv
_biðtÞ þ

Z
@Ki=@X

ðfhÞuðbðtÞÞa � mKi
dSþ

Z
@Ki\CO

fhðbðtÞÞa � mKi
dSþ

Z
@Ki\CI

ðfhðbðtÞÞÞIa � mKi
dS ¼ 0;

for i ¼ 1; . . . ;Nh: ð49Þ
This last identity is a linear ODE system for any given electric field E, where the integration along the interior faces @KinC in
(49) (i.e., @Ki \ @X = ;), is simply
Z

@Ki=@X
fa � mKi

dS ¼
Z xix

xix�1

Eðx; tÞðf ðx;v iv�1; tÞ � f ðx; v iv ; tÞÞdxþ
Z v iv

v iv�1

vðf ðxix ;v ; tÞ � f ðxix�1;v ; tÞÞdv ð50Þ
and the integrations along @Ki \CO and @ Ki \CI satisfy
Z
@Ki\CO

fha � mKi
dS ¼

Z
@Ki\CI

ðfhÞIa � mKi
dS ¼ 0: ð51Þ
4. Numerical results

In this section numerical results are presented for six examples chosen to test the accuracy and convergence of the pro-
posed DG method. The examples chosen are typical for testing Vlasov–Poisson algorithms (see e.g. [10]), but we have also
included some atypical, more extensive comparison to theory. Four of the examples test the linear dynamics and its associ-
ated fine structure (filamentation) in phase space, while two examine the nonlinear evolution. The linear results are pre-
sented in Section 4.1: in Section 4.1.1 the ability of the DG method to solve the advection equation, the Vlasov equation
with the electric field set to zero, is considered for both Maxwellian and Lorentzian equilibria, while in Section 4.1.2 the
method is applied to the Landau problem and numerical results are extensively compared with the theoretical results of lin-
ear Landau damping, also for both Maxwellian and Lorentzian equilibria. The nonlinear results are presented in Section 4.2:
in Section 4.2.1 nonlinear Landau damping is considered while in Section 4.2.2 the nonlinear two-stream instability problem
is computed.

For all examples, piecewise constants are used to approximate the distribution f, piecewise quadratic polynomials are
used to approximate the potential U, and time is discretized using a conservative fourth-order Runge–Kutta method. For
all but the first two linear advection examples, the NIPG penalty method is used to approximate the Poisson system, and
the linear system that results from using the NIPG method is solved using an LU-decomposition algorithm.

Throughout this section, it is assumed that the distribution function f has the form
f ðx;v ; tÞ ¼ feqðvÞ þ df ðx;v ; tÞ; ð52Þ
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and the initial and boundary conditions used in all of the examples are of the form
df ðx;v ;0Þ ¼ A cosðkxÞfeqðvÞ; ð53aÞ
df ð0;v ; tÞ ¼ df ðL;v ; tÞ; ð53bÞ
Uð0; tÞ ¼ UðL; tÞ; ð53cÞ
for (x,v, t) 2 [0,L] � [�Vc,Vc] � (0,T), where Vc > 0, L > 0, and T > 0 are given. The constant Vc is the cutoff velocity and is chosen
large enough so that the values of f are negligibly small when jvj = Vc. It follows that each example is completely determined
by specifying the governing equations along with the parameters feq(v), A, k, L, Vc, T. For both linear and nonlinear dynamics
the initial condition is denoted by f0(x,v) = f(x,v,0) = feq + df(x,v,0).

4.1. Linear results

Both the linear advection example of Section 4.1.1 with the initial condition f0 = feq + df(x,v,0), where df(x,v,0) is given by
(53a), and the Landau damping example of Section 4.1.2, governed by (13a)–(13c), require the specification of feq. For both
examples, the two choices for feq introduced in Section 2 are considered: the Maxwellian equilibrium fM of (14) and the Lor-
entz equilibrium fL of (15).

Because it is most common to consider the Maxwell equilibrium, we explicate here several reasons for considering the
Lorentz equilibrium, which to our knowledge has not been numerically tested previously in the literature.

(1) Naturally occurring plasmas are sometimes not Maxwellian but posses kappa distributions [38,46] that have power
law tails in v. The Lorentz equilibrium is in a sense an extreme case of these in that it has v�2 decay at infinity, with
the existence of the particle density but not kinetic energy. In any event, distributions with power law tails are of
physical interest and thus worth studying in their own right (see also e.g. [62,63]).

(2) Because of the slow decay in v, the effect of truncating the velocity domain is amplified and a greater velocity domain
is needed. This makes the Lorentz equilibrium a more stringent test for a numerical algorithm.

(3) The linear dynamics of Vlasov theory is dominated by phase mixing, the mechanism that underlies Landau damping
(cf. Section 4.1.2). For the advection problem, the Lorentz equilibrium gives decay of the form exp(�kt), as opposed to
the Maxwell equilibrium that gives decay of the form exp(�k2t2) (cf. Section 4.1.1), and this suggests it might be a
better test for getting Landau damping right. In fact, the reason for this exponential decay is that linear advection with
the Lorentz equilibrium shares the same analytic structure as that of the Landau damping problem (cf. Section 4.1.2),
while linear advection with the Maxwell equilibrium does not. The essence of Landau damping can be traced to the
Riemann–Lebesgue lemma [59], which states that charge density integrals of the form
lim
t!1

Z
dv gðvÞeivt ¼ 0

provided g 2 L1, i.e.
R

dv jgðvÞj <1. The rate of this temporal decay depends on the nature of the function g(v). The
underlying reason for exponential decay in both the advection problem with the Lorentz equilibrium and the Landau
damping problem with either equilibrium, is that the function g(v) for these problems is analytic in a strip in the com-
plex v-space, and the damping rate is determined by the pole closest to the real v axis. Thus, the basic mechanism of
Landau damping is tested in the simpler advection problem when f is given by (52) with df given by (53a) and feq being
the Lorentz equilibrium.
(4) With the Lorentz equilibrium one can use residue calculus to explicitly obtain expressions for the damping rates (see
Appendix A). Although for the advection problem this is also true for the Maxwellian, this is not the case for the Lan-
dau damping problem of Section 4.1.2.

4.1.1. Advection results
The advection equation,
ft þ vfx ¼ 0; ð54Þ
is a natural test for assessing Vlasov algorithms because the Poisson equation is removed from the calculation and the focus
is placed on the resolution of phase space. With a Maxwellian equilibrium this example has been treated in many works, for
example in [10,32,52,54]. In [54] four standard Vlasov solvers are compared.

After computing f, the long time behavior of the solution can be checked by comparing the computational results with the
known theoretical damping behavior due to phase mixing. To this end the net charge density qtot is given by
qtotðx; tÞ ¼ 1�
Z 1

�1
dv f ðx;v ; tÞ ¼ 1�

Z 1

�1
dv f 0ðx� vt;vÞ ¼ �A

Z 1

�1
dv cos½kðx� vtÞ�feqðvÞ; ð55Þ
where the second equality follows because the solution to (54) is given by f(x,v, t) = f0(x � vt,v), and the third upon substi-
tution of (53a). According to the Riemann-Lebesgue lemma, limt?1qtot = 0 under mild requirements on feq. Below we give
explicit forms for the decay for the Maxwell and Lorentz equilibria.
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Although it is common to consider the linear advection problem for testing numerical algorithms, it is not so well-known
that there is an intimate relationship between the solution of the advection problem and the actual Landau damping prob-
lem. In fact, there is a one-to-one correspondence between solutions of the two. In [49,50] an invertible linear integral trans-
form, a generalization of the Hilbert transform, called the G-transform, was explicitly constructed that maps (13a) into the
advection Eq. (54). Thus, given an initial condition for the advection equation, there exists an initial condition for (13a) that
transforms into the same solution. For the Lorentz equilibrium one can use residue calculus to obtain explicit expressions. In
particular, the G-transform of the Lorentz equilibrium fL of (15) is
Fig. 1.
ð500;40
G½fL� ¼
1
p

1
1þ v2 1þ 1

k2

ð1� 3v2Þ
ð1þ v2Þ2

" #
; ð56Þ
where the procedure is done mode by mode and k is the mode number. This means that a solution to the linear advection
problem with the initial condition
f0 ¼ A cosðkxÞfL ð57Þ
is equivalent to the solution of the linear Vlasov–Poisson system with the initial condition
f0 ¼ A cosðkxÞG½fL�: ð58Þ
The difference in long time decay between the advection problem and that of Landau damping can be traced to poles that
occur in the integral transform. One could use the integral transform to further test the veracity of a numerical algorithm by
comparing the solutions of the advection and Landau problems, but we will not do so here. However, given the understand-
ing provided by the integral transform, it is quite natural to examine the advection problem with initial conditions that are
meromorphic in velocity like the Lorentz equilibrium.

4.1.1.1. Linear advection with a Maxwell equilibrium. For our first example (54) is solved for feq = fM given by (14). We choose
A = 0.1, k = 0.5, L = 4p, VC = 5 and T = 40. For this particular case, it is easily shown by elementary methods that the net charge
density of (55) is given by
qtotðx; tÞ ¼ �A cosðkxÞe�k2t2=2: ð59Þ
This implies that maxxjqtotðx; tÞj ¼ 0:1e�t2=8, since k = 0.5.
To test the accuracy and convergence of the UG method, maxxjqtot(x, t)j is computed numerically and the results are plotted

in Fig. 1. The numerical results were generated using the five uniform meshes ðNhx ;Nhv Þ ¼ ð500;400Þ; ð1000;800Þ;
ð2000;1600Þ; ð4000;400Þ; ð8000;400Þ, where Nhx and Nhv denote the number of partitions of the x-axis and the v-axis,
respectively.

The first three meshes are such that hx 
 hv, whereas the fourth and fifth meshes are such that hx 
 hv/8 and hx 
 hv/16,
respectively. The motivation for using the last two meshes comes from the fact that the problem being approximated in-
volves only advection in the x-direction. Hence, it is reasonable to assume that mesh refinements in x will improve the
numerical accuracy as much as performing refinements in both x and v, provided the refinement level in v is sufficiently
small so that the error is almost entirely due to the refinement level in x. Fig. 1 clearly shows that the UG method is both
accurate and numerically convergent under mesh refinements.

Our results compare with those of [10,32,52,54] for early times where solutions are accurate, but unlike the others we do
not obtain the later time recurrence that arises from periodicity of f0(x � vt,v) in its first argument and the velocity mesh size
Linear advection with Maxwell equilibrium. Plot of log10(maxxjqtot(x, t)j) = �(log10e)t2/8 + 1 versus t: analytic solution ðsolidÞ; ðNhx ;Nhv Þ ¼
0Þ ðdotÞ; ð1000;800Þ ðdash-dotÞ; ð2000;1600Þ ðdash-dot-dotÞ; ð4000;400Þ ðshort dashÞ; ð8000;400Þ ðlong dashÞ.
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used in evaluating the integral of (55). This is because of the fineness of our mesh and because of the specific dissipative
properties of the DG method give monotonic error. With a mesh of Nhv ¼ 400 the recurrence time is
TR ¼ 2pk=Dv ¼ pNhv =ð2VcÞ 
 126.
4.1.1.2. Linear advection with a Lorentz equilibrium. In this second example, we consider the advection problem with the Lor-
entz equilibrium (15). Numerical results are given for four different values of the wavenumber k. We will revisit these cases
in Section 4.1.2, where we consider the actual Landau damping problem with the electric field not taken to be zero. Specif-
ically, here Eq. (54) is solved for feq = fL = p�1/(v2 + 1), A = 0.01, and the large value Vc = 30 for each of the wavenumbers k = 1/
8, 1/6, 1/4, and 1/2. The corresponding values for L and T for k = 1/8, 1/6, 1/4, and 1/2 are L = 16p, 12p, 8p and 4p and T = 75,
75, 50, and 50, respectively. The uniform mesh (Nx,Nv) = (1000,2000) was employed in each of the four cases. For this case, it
is easily shown using residue calculus that the charge density of (55) is given by
Fig. 2.
left) an
qtotðx; tÞ ¼ �A cosðkxÞe�kt: ð60Þ
This implies that maxxjqtot(x, t)j = 0.01e�kt.
The computed results for each of the four wavenumbers k are shown in Fig. 2 along with the exact result of (60). From the

figure it is seen that for early times the computations match the theoretical result (60). At late times the computations di-
verge and, as anticipated, it is more difficult to resolve cases with larger k, i.e. with finer spatial structure.
4.1.2. Linear Landau damping results
The next two examples test the ability of the method to reproduce results consistent with the theoretical results of linear

Landau damping. We emphasize that it is not enough to merely show exponential decay, but to believe an algorithm one
must compare the decay rates and the parametric dependence of the theoretical rates. As above, both Maxwellian and
Lorentzian equilibria are considered. For the Maxwellian equilibrium, which were previously treated in
[10,32,35,52,70,73], results are computed using four successively refined uniform meshes in order to demonstrate that
Linear advection with Lorentz equilibrium. Plot of log10(maxxjqtot(x, t)j) = �(log10e)kt + 2 versus t: k = 1/8 (top left), k = 1/6 (top right), k = 1/4 (bottom
d k = 1/2 (bottom right); analytic solution (dash), numerical solutions (solid).
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the numerical decay rates converge to the theoretical decay rate under mesh refinement. For the Lorentz equilibrium, we
will see that the UG method is robust in the sense that it produces the correct decay rates for different wavenumbers k.

As noted in Section 2, Landau showed the electric field decays exponentially in the time-asymptotic limit (for more rigor
see [45] for the linear case and the recent nonlinear results of [51], of which Ref. [36] is an early version of the present work).
More specifically, if we write the frequency as x(k) = xR(k) + ic(k), where xR(k) and c(k) are real-valued, then in the time-
asymptotic limit Ek(x, t) decays at a rate c(k) and oscillates at a frequency xR(k).

Besides the Maxwellian equilibrium of (14), the Lorentzian equilibrium fL of (15) gives rise to exponential damping of the
electric field. In this case, the decay rate c(k) for the n-th electric field mode with k = 2pn/L is given by
cðkÞ ¼ �k; ð61Þ

where c < 0 implies damping, and the corresponding frequency of the electric field oscillations satisfies
xRðkÞ ¼ 1: ð62Þ

The derivation of (61) and (62) is described in Appendix A. It is important to note that formulae (61) and (62) are explicit,
which directly results from using the Lorentz equilibrium, whereas, as noted above, the formula for c(k) and xR(k) when a
Maxwell equilibrium is used are implicitly defined [41].

4.1.2.1. Linear Landau damping with a Maxwell equilibrium. We solved the linear system (13a)–(13c) with feq ¼ fM ¼
ð2pÞ�1=2e�v2=2; A ¼ 0:01; k ¼ 0:5; L ¼ 4p; Vc ¼ 4:5 and T = 80. For this problem, the theoretical decay rate and frequency
of oscillations to the third decimal digit are respectively equal to c = �0.153 and xR = 1.415 [10]. Approximate solutions
are computed using the four uniform meshes ðNhx ;Nhv Þ ¼ ð250;400Þ; ð500;800Þ; ð1000;1600Þ and (2000,1600).

Phase-space contour plots and cross-sectional plots in v of the approximate solution fh for ðNhx ;Nhv Þ ¼ ð500;800Þ and t = 0,
t = 25, t = 50, and t = 75 are displayed in Fig. 3. These sequential plots show the increase in filamentation of fh as time elapses.

The convergence of numerical decay rates of the dominant electric field Fourier mode is demonstrated in Fig. 4. The
decay rate resulting for each mesh was computed by calculating the slope of the straight line plotted in the figure. In each
case, the line was defined by the point occurring at the peak of the third oscillation and the point occurring at the peak of
the ninth oscillation. A time step of Dt = 0.001 was used in order to ensure that the points defining each of the lines were
actual computed data points rather than points that were determined using some interpolation of the data. Under mesh
refinement, the numerical decay rate is seen to converge, up to three decimal-digit accuracy, to the theoretical decay rate
of �0.153. In all four cases, the numerical frequency is observed to correspond to the theoretical frequency up to three
decimal-digit accuracy. We also note that, upon refining the mesh, the decay of the dominant mode is sustained for longer
times before leveling off. Our results compare favorably with those of previous works [10,32,35,52,70,73], which were
obtained by various other methods. Because of the fineness of our mesh we were able to proceed to longer times than
all but [73] which achieved machine zero for small perturbations.

As with the advection results above, in contrast to all other works, we do not see recurrence. It is important to note
that recurrence is in fact an indication of numerical error. Recurrence is a general phenomenon in finite-dimensional
dynamical systems with time advancement maps that are measure preserving, one–one, onto, bicontinuous, and have a
bounded phase space. Poincaré proved recurrence for finite-dimensional Hamiltonian systems, although it can hold for
other systems as well. The Vlasov–Poisson system is an infinite-dimensional Hamiltonian system [47,48], and there is
no general recurrence theorem for such systems.

Numerical truncation procedures generally are not Hamiltonian, and indeed we have shown this to be the case for the
DG method used here. However, it has been shown that the DG method, although not Hamiltonian, does give a finite-
dimensional system that preserves phase space volume [17] and has a bounded energy. Thus our semi-discrete system
has all the ingredients for making a general estimate for the recurrence time for the distribution function in terms of
the number of degrees of freedom, like that done by Boltzmann for gas dynamics. This results is a very long time for
meshes with any significant resolution. Note, this approach differs from a result that is often quoted in numerical works
that follows for the method of Cheng and Knorr [10]; viz. for a given Fourier mode and a mesh of size Dv the advection
equation was shown to have a recurrence time for the electric field of TR ¼ 2pk=Dv . Many Vlasov algorithms see recur-
rence at a value that is close to this advection value TR. It is important to note that this does not mean that the distribution
function is recurring in phase space on this time scale. In Cheng et al. [17] we present detailed recurrence calculations for
our DG algorithm with piecewise constant and higher order polynomials.

In any event, recurrence is not physical and the same can be said for the non-recurrent flattening of the electric field
decay rate that is seen in our results with the DG algorithm at late times. The lack of recurrence in our results is due to
both the very fine mesh size as well as the dissipative nature of DG algorithms, which is monotonic in nature. However,
from Fig. 4 (and also Fig. 5 below) we would argue that DG can do a good job.

4.1.2.2. Linear Landau damping with a Lorentz equilibrium. The ability of the UPG method to achieve accurate damping results
across different wavenumbers is now investigated. As noted above, the Lorentz equilibrium is used in this example because
explicit formula for the electric field damping rates and the frequencies of the damped oscillations are easily obtained (see
Appendix A). Moreover, this example also tests the ability of the method to produce accurate results for an equilibrium that
has a much heavier tail in v than does the Maxwell equilibrium. The heavy (algebraic) tail of the Lorentz equilibrium leads to
a faster rate of filamentation because there are more resonant electrons than for the Maxwell equilibrium.



Fig. 3. Linear Landau damping with Maxwell equilibrium. contour plots (left) and cross-sectional plots (right), x = 2p, for df at t = 0, t = 25, t = 50, t = 75
(descending order).
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Fig. 4. Linear Landau damping with Maxwell equilibrium. Time decay plots of fundamental mode (with arbitrary ordinate origin) under mesh refinement:
ðNhx ;Nhv Þ ¼ ð250;200Þ ðtop leftÞ; ð500;400Þ ðtop rightÞ; ð1000;800Þ ðbottom leftÞ and (2000,1600) (bottom right). The numerical decay rate converges to
the theoretical value of �0.153 to within three decimal-digit accuracy; similarly, the numerical oscillation frequency agrees with the theoretical frequency
of xR = 1.415 to within three decimal digits.
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The linear system (13a)–(13c) is solved with feq = fL = p�1/(v2 + 1), A = 0.01, and Vc = 30. for each of the wavenumbers k = 1/
8, 1/6, 1/4, and 1/2. Note, Vc needs to be large because of the algebraic tail of fL. The corresponding values for L and T for k = 1/
8, 1/6, 1/4, and 1/2, are L = 16p, 12p, 8p and 4p and T = 75, 75, 50, and 50, respectively. Uniform meshes were employed in all
four cases, where in each case (Nx,Nv) = (1000,2000).

In Fig. 5, log plots of qtot for the four cases are given. The observed damping for k = 1/2 lasts for a shorter time duration
than does the damping for the other three wavenumbers, even though the mesh for k = 1/2 has the finest resolution in x. This
result is due to the fact that the filamentation in the velocity direction develops more rapidly than it does in the other three
cases. From (61), obtained in Appendix A, it follows that for a given wavenumber k the fundamental mode of the electric field
damps exponentially in time at a rate equal to c(k) = �k and the frequency for all of the damped oscillations is x(k) = 1.
Therefore, the theoretical damping rates corresponding to k = 1/8, 1/6, 1/4, and 1/2 are c(k) = �1/8, �1/6, �1/4, and �1/2.
In all of the four cases shown in Fig. 5, the numerical damping rates and frequencies of oscillation are equal to the theoretical
values up to the first two decimal digits.

4.2. Nonlinear results

Two nonlinear calculations are performed, an example of strong nonlinear Landau damping and a version of the two-
stream instability that we examine in greater detail. In the former case, in addition to early time damping, we expect to
see motions on the bounce time scale due to particle trapping, while in the latter we expect to see trapping and an asymp-
totic approach to a BGK state.

4.2.1. Nonlinear Landau damping
Following [10,25,30,32,40,52,70,73] we consider an initial condition near a Maxwellian and of the form given by (52) and

(53a)–(53c) with feq ¼ fM ¼ ð2pÞ�1=2e�v2=2; A ¼ 0:5; k ¼ 0:5; L ¼ 4p; Vc ¼ 5:0 and a run time of T = 120. Unlike the case



Fig. 5. Linear Landau damping with Lorentz equilibrium. Time decay plots of fundamental modes (with arbitrary ordinate origin): k = 1/8 (top left), k = 1/6
(top right), k = 1/4 (bottom left) and k = 1/2 (bottom right).
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considered in Section 4.1.2 we evolve under the full nonlinear Vlasov equation. Solutions are computed using a uniform
mesh with ðNhx ;Nhv Þ ¼ ð1000;750Þ.

Because A has been increased to 0.5, higher modes are excited at very early times and the damping rate significantly ex-
ceeds the linear rate of c = �0.153. This is because energy leaves the first mode as the higher modes get excited; i.e., in addi-
tion to the phase mixing process there is an energy transfer process caused by the nonlinear interaction of the modes. Fig. 6
shows the amplitudes of the first four modes as a function of time, with a form similar to previous calculations. These plots
are obtained from our mesh data by using the following ‘log Fourier Mode’ function:
log FMkðtÞ ¼ log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jEs;kðtÞj2 þ jEc;kðtÞj2

q
=L

� �
; ð63Þ
with
Es;kðtÞ :¼
Z L

0
dxEðx; tÞ sin

2pkx
L

� �
ð64Þ
and
Ec;kðtÞ :¼
Z L

0
dxEðx; tÞ cos

2pkx
L

� �
; ð65Þ
where k is the mode number sought. From Fig. 6 it is seen that mode-one reaches its minimum value at around t 
 15 and
then all modes grow until they reach their maxima at t 
 40, consistent with previous calculations. Using the maximum
amplitude of mode-one, the bounce time is calculated to be TB 
 20 and this is also in agreement with previous results.

Examination of Fig. 7 reveals that we obtain a damping rate for the first mode of about c = �0.287, a value consistent with
the �0.281 obtained by Cheng and Knorr [10] and �0.243 by Zaki et al. [70], given the different ways authors have used to
make this kind of fit. Also, given that we have a finer mesh, some deviation could be due to our more precise coupling to the



Fig. 6. Nonlinear Landau damping with Maxwell equilibrium. Amplitudes of the first four modes versus time. Mesh size (Nx,Nv) = (1000,750).
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higher modes. Examination of Fig. 8 shows there is significant entropy [(11) with C ¼ �f ln f )] dissipation at short times, as
also seen by [32], and this introduces some error. Also note, we have run to T = 120, which is significantly longer than pre-
vious calculations and a small decay in all four of the amplitudes is seen. This could be due to transfer to higher modes, cas-
cading, or due to dissipation in the algorithm. Over the full length of the run the total energy H of (10) is conserved to within
a few percent, and in the later part of the run entropy is well conserved. This is improved in the next section, where we treat
the two-stream instability, by decreasing the mesh size.

In Fig. 9 we plot the spatial average of the distribution function. Like other authors, we obtain early plateau formation in
the vicinity of the phase velocity of the wave, seen in panel (b), which broadens as the higher order modes are excited. At
around t = 40, approximately the time of the first bounce maximum, significant smoothing takes place and the system settles
into a nearly constant average state with a persistent electron hole. The smoothing at t 
 40 can also be seen in the results of
[10,32]. Finally, we note the presence a small periodic dimpling behavior at the maximum that persists for late times.

4.2.2. Nonlinear two-stream instability
In this subsection, we numerically study the long-time nonlinear evolution of the two-stream instability, a standard

example that has been used for demonstrating the efficacy of a variety of numerical algorithms [10,28,35,40,52,54,70]. Like
these previous calculations, we consider the equilibrium state
fTSðvÞ ¼
1ffiffiffiffiffiffiffi
2p
p v2e�v2=2 ð66Þ



Fig. 7. Nonlinear Landau damping with Maxwell equilibrium. Initial damping of dominant mode followed by growth due to particle trapping.

Fig. 8. Nonlinear Landau damping with Maxwell equilibrium. The total energy H of (10), kinetic plus electrostatic, and entropy, (11) with C ¼ �f ln f , versus
time.
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and apply our algorithm to the nonlinear system (12a)–(12c) with data of the form given by (52) and (53a)–(53c). We choose
parameters values to be A = 0.05, k = 0.5, L = 4p, Vc = 5, and T = 100, a uniform mesh defined by (Nx,Nv) = (1800,1400), and a
time step Dt = 0.00125.

4.2.2.1. Qualitative behavior. Figs. 10 and 11 show 3D and 2D contour plots of the distribution function f in phase space at
different instances of time. The initial data consists of two symmetric, counter-streaming, warm beams with the small sinu-
soidal perturbation superimposed, as described above. We obtain the qualitative behavior expected: the linear two-stream
instability grows exponentially until nonlinearity becomes important and trapping occurs, with an eventual long time
asymptotic Bernstein–Greene–Kruskal (BGK) state [8] with an apparent electron hole-like structure (cf. e.g. [58]). As the non-
linear system evolves, linear modes grow and saturate as shown in Fig. 12, the phase space hole forms as a portion of the
electron distribution becomes trapped and exhibits filamentation. Over time, the sharp contour variation associated with fil-
amentation is smoothed out, a consequence of nonlinearity and the numerical dissipation of the UPG method. (We note, here
for aesthetic reasons some smoothing was also done by the plotting routine.) Our numerical results are indicative of a very
stable computational scheme. This is partly due to the fact that our DG method is monotone and mass conservative. The par-
ticle number error accumulation in time is due to the nonlinear coupling.

4.2.2.2. Early growth. As noted above, Fig. 12 shows the time evolution of the first four modes, which have wavenumber val-
ues k = 0.5, k = 1, k = 1.5, and k = 2, from t = 0 to t = T = 100. (Recall, our domain is of size 4p.) At early times, 0 6 t < 20, the
behavior illustrated in Fig. 12 is consistent with the results of previous authors where the initialized mode-one with k = 0.5



Fig. 9. Nonlinear Landau damping with Maxwell equilibrium. Spatial average of the distribution function at the times indicated.
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dominates the other modes that are not initially excited. All modes reach a maximum at t 
 18 with growth rates on the
order of a couple of tenths of xp which is typical of linear theory for this problem. During early times, noise in the system
and the growth of mode-one excites the other modes as was the case for the nonlinear Landau damping of Section 4.2.1. A
comparison was made in the calculations of [28] using results from [35], but we give some further details here.



Fig. 10. Nonlinear two-stream instability. 3D plots of the solution f at t = 0, t = 20, t = 40, t = 60, t = 80 and t = 100.
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The plasma dispersion function from Vlasov linear theory is given by
� ¼ 1� 1

k2

Z 1

�1
f 00ðvÞ

dv
v �x=k

; ð67Þ



Fig. 11. Nonlinear two-stream instability. Contour plots of the solution f at t = 0, t = 20, t = 40, t = 60, t = 80 and t = 100.
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where x will be off the real axis as is known for the two-stream instability. We evaluate this � with the two-stream equi-
librium of (66) in order to obtain the linear growth rates. In Appendix A we show that � can be rewritten in the form



Fig. 12.
right).
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�ðz; kÞ ¼ 1� 1

k2 ½1� 2z2 þ 2ZðzÞðz� z3Þ�; ð68Þ
where z ¼ x=ðk
ffiffiffi
2
p
Þ and Z is the usual plasma dispersion function as defined in [33]. Fig. 13 is a plot of the growth rate ob-

tained from � = 0 adapted to our domain with L = 4p (cf. [35] Fig. 3) confirming that our early growth is about right.
Nonlinear two-stream instability. Time series plots of the first four modes: k = 1/2 (top left),k = 1 (top right),k = 3/2 (bottom left), and k = 2 (bottom

Fig. 13. Plot of growth rate c versus k for the equilibrium distribution function of (66).



Fig. 14. Nonlinear two-stream instability. Temporal evolution of the total particle number N (top left), momentum P (top right), enstrophy (middle left),
and kinetic energy (middle right), electrostatic energy (bottom left), and the total energy H (bottom right). See Section 2 for definitions of these quantities.
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4.2.2.3. Conservation properties. Fig. 14 shows plots of the invariants of Section 2 as functions of time, while Fig. 15 depicts the
relative error of the total energy, (H � H0)/H0, and similarly the enstrophy. The top left panel of Fig. 14 shows that the total



Fig. 15. Nonlinear two-stream instability. Relative error of the enstrophy (left) and the total energy H (right).
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particle number is conserved quite well, with an error no larger than 0.01% over the full 100 units of time of our simulations.
Actually, the DG discretization and Runge–Kutta (RK) method used for time advancement perfectly conserves this quantity
for the transport equation. However the nonlinear iteration generates a monotone in time error for the total particle number
of order of 10�4 in 100 time units. The top right panel of Fig. 14 shows the evolution of the total momentum, P. This quantity
is exactly conserved because the DG method cannot break symmetry, and the same is true for the time advancement algo-
rithm. In fact the method perfectly conserves all odd velocity moments of f. The middle left panel of Fig. 14 depicts the evo-
lution of the enstrophy Casimir invariant,

R
dxdv f 2, a quantity that appears to be seldom-monitored in Vlasov codes ([32]

being an exception). From the inset of Fig. 15, it is seen to be conserved to within about 10%, which we suspect is compar-
atively good, and can be considerably improved by refinement and an increase in polynomial order. Conservation of this
quantity arises because the solution of the Vlasov equation is a rearrangement, a property that we discuss below in more
detail. It is violated because of small scale error and the diffusive nature of numerical algorithms. Note, like total particle
number N, the error in the enstrophy is monotonic in time. The middle right and bottom left panels of Fig. 14 show the evo-
lution and error of the kinetic and electrostatic energies (6) and (7), the first and second terms of (10), respectively. Individ-
ually these quantities are not conserved by the Vlasov equation, as is clearly evident from the figures, but their sum, H,
shown in the bottom left panel, is conserved with a relative error less than 4% over the entire course of the run. The oscil-
lations in the kinetic and electrostatic energies, indicative of the trapping process, cancel upon addition and give an error that
increases monotonically in time. In Fig. 15 the relative error of the enstrophy and total energy are depicted. In other algo-
rithms the error in H is oscillatory in nature, typically with small temporal mean. Even though this mean error could be
small, it is important to realize that the oscillations amount, in a sense, to successively reinitializing the code, and the cumu-
lative error of the solution for such a process is hard to assess.

In addition to the conserved quantities of (8)–(11), the Vlasov equation possesses topological conservation. As mentioned
above, it is well-known that the solution of the Vlasov equation is a rearrangement [34]. This means that the solution at any
time t can be obtained formally from its initial value as follows:
f ðx;v ; tÞ ¼ f0ðx0ðx; v; tÞ;v0ðx;v ; tÞÞ ¼ f0 � z0; ð69Þ
where z0 = (x0(x,v, t),v0(x,v, t)) is obtained upon inverting the solution of the characteristic equations z = z(z0, t). Because the
characteristic equations have Hamiltonian form they preserve volume (here area), and
@ðx0;v0Þ
@ðx;vÞ ¼ 1: ð70Þ
A consequence of this is the family of Casimir invariants of (11), whose invariance follows directly upon effecting the coor-
dinate change z0 M z and making use of (69) and (70):
Z

dx0

Z
dv0Cðf0ðx0; v0Þ ¼

Z
dx
Z

dvCðf ðx;v ; tÞ; ð71Þ
where we have suppressed limits of integration.
Under continuity assumptions, the level sets of f0 are topologically equivalent to the composition f0 � z0 = f. This is what is

meant by topological conservation. It follows that the number and nature of extrema, the values of f at these extrema, and
the kinds of separatrices connecting saddle points must correspond to those of f0. In addition, although not a topological
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property, the area between any two contours of f must also be conserved, a consequence of the area preservation property of
the characteristics. Since DG is a weak formulation with lack of continuity, the extent to which level sets are actually topo-
logically conserved remains to be seen. Casimir invariants such as enstrophy and entropy may be conserved well and be con-
sistent with rearrangement inequalities such as Jensen’s inequality without the continuity assumption.

Because the initial condition has the form f0(x,v) = fTS(v)[1 + 0.05cos(x/2)], the initial phase space has nearly imperceptible
initial ‘tears’ in the first panels of Figs. 10 and 11, that should be consistent with asymptotic state at t = T = 100. Extrema of
f0(x,v) occur at points (x,v): (x,0), for all x 2 f0;4pg; ð0;	

ffiffiffi
2
p
Þ, and ð2p;	

ffiffiffi
2
p
Þ. Thus there is a trough along the line v = 0. The

points ð0;	
ffiffiffi
2
p
Þ ¼ ð4p;	

ffiffiffi
2
p
Þ atop the beams are maxima straddled by thin separatrices entering and emerging from the sad-

dle points located at ð2p;	
ffiffiffi
2
p
Þ. The following extremal values of f0 remain fixed in time under Vlasov dynamics, although

their locations can change: f0ð0;0Þ ¼ 0; f 0ð2p;0Þ ¼ 0; f 0ð0;	
ffiffiffi
2
p
Þ ¼ 0:308, and f0ð2p;	

ffiffiffi
2
p
Þ ¼ 0:279. A glance at Fig. 10

shows some degradation of the value of f atop the ridge-like structures, while the vanishing value of f at the points (0,0)
and (2p,0) is rigorously maintained. A measure of error in an algorithm is the extent to which it fills in the hole, i.e. returns
values of f0(2p,0) – 0.

In our simulations the value of f remains zero at the minimum (2p,0) and it remains zero to high accuracy at (0,0). The
values of f at the extrema and the associated separatrices atop the beams are never very discernible, their existence due to
only a few percent in the variation of f, and are washed out by numerical dissipation as the contours of the distribution func-
tion wrap around and ‘trap particles’ over the course of the simulation. However, the trough at v = 0 is structurally unstable
and separatrices emerge form here and connect the saddle point at v = 0 and x = 0 = 4p that straddles the minimum at (2p,0),
the center of the electron hole. The eventual boundaries that delineate the trapped and untrapped particle populations, as
the potential saturates into what appears to be a final BGK-like state, is what we discuss next.

4.2.2.4. BGK saturation. Examination of Figs. 10–12 shows the initial linear growth phase, followed by a particle trapping
phase, and eventually a strong indication of a saturated state with clean contours of f, resulting at least in part from the small
scale averaging inherent in any algorithm. It is generally believed that this evolution saturates, in some weak sense, to a BGK
mode, although no proof exists. To test this belief we check to see if the contours of f are aligned with contours of the particle
energy, E ¼ v2=2�Uðx; tÞ, which is well-known to be the case for an equilibrium state of the Vlasov equation (e.g. [8]).

To this end we plot f100ðEðx;vÞÞ :¼ f ðx;v;100Þ, where in Eðx; vÞ ¼ v2=2�Uðx;100Þ, the particle energy at t = 100. (Note, we
suppress the time variable.) Fig. 16 clearly indicates that a saturated BGK state has been achieved. Here, in the left panel, we
have plotted f versus Eðx;vÞ, at t = 100, for all 9 million pairs (x,v) of the uniformly distributed mesh over our phase space. Ob-
serve that to within the thickness of the line, f100 appears as a graph over Eðx;vÞ and that this is true even for large values of E,
where f100 > 0 is maintained. Green and red dots correspond to positive and negative values of the velocity, respectively, and
there does not seem to be any systematic directional bias. Because the computation was done for piecewise constant element
functions, it is known that DG ensures f(x,v, t) remains positive for all times a nd this is then the case for f100. The right panel of
Fig. 16 is a plot of the electrostatic potential as a function of position for several instances in time as indicated in the figure. The
curve labeled by t = 100 is taken to be the saturated electrostatic potential that was used in the calculation of f100.

In Figs. 18 and 19 high resolution details of f100 are depicted. In Fig. 18(a) a cusp is seen at the trapping boundary that
occurs at E ¼ 0. A magnified view of this is shown in Fig. 18(b). In the course of the evolution the presence of the electrostatic
force produces a trapped particle population with E < 0. It is conceivable that trapping, like scooping ice cream, is a non-ana-
lytic process and that this cusp represents something real about the mathematical nature of the dynamics. However, it also
Fig. 16. Nonlinear two-stream instability. Plot of the distribution function at time t = 100, f100, as a function of the particle energy E ¼ v2=2�Uðx; t ¼ 100Þ.
Green dots correspond to positive velocities and red dots to negative velocities, v (left). Right panel depicts the potential U(x, t) at the times indicated.
U(x, t = 100) was used in E for the plot of f100 (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)



Fig. 17. Nonlinear two-stream instability. Model distribution function ffit of Eq. (72) with UM ¼ 1:06; E� ¼ 1:59; b ¼ 1, and a = 0.1148 (solid blue) compared
to code results at t = 100 (red dots). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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may be attributed to the choice of the numerical scheme, yet discontinuities have previously been proposed at trapping
boundaries: in [58] a discontinuity is used in making electron hole models and in [29] two kinds of discontinuities are pro-
posed for adiabatic and sudden trapping. None of these discontinuities match the cusp like feature that we observe, but the
traveling wave state treated in [29] is not the same as that reached by our simulation and it is possible that an analysis sim-
ilar to that of [29] could produce a cusp. Further studies of this effect are currently being investigated. Figs. 18(c) and (d)
examine f100 near the minimum value of E. Note the clear steepening of f100 as it approaches its minimum value. It is possible
that there is a universal nature to both this steepening and to the cusp at the trapping boundary, but we leave an investi-
gation of this to future work. Fig. 18(e) and (f) examine f100 near its maximum value. The spread here as well as the other
panels of Fig. 18 give a sense of how close the system has relaxed to an equilibrium state.

Fig. 19 examines the details of f100 for higher values of E. In Fig. 19(b) a splitting is seen to occur at around E ¼ 1:3. In
Fig. 19(c) and (d) we see that this small splitting persists to large values of E. It is interesting to note that because the red
and green dots are mixed within each band, the splitting is not an effect of velocity direction. The splitting is within the res-
olution of the code and is believed to be a real effect, one that seems to indicate that complete saturation has not occurred.

The above tests provide strong indication that the code has relaxed to near a BGK state. As further evidence we test to see
if the charge density associated with f100 is consistent with that for a final BGK state. To this end we first observe that f100 can
be fit reasonably well by a model distribution function of the following form:
ffit ¼ aðE þUMÞðE þ E�Þe�bE : ð72Þ
Here UM is the maximum value of U, and because E ¼ v2=2�U we see �UM is the smallest possible value of E. This and
positivity of f imply E� > UM . Obviously (72) does not account for the fine features discussed above, but it will be sufficient
for our purpose.

The quantities a; UM ; E�, and b are fitting parameters that can be matched to the code output. We obtain a rough idea of
the degree of self-consistency, i.e. the degree to which Eq. (72) produces the correct electrostatic potential when substituted
into Poisson’s equation, by using the following values extracted from the code output: UM = 1.06 and E� ¼ 1:59. For conve-
nience we choose b = 1. More significant figures in a, viz. a = 0.1148, are required to ensure that the total net charge is zero. In
Fig. 17 we see these choices provide a pretty good fit to the data. However, insufficient charge near the maximum is spread to
higher values of E. In a forthcoming publication we will examine this sort of modeling in much greater detail.

We note, there is a relationship between EM , the value at which f obtains its maximum, and the other parameters. That is,
f 0ðEMÞ ¼ 0 implies
EM ¼
2� bðUM þ E�Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ b2ðUM � E�Þ2

q
2b

ð73Þ
or
E� ¼ UM � bEMUM þ 2EM � bE2
M

bEM þ bUM � 1
; ð74Þ
where the latter is useful when EM is extracted from data. In fact, the value of E� ¼ 1:59 used above follows from EM ¼ 0:71
(cf. Fig. 18).



Fig. 18. Nonlinear two-stream instability. Fine scale details of the distribution function f100ðEÞ, depicting a cusp formation near the trapping boundary at
E ¼ 0 ðtop left and rightÞ. Near the minimum value of E; f100 is observed to greatly steepen (middle left and right). The maximum of f100 is achieved at about
E ¼ 0:71 ðbottom left and rightÞ. In all plots red dots correspond to negative velocities and green dots to positive velocities, v. No asymmetry in the sign of v
is evident. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 19. Nonlinear two-stream instability. Plot of f100ðEÞ near E ¼ 1:3 indicating mild splitting (top left), with stronger splitting seen at E 
 1:5 (top right).
The splitting continues to larger values of E (bottom left and right). Red dots correspond to negative velocities and green dots to positive velocities v, with no
evident asymmetry in the sign of v. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Given ffit, the charge density is given by
qfitðUÞ ¼ 1�
Z 1

�1
dv f fit ¼ 1�

Z 1

�U

dE f fitðEÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE þUÞ

p ; ð75Þ
where in the second equality the formula E ¼ v2=2�U is used to change the integration variable from v to E. With the choice
(72) this quantity can be explicitly integrated to give
qfit ¼ 1�
ffiffiffiffiffiffiffi
2p
p

a

b5=2

3
4
� b2ðUM �UÞðU� E�Þ þ b

2
ðUM � 2Uþ E�Þ

� 	
ebU: ð76Þ
Defining a pseudopotential V by @V=@U ¼ qfit, and integrating Poisson’s equation yields
E2

2
þ VðUÞ ¼ V0; ð77Þ
where V0 is a constant and
VðUÞ ¼ U�
ffiffiffiffiffiffiffi
2p
p

a

b7=2

15
4
� b2ðUM �UÞðU� E�Þ þ 3

2
bðUM � 2Uþ E�Þ

� 	
ebU ð78Þ



Fig. 20. Nonlinear two-stream instability. Plot of E2 versus U for the code output at the times indicated. Note, E2 is a graph over U even for the unsaturated
states, i.e. times t 6 100.

Fig. 21. Nonlinear two-stream instability. Plot of E2 versus U as given by (77) with (78) for the model ffit of (72) with the parameters of Fig. 12, and code
output (red), both at time t = 100. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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is the expression for the pseudopotential. Here E2/2 acts as a pseudo kinetic energy. Thus we can interpret the BGK state by
comparison to a particle dropped in the potential V at zero kinetic energy. Such a fictitious particle returns to a state of zero
kinetic energy as x traverses the spatial domain, which must be the case if there is zero net charge.

In Fig. 20, E2 is plotted against U for our simulation data. In light of (77) and (78), we expect E2 to be a graph over U at
time t = 100, and from the figure this indeed appears to be the case. Also, since at t = 0, U00 = Acos(x/2), it is easy to see that
E2(x, t = 0)/2 = AU(x, t = 0) �U(x, t = 0)2/8. This follows from the choice of ground for U and the absence of net charge which
gives via Gauss’ theorem E(x = 4p) = E(x = 0). With our boundary conditions E(x = 0) = 0. Thus we expect the parabolic curve
in Fig. 20 labeled by t = 0 with maximum U occurring UM = 8A = 8 � 0.05 = 0.40. However, it is remarkable that at interme-
diate times E2 is also a graph over U. This can be shown to be true if U maintains symmetry about x = 2p. This suggests that
U can serve as a good spatial coordinate, an idea we will discuss further in a forthcoming publication.

The data of Fig. 20 can be compared to the model of Eq. (77) with (78). Choosing V0 so that E2(U = 0) = 0 and the param-
eter values of Fig. 17, yields the plot of Fig. 21. Here we see a reasonable fit to the data at t = 100. Note, E2(UM) 
 0 and the
maximum value of E2 is a close fit. We note, a certain level of accuracy is needed in the parameters because E2 is a sensitive
function of U. We have not optimized the fit, but the result of Fig. 20 is roughly what one might expect for the expansion of
f100 with only three terms of a Laguerre series, and thus gives a fair indication of self-consistency which was our goal. As
noted above, we will revisit this again in great detail in a future publication.
5. Conclusions

In this paper we have demonstrated the viability of the DG method with upwinding for solving the Vlasov–Poisson sys-
tem. The method was described in detail for general polynomial bases of elements. Several examples were computed to
demonstrate the utility of the method using a piecewise uniform basis. A convergence study was performed for the simple
advection problem, indicating the degree to which filamentation can be resolved, and high resolution computations of the
linearized Vlasov–Poisson system were also performed. For linearization about a Maxwellian equilibrium, computation re-
sults were seen to compare very well with theoretical calculations of Landau damping. Computations for Lorentzian equi-
libria were also presented and the wave number dependence of the Landau damping rate was verified, apparently for the
first time in a simulation. The problems of nonlinear Landau damping and the symmetric two-stream instability were then
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considered, and results were compared to previous calculations. In both cases, constants of motion were monitored and
the error was seen to be monotonic, due to nonlinear coupling. Also, reasons for the lack of numerical error in the form
of recurrence in our results were discussed. High resolution features of the distribution function were displayed for the
long time BGK state that was reached in the two-stream calculations. Comparisons between theory and code results
were made, particularly for the end BGK state, in an attempt to provide a high standard for truth in numerical code
work.

There are many future directions suggested by this work, some of which are ongoing. In a couple of upcoming pub-
lications [16,17] the authors will report on computations using higher order polynomial bases with an improved tem-
poral integrator and a limiter that maintains positivity of the distribution function, as well as a study of numerical
recurrence for these schemes. Indeed, [17] contains a thorough study of dependence of recurrence times and recurrence
amplitudes on the mesh size in x, v and the time step Dt, for Vlasov linear advection, as well as dependence on the
order, type, and choice of basis functions for the DG scheme. It is quite remarkable, that for the lowest order polynomial
space of piecewise constant functions, one can prove that recurrence occurs, but the recurrence amplitude will decay,
thereby suggesting value in choosing lower order functions. This fact significantly improves the performance criteria
originally developed in [10].

As noted in the Introduction, the DG method can be run easily on nonuniform meshes, and in work not reported here we
have seen this to be the case. This is a first step toward producing an adaptive code. Similarly, parallel implementation
awaits. There are many physical applications within reach, such as the treatment of a plasma diode which requires physical
boundary conditions and the inclusion of various collision operators of relevance to plasma dynamics. Since the Vlasov–Pois-
son system serves as a test bed for more sophisticated kinetic theories, it is our opinion that the DG method proposed here is
an attractive alternative for many plasma physics computations.
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Appendix A. Dispersion relations

Here we analyze the dispersion relations for the Lorentzian and two-stream equilibria given by (15) and (66), respec-
tively. With the assumption that f(x,v, t) = feq(v) + df(x,v, t) and df(x,v, t)  exp(ikx � ixt) and the scaling of variables described
in Section 2, the plasma ‘dispersion relation’ is given by
�ðk;xÞ ¼ 1� 1

k2

Z 1

�1

f 0eqðvÞ
ðv �x=kÞ dv; ðA:1Þ
where k is assumed to be real and positive and for bounded systems k = 2pn/L with n an integer. Landau damping arises upon
analytically continuing this expression into the lower half x-plane and thus deforming the contour of integration [41]. For
integration along the real axis, stable and unstable eigenmodes (and embedded modes if they exist) satisfy
�ðk;xÞ ¼ 0; ðA:2Þ
and it is this quantity we wish to investigate for both discrete modes and Landau ‘modes’, the latter obtained by analytic
continuation into the lower half x-plane. In the latter case, the solution x(k) of (A.2) characterizes the asymptotic-time
behavior of mode Ek(x, t) of the electric field. Specifically, if x = xR + ic, where xR and c are real-valued, then c < 0 is the
time-asymptotic rate of decay of the mode Ek(x, t) and xR is the frequency of oscillation.

For the Lorentz equilibrium distribution function of (15),
f 0eqðvÞ ¼ �
2
p

v
ðv2 þ 1Þ : ðA:3Þ
Upon defining u = x/k and substituting (A.3) into (A.1), we obtain
�ðk; kuÞ ¼ 1þ 2

pk2

Z 1

�1

v
ðv2 þ 1Þ2ðv � uÞ

dv ; ðA:4Þ
which expresses � as a function u and k. Evaluation of this integral is a straightforward application of Cauchy’s theorem.
Assuming u is in the upper half plane, poles exist at v = i and v = u, with corresponding residues of the integrand being
Ri = i/[4(u � i)2] and Ru = u/(u2 + 1)2. Summing over the residues gives the dispersion function
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�ðk; kuÞ ¼ 1� 1

k2ðuþ iÞ2
: ðA:5Þ
Upon setting � = 0, since x = ku, we obtain
x ¼ 	1� ik ¼ xR þ ic; ðA:6Þ
which demonstrates, contrary to our assumption, that there are no discrete modes in the upper half u-plane. This is consis-
tent with the well-known result that equilibrium distribution functions that are monotonic in v2 possess no discrete growing
or damped modes. However, continuing (A.5) into the lower half plane gives Landau damping with c(k) = �k and jxR(k)j = 1
for the time asymptotic behavior.

For the two-stream equilibrium of (66), (A.1) gives rise to instability, i.e., for this case there is in fact a root with u in the
upper half plane. For computational reasons it is convenient to write � in terms of the plasma Z-function which is related to
both the Hilbert transform and the error function (see e.g. [33]). Upon inserting (66) and performing some manipulation,
(A.1) can be written as
� ¼ 1� 2

k2 ½J1ðzÞ þ J2ðzÞ�; ðA:7Þ
where
J1ðzÞ ¼
1ffiffiffiffi
p
p

Z 1

�1
e�w2 wdw

w� z
; J2ðzÞ ¼

1ffiffiffiffi
p
p

Z 1

�1
e�w2 w3 dw

w� z
; ðA:8Þ
and z ¼ u=
ffiffiffi
2
p

. With the standard definition of the plasma Z-function,
ZðzÞ ¼ 1ffiffiffiffi
p
p

Z 1

�1
e�w2 dw

w� z
¼ 2ie�z2

Z iz

�1
e�t2

dt ðA:9Þ
where in the first expression IðzÞ > 0 and the value of Z for IðzÞ < 0 is obtained by analytic continuation, while the second
expression is valid for all complex z. The second expression is desirable for computations. Also, sometimes it is convenient to
use the derivative formula
Z0 ¼ �2ð1þ zZÞ; ðA:10Þ
which is valid for all z. After some more-or-less standard manipulations and making use of (A.10), we obtain
� ¼ 1� 2

k2 ½1� 2z2 þ 2zZðzÞð1� z2Þ�: ðA:11Þ
We numerically evaluated this expression and searched for its roots to obtain Fig. 13. Because our system has the size L = 4p,
we write �(k,x) with k replaced by k/2.
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