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The noncanonical Hamiltonian formulation of magnetohydrodynamics (MHD) is used to construct

variational principles for continuously symmetric equilibrium configurations of magnetized

plasma, including flow. In particular, helical symmetry is considered, and results on axial and

translational symmetries are retrieved as special cases of the helical configurations. The symmetry

condition, which allows the description in terms of a magnetic flux function, is exploited to deduce

a symmetric form of the noncanonical Poisson bracket of MHD. Casimir invariants are then

obtained directly from the Poisson bracket. Equilibria are obtained from an energy-Casimir

principle and reduced forms of this variational principle are obtained by the elimination of

algebraic constraints. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4714761]

I. INTRODUCTION

Ideal magnetohydrodynamics (MHD) has served as a

most important tool for assessing the design and interpreta-

tion of laboratory plasma experiments and for understanding

phenomena in naturally occurring plasmas (e.g., Refs. 1 and

2). Variational principles for equilibria, or as it is sometimes

argued for preferred states, for a wide variety of geometrical

configurations have been discovered over a period of many

years (e.g., Refs. 3–11). In addition, dW energy princi-

ples,12,13 which provide necessary and sufficient conditions

for stability of static equilibria, and other energy-like princi-

ples, which provide only sufficient conditions for stability in

terms of the Lagrangian displacement variable14 or in terms

of purely Eulerian quantities,7,10,11 have been discovered and

effectively utilized.

All of the above variational principles for equilibria,

which were for the most part discovered in an ad hoc man-

ner, and all of the energy principles, both Lagrangian and

Eulerian, are a consequence of the fact that ideal MHD is a

Hamiltonian field theory. That MHD is Hamiltonian was first

shown in terms of the Lagrangian variable description in

Ref. 15 and in terms of the Eulerian variable description in

Refs. 16–18 where the noncanonical Poisson bracket was

introduced. In the Hamiltonian context, it is seen that exis-

tence of variational principles for equilibrium states is

merely the result of the general fact that equilibria are

extremal points of Hamiltonian functionals. Similarly, the

existence of the dW energy principle for static equilibria is

an infinite-dimensional version of Lagrange’s stability condi-

tion of mechanics (e.g., Refs. 19 and 20), a consequence of

which is that the operator appearing in dW is formally self-

adjoint because it is a second variation and no further proof

is required. Also, all of the sufficient conditions for stability

of equilibria are infinite-dimensional versions of Dirichlet’s

stability condition20–22 and these can be directly derived

from the Hamiltonian formulation. (For discussion of these

ideas in the ideal fluid context, see Ref. 22.)

The purpose of the present paper and its companion23 is

to continue with the approach of Ref. 24, which starts from

the noncanonical Poisson bracket of Refs. 16–18 and then

reduces to obtain the Hamiltonian formulations for transla-

tional and rotational symmetry. Here, we generalize and

obtain an inclusive Hamiltonian description for any metric

symmetry. From the noncanonical Poisson bracket, we

derive large families of Casimir invariants that are then used

to obtain general variational principles for equilibria, includ-

ing equilibria with helical symmetry and flow. This prepares

the way for our companion paper,23 where we consider

stability via several approaches.

Specifically, in Sec. II we briefly review the Hamilto-

nian description of MHD as given in Refs. 16–18. This is fol-

lowed in Sec. III by the symmetry reduction, which is done

by effecting the chain rule for functional derivatives. Then in

Sec. IV, Casimir invariants are obtained directly from the

noncanonical Poisson bracket, and this allows us to construct

the equilibrium variational principles in Sec. V. These varia-

tional principles are then reduced by the elimination of alge-

braic constraints to obtain variation principles for special

cases. In Sec. VI, several applications of helical equilibria

both with and without flow are discussed.

II. NONCANONICAL HAMILTONIAN DESCRIPTION
OF MHD

Following Morrison and Greene,16 the ideal dynamics

of MHD plasma is described in terms of the Eulerian

variables Z :¼ ðq; v; s;BÞ, i.e., the plasma density q, the flow

velocity v, the magnetic field B, the entropy per unit mass, s
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(or alternatively the plasma temperature or pressure), in the

Hamiltonian form:

@Z

@t
¼ fZ;HgZ; (1)

where H is the Hamiltonian for MHD corresponding to the

energy,

H ¼
ð

V

1

2
qv2 þ qU þ 1

8p
B2

� �
d3r; (2)

and f�; �g represents the noncanonical Poisson bracket

of MHD. In Eq. (2), the function U ¼ Uðq; sÞ represents the

internal energy of the plasma, which is related to the

plasma pressure and temperature by the relationships

p ¼ q2@U=@q and T ¼ @U=@s; we note that gravitational

effects could be included by adding a term qu to the inte-

grand where u is an external potential. The bracket of Eq.

(1), which follows from the canonical Hamiltonian formu-

lation of Newcomb15 through the transformation from ca-

nonical Lagrangian to noncanonical Eulerian variables, is

given by

fF;GgZ ¼�
ð

V

(
Fqr � Gv � Gqr � Fv þ

r� v

q
� ðGv � FvÞ

þrs

q
� ðFsGv � GsFvÞ

þ B � 1

q
Fv � r

� �
GB �

1

q
Gv � r

� �
FB

� �

þ B � r 1

q
Fv

� �
� GB � r 1

q
Gv

� �
� FB

� �)
d3r;

(3)

where F and G are two generic functionals and subscripts

indicate functional derivatives.

Given a generic functional F, the functional derivative

is defined by dF ¼
Ð

VFZ � dZ d3r (cf., e.g., Ref. 22) and, in

particular, the functional derivatives of the Hamiltonian (2)

with respect to the variables Z are

Hq¼
1

2
v2þUþ p

q
; Hv¼qv; Hs¼qT; HB¼

1

4p
B: (4)

The functional derivatives of the variables Z can be calcu-

lated by making use of the identity

ZðxÞ ¼
ð

V

Zðx0Þdðx0 � xÞd3r; (5)

giving, for example, dqðxÞ=dqðx0Þ ¼ dðx0 � xÞ, which re-

moves the integral of the Poisson bracket when evaluating (1).

Substituting expressions (4) and (5) into Eq. (1), we

obtain the equations of MHD,

@q
@t
¼ �r � ðqvÞ; (6)

@v

@t
¼ �r v2

2
þ U þ p

q

� �
� ðr � vÞ � vþ Trs

þ 1

4pq
ðr � BÞ � B; (7)

@s

@t
¼ �v � rs; (8)

@B

@t
¼ �r� ðB� vÞ; (9)

where Eq. (6) represents mass conservation equation, Eq. (7)

represents momentum balance, Eq. (8) represents entropy

advection, and Eq. (9) is Faraday’s law for a perfectly con-

ductive medium. In actuality, the Poisson bracket of (3)

gives MHD in conservation form, in which Eqs. (7) and (9)

differ by terms involving r � B, but this will not bear on our

development. (In Ref. 18, it was shown that r � B ¼ 0 is not

needed for MHD to be Hamiltonian and the results of

Ref. 25 indicate that the conservation form is superior for

numerical computation.)

The Poisson bracket of (3) can be rewritten in terms of

any complete set of variables—switching from one set to

another amounts to a change of coordinates. A convenient

form of the MHD Poisson bracket is obtained by using,

instead of the variables v and s, the density variables

M ¼ qv and r ¼ qs. We let Z :¼ ðq;M; r;BÞ denote the

new set. To transform from Z to Z, we use the functional

chain rule identities,

Fqjv;s ¼ FqjM;r þ v � FM þ sFr; Fv ¼ qFM; Fs ¼ qFr;

(10)

with FB unchanged, to transform the Poisson bracket of (3)

into

fF;GgZ ¼ �
ð

V

fqðFM � rGq � GM � rFqÞ

þ M � ½ðFM � rÞGM � ðGM � rÞFM�
þ rðFM � rGr � GM � rFrÞ
þ B � ½ðFM � rÞGB � ðGM � rÞFB�
þ B � ðrFM � GB �rGM � FBÞgd3r: (11)

The bracket of (11) is the Lie-Poisson bracket (see Ref. 22),

i.e., a bracket linear in each variable, obtained in Ref. 16.

III. SYMMETRIC MHD

All geometric symmetries can be described as a combi-

nation of axial and translational symmetry, a decomposition

of helical symmetry. Given a cylindrical coordinate system

ðr;/; zÞ, we define a helical coordinate u ¼ /½l�sin aþ
z cos a;where ½l� is a scale length and a defines the helical

angle. The unit vector in the direction of the coordinate u
can be written as

u ¼ krru ¼ /̂k½l� sin aþ ẑ kr cos a; (12)

where k ¼ ð½l�2sin2aþ r2cos2aÞ�1=2
represents a metric fac-

tor. The second helical direction is given in terms of the fol-

lowing unit vector:

h ¼ krrr �ru ¼ �/̂ kr cos aþ ẑ k½l� sin a; (13)
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and the helical symmetry is expressed by the fact that

h � rf ¼ 0, where f is a generic scalar function. The direc-

tion h, called the symmetry direction, can be chosen to

obtain axial (a ¼ 0), translational (a ¼ p=2), or true helical

(0 < a < p=2) symmetry, with the metric factor k changing

accordingly. In the following, we use the identities,

r � h ¼ 0 and r� ðkhÞ ¼ �hk3½l� sin 2a; (14)

which imply for sin 2a ¼ 0 the existence of the coordinate

rh ¼ kh in the symmetry direction.

Using the notation described before, the magnetic field

and the mass flow can be rewritten as

Bðr; uÞ ¼ Bhðr; uÞhþ B?ðr; uÞ;
Mðr; uÞ ¼ Mhðr; uÞhþM?ðr; uÞ

(15)

and, since r � B ¼ 0, the magnetic field perpendicular to the

symmetry direction can be expressed in terms of a magnetic

flux function w ¼ wðr; uÞ as B?ðr; uÞ ¼ rw� kh.

Given a generic functional F and using the chain rule,

the following functional derivative relations result

FBh
¼ FB � h; Fw ¼ r � ðFB � khÞ; and

FM ¼ FMh
hþ FM? : (16)

In term of the variables ZS :¼ ðq;M?;Mh; r;w;BhÞ, the

Poisson bracket of Eq. (3) transforms into the “symmetric”

MHD bracket given by

fF;GgSYM ¼ �
ð

V

fqðFM? � rGq � GM? � rFqÞ

þMh½FM? � rðkGMh
Þ � GM? � rðkFMh

Þ�=k

þ ðk2½l�sin 2aÞMhh � ðFM? � GM?Þ þM?

� ½ðFM? � rÞGM? � ðGM? � rÞFM?�
þ rðFM? � rGr � GM? � rFrÞ
þ kBh½FM? � rðGBh

=kÞ � GM? � rðFBh
=kÞ�

þ wðFM? � rGw � GM? � rFwÞ
� wðFwr � GM? � Gwr � FM?Þ

� ðk3½l�sin 2aÞrw � ðFBh
GM? � GBh

FM?Þ

þ wð½GBh
=k; kFMh

� � ½FBh
=k; kGMh

�Þgd3r;

(17)

where ½F;G� :¼ ðrF�rGÞ � kh. Because this calculation is

similar to one of Ref. 24, we forgo the details.

Using (17), the equations for symmetric MHD dynamics

are obtained:

@q
@t
¼ �r �M?; (18)

@Mh

@t
¼ �kr � M?

Mh

kq

� �
þ k w;

1

4pk
Bh

� �
; (19)

@M?
@t
¼ �qr M2

2q2
þ U þ p

q

� �
� r�M?

q

� �
�M?

�ðr �M?Þ
M?
q
þ kMhr

Mh

kq

þðk2½l�sin 2aÞ Mh

q
h�M?

� �
þ qTrr

q

�r � k2

4p
rw

� �
rw� kBhr

Bh

4pk

�ðk3½l�sin 2aÞ Bh

4p
rw; (20)

@r
@t
¼ �r � M?

r
q

� �
; (21)

@Bh

@t
¼ � 1

k
r � M?

kBh

q

� �
þ ðk3½l�sin 2aÞrw

�M?
q
þ 1

k
w;

kMh

q

� �
; (22)

@w
@t
¼ �rw �M?

q
: (23)

In comparison to Eqs. (6)–(9), the number of equations

needed to describe the symmetric dynamics is reduced

because of the introduction of w. Moreover, the differential

operator r in Eqs. (18)–(23) only depends on u and r.

IV. SYMMETRIC CASIMIRS

Now, we seek the Casimir invariants associated with the

helically symmetric MHD bracket (17), i.e., functionals C
that satisfy fF;CgSYM ¼ 0 for all functionals F. With (17),

we see that fF;CgSYM ¼ 0 implies

ð
V

FqC1 þ kFMh
C2 þ FrC3 þ

1

k
FBh

C4

�
þ FwC5 þ FM? � C6

�
d3r ¼ 0; (24)

where the functions Ci are given by

C1 ¼ �r � ðqCM?Þ; (25)

C2 ¼ �r �
1

k
MhCM?

� �
� w;

1

k
CBh

� �
; (26)

C3 ¼ �r � ðrCM?Þ; (27)

C4 ¼ �r � ðkBhCM?Þ � ½w; kCMh
�

þ ðk4½l�sin 2aÞðrw � CM?Þ; (28)

C5 ¼ �rw � CM? ; (29)
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C6 ¼ �qrCq �
Mh

k
rðkCMh

Þ � ðk2½l�sin 2aÞMhðCM? � hÞ

�½ðr �M?Þ � CM? þ rðM? � CM?Þ

þðr � CM?ÞM?� � rrCr � kBhr
1

k
CBh

� �

þCwrw� ðk3½l�sin 2aÞCBh
rw: (30)

Since each term in the bracket must vanish separately, this

implies the Casimir conditions Ci ¼ 0 for i ¼ 1;…; 6.

We first investigate the case where CM? ¼ 0, which

implies the reduced set of conditions

C2 ¼ � w;
1

k
CBh

� �
¼ 0; (31)

C4 ¼ �½w; kCMh
� ¼ 0; (32)

C6 ¼ �qrCq �
Mh

k
rðkCMh

Þ � rrCr � kBhr
1

k
CBh

� �
þ Cwrw� ðk3½l�sin 2aÞCBh

rw ¼ 0: (33)

Upon substituting the functional

C1 ¼
ð

V

qJ r
q
;w;

1

q
r
q
;w

� �
;
1

q
1

q
r
q
;w

� �
;w

� �
;

�

� 1

q
r
q
;
1

q
r
q
;w

� �� �
;…

�
d3r (34)

into Eqs. (31)–(33), it is straightforward to prove that C1

defines a family of Casimir invariants. In fact, since

1

q
r
q
;w

� �
¼ B

q
� rr

q
and

1

q
1

q
r
q
;w

� �
;w

� �

¼ B

q
� r B

q
� r r

q

� �
; (35)

the Casimir invariants (34) are similar, but not equivalent, to

those of Refs. 26 and 27, which are more general than those

described in Ref. 24. This Casimir is akin to Ertel’s potential

vorticity of geophysical fluid dynamics, since both can be

traced to Nöther’s second theorem (see Refs. 26 and 27).

Next, from conditions (31) and (33) we deduce that

C2 ¼
ð

V

½kBhHðwÞ þ ðk4½l�sin 2aÞH�ðwÞ�d3r; (36)

where H�ðwÞ :¼
Ð wHðw0Þdw0, defines a second family of

Casimir invariants. It can be shown that, for H ¼ 2w, the

Casimir C2 reduces to the well-known magnetic helicity.

Indeed, the family of Casimir invariants (36) represents a

generalization of the magnetic helicity analogous to

that found in Ref. 28 for axisymmetric equilibria. Analo-

gously, from condition (32) we obtain the third family of

Casimirs

C3 ¼
ð

V

1

k
MhGðwÞd3r: (37)

If we suppose CM? 6¼ 0, then, upon setting expression (29) to

zero, it follows that

CM? ¼ rw� Akh; (38)

where A is a generic function. Therefore, from the expres-

sions (25)–(28) we obtain the following Casimir conditions:

C1 ¼ ½w; qA� ¼ 0; (39)

C2 ¼ w;
Mh

k
A� 1

k
CBh

� �
¼ 0; (40)

C3 ¼ qA w;
r
q

� �
¼ 0; (41)

C4 ¼ ½w; kBhA� kCMh
� ¼ 0; (42)

which imply that, unless (see Eq. (41))

w;
r
q

� �
¼ 0; (43)

no further Casimir functionals can be found. It can be easily

shown that condition (43) holds for stationary flows and

vice versa (from r �M ¼ 0, we deduce M ¼ rv� kh, and

using the perfect conductivity equation, we obtain ½w; v� ¼ 0.

Analogously, the entropy equation becomes ½r=q; v� ¼ 0

and, except where rv ¼ 0 and rw 6¼ 0; ½r=q;w� ¼ 0).

If Eq. (43) holds, from condition (39) we obtain A ¼
F=q; where F is a generic function of w or r=q, and condi-

tions (40) and (42) imply

CBh
¼ Mh

q
F and CMh

¼ Bh

q
F ; (44)

plus solutions in the form of (36) and (37). By integrating

conditions (38) and (44), we obtain

C4 ¼
ð

V

ðM? � B? þMhBhÞF=qd3r ¼
ð

V

v � BFd3r; (45)

which also satisfies the condition given by Eq. (30), and thus

defines the last family of Casimir invariants. For F ¼ 1, the

family of Casimir invariants C4 reduces to the well-known

cross-helicity invariant.

For flows that satisfy condition (43), the family of invar-

iants (34) can be rewritten in the simpler form

C1 ¼
ð

V

qJ d3r; (46)

where J is a generic function of w or r=q.

Since Casimirs are conserved quantities, their inte-

grands, say Ci, are densities associated with the “currents” Ji

that satisfy conservation equations of the form @Ci=@t
þr � Ji ¼ 0, where i ¼ 1;…; 4. These Casimir currents are

given by
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J1 ¼M?J ;

J2 ¼ M?
kBh

q
þ kMh

q
B?

� �
H;

J3 ¼ M?
Mh

kq
þ Bh

4pk
B?

� �
G;

J4 ¼M� ðB�MÞ F
q2
� B

M2

2q2
þ U þ p

q

� �
F :

(47)

If we assume the bounding surface is a fixed magnetic sur-

face, i.e., n � B ¼ 0 and n �M ¼ 0, this surface respects

the symmetry, and the unit surface normal n satisfies n � h ¼
0: Consequently; n � B? ¼ 0 and n �M? ¼ 0. Thus, for this

kind of fixed boundary condition, the Casimirs are con-

served. However, the possibility of Casimir injection exists

and in a future publication we will consider more general

boundary conditions.

V. VARIATIONAL PRINCIPLE AND EQUILIBRIA

Now, we proceed to construct the energy-Casimir varia-

tional principle for symmetric MHD equilibria. With the

knowledge that extrema of the energy-Casimir functional

must correspond to equilibria, we consider

F ¼ H �
ð

V

qJ d3r �
ð

V

½kBhHþ ðk4½l�sin 2aÞH��d3r

�
ð

V

1

k
MhGd3r �

ð
V

v � BFd3r; (48)

where the Hamiltonian (2) is expressed in terms of symmet-

ric variables ZS as

H ¼
ð

V

M2
h

2q
þM2

?
2q
þ qU þ k2jrwj2

8p
þ B2

h

8p

 !
d3r; (49)

and F ;G;HðH�Þ; and J are four arbitrary functions of w.

Moreover, in order to satisfy Eq. (43) we consider

r=q ¼ SðwÞ. Thus, the constrained energy in terms of the

variables ZS is given by

F½ZS� ¼
ð

V

M2
?

2q
þM2

h

2q
þ qU þ k2jrwj2

8p
þ B2

h

8p

 

�qJ � kBhH� k4½l�sin 2aH� � 1

k
MhG �

M

q
� BF

�
d3r;

(50)

or in terms of the variables ZS :¼ ðq; v?; vh;w;BhÞ is given

by

F½ZS� ¼
ð

V

qv2
?

2
þ qv2

h

2
þ qU þ k2jrwj2

8p
þ B2

h

8p
� qJ

 

�kBhH� k4½l�sin 2aH� � 1

k
qvhG � v � BF

�
d3r:

(51)

The first variation of the latter expression is given by

dF ¼
ð

V

ðqv? � B?FÞ � dv? þ qvh � BhF �
1

k
qG

� �
dvh

�

þ v2

2
þ U þ p

q
� J � 1

k
vhG

� �
dq

þ Bh

4p
� kH� vhF

� �
dBh þ �r � k2

4p
rw

� ��
þqTS0 � qJ 0 � kBhH0 � k4½l�sin 2aH

� 1

k
qvhG0 � v � BF0 þ r � ðFkh� v?Þ

�
dw

#
d3r:

(52)

Here, we have integrated by parts and neglected surface

terms consistent with assumed boundary conditions. Sym-

metric equilibria thus satisfy the set of equations

qv? � B?F ¼ 0; (53)

qvh � BhF �
1

k
qG ¼ 0; (54)

v2

2
þ U þ p

q
� J � 1

k
vhG ¼ 0; (55)

Bh

4p
� kH� vhF ¼ 0; (56)

�r � k2

4p
rw

� �
þ qTS0 � qJ 0 � kBhH0

� k4½l�sin 2aH� 1

k
qvhG0 � v � BF0

þ r � ðFkh� v?Þ ¼ 0: (57)

Equations (54) and (56) can be combined to obtain

vh ¼ 4pkHF
q
þ G

k

� �
ð1�M2Þ�1

and

Bh ¼ 4pkHþ 4pF G
k

� �
ð1�M2Þ�1; (58)

which are two explicit relationships for vh and Bh that make

it possible to express these two variables in terms of the flux

function, the cylindrical radius (which appears in k), and the

plasma density. The dimensionless parameter M2 ¼ 4pF 2=q
that appears in the first of Eq. (58) is the square of the Alfvén

Mach number. Notice that on Alfvén surfaces, i.e., points

where M¼ 1, the regularity condition (see, e.g., Ref. 29),

4pkHF
q
þ G

k
¼ 0() 4pkHþ 4pF G

k
¼ 0; (59)

needs to be satisfied. In general, given the flux functions

F ; G; and H and the boundary conditions, we can only

check a posteriori whether the regularity condition is

satisfied or not (of course, compatibility of the flux

functions can be assessed a priori; for example, if

F > 0 and G > 0; then H < 0).
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Equation (55) gives a relationship between the plasma

density, the magnetic flux function and its gradient, and k,

k2

2
jrwj2 F

q

� �2

þ v2
h

2
þ U þ p=q� vh

k
G ¼ J ; (60)

where U þ p=q is the enthalpy. Equation (60), a generaliza-

tion of the Bernoulli equation of hydrodynamics, can be

viewed as an equation for the density q given w, making use

of the second of Eq. (58) and a particular choice of the Casi-

mir functions F ;G;H; and J ; however, in general it is not

possible to obtain an explicit form for q.

The first term in Eq. (57) can be rewritten in terms of

the variables r and u as

r � k2

4p
rw

� �
¼ 1

4pr2

@2w
@u2
þ r

@

@r
rk2 @w

@r

� �� �
; (61)

which corresponds to the differential operator of the so-

called JOKF equation30–32 (named after the authors of Ref.

30). Moreover, by using Eq. (53), the last two terms of Eq.

(57) can be manipulated to obtain the following expressions:

v � BF0 ¼ vhBhF0 þ k2jrwj2 FF
0

q
and

r � ðFkh� v?Þ ¼ r �
k2F 2

q
rw

� �
: (62)

Then, Eq. (57) becomes

r � ð1�M2Þ k2

4p
rw

� �
þ k2jrwj2 FF

0

q

¼ q TS0 � J 0 � vh
G0
k

� �
� BhðkH0 þ vhF0Þ

� ðk4½l�sin 2aÞH; (63)

which is a generalization of the JOKF equation that includes

flow.

The above equations were previously presented in Ref.

33 and various special solutions were obtained by several

authors.34–40 However, the general variational principle

dF ¼ 0 for helical equilibria with flow appears to be new, as

well as reduced variational principles that we subsequently

obtain by eliminating the algebraic constraints.

Upon choosing k¼ 1/r and a ¼ 0, Eq. (63) reduces to

the azimuthally symmetric case and one obtains the

generalized Grad Shafranov equation with flow discussed in

Ref. 24. Similarly, upon choosing k¼ 1 and a ¼ p=2, this

equation reduces to the translationally symmetric case dis-

cussed in Ref. 41. As discussed in Refs. 2 and 29, the

equation for the generalized equilibria is hyperbolic for M2
c

�M2 �M2
s and for M2 �M2

f ; where M2
c � cp=ðcpþB2=4pÞ

is the square Alfvén Mach number corresponding to the

“cusp velocity” and

M2
f ;s �

4pcpþ B2

2B2
?

(
16 1� 16pcpB2

?
ð4pcpþ B2Þ2

" #1=2)
(64)

is that relative to the fast and slow magnetosonic velocities,

respectively, M2
f and M2

s .

The variational principle of Eq. (52) can be reduced in

several steps by “back-substituting” various algebraic rela-

tions. First, by substituting the expression for the perpendicu-

lar velocity given by Eq. (53) into the functional F we obtain

a variational principle that depends on the reduced set of in-

dependent variables, w; q; vh; and Bh, viz.

F½w; q; vh;Bh� ¼
ð

V

qv2
h

2
þ qU þ ð1�M2Þ k

2jrwj2

8p
þ B2

h

8p

 

�qJ � kBhH� k4½l�sin 2aH� � 1

k
qvhG � vhBhF

�
d3r:

(65)

Similarly, we can reduce further by using Eq. (56) to elimi-

nate Bh, yielding,

F½w; q; vh� ¼
ð

V

qv2
h

2
þ qU þ ð1�M2Þ k

2jrwj2

8p

 

� 1

8p
ð4pkHþ 4pvhFÞ2 � qJ

�k4½l�sin 2aH� � 1

k
qvhG

�
d3r: (66)

Next, we can use the first expression of Eq. (58) to eliminate

the dependence on vh, obtaining the functional

F½w; q� ¼
ð

V

qU þ ð1�M2Þ k
2jrwj2

8p
� qJ

"

�k4½l�sin 2aH� � qG2

2k2
þ 2pk2H2 þ 4pHGF

� �

�ð1�M2Þ�1
i
d3r: (67)

One could attempt to reduce further, but because of the form

of Eq. (60), the density cannot be explicitly eliminated with-

out making further assumptions. However, the density can

be viewed as an implicit functional of w through Eq. (60).

Thus, in a sense, we have a minimal variational principle in

terms of the variable w.

Although the variational principle of Eq. (67) is mini-

mal, it may not be the most efficacious to use. Observe, the

last substitution introduced a potential singularity at M¼ 1.

If we seek extrema of Eq. (67) by considering a sequence of

L2 functions, the principle (67) in general leads to singular-

ities on M¼ 1. However, if we expand vh; q; and w and

insert into the variational principle (66), the quantity vh will

always be regular and this also follows for the integrand.

Nevertheless, the principle of Eq. (67) may be useful.

For example, suppose M depends only on w, which is the

case for incompressible equilibria (cf. Ref. 40). Then, the

term Ep :¼
Ð

Vð1�M2Þk2jrwj2d3r=8p can be simplified

by a simple variable change from w to a new variable v.

If we suppose w ¼ WðvÞ, substitute into Ep, and set W02ð1�
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M2Þ ¼ 1 we obtain Ep ¼
Ð

Vk2jrvj2d3r=8p. Therefore, the

transformation

v ¼
ðw ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�M2ðw0Þ
q

dw0 (68)

eliminates the jrwj term from Eq. (63) and yields an equa-

tion in terms of v that is identical to that without “poloidal”

flow. Thus one can use Eq. (68) to map equilibria without

flow into those with flow profiles determined by MðwÞ. This

transformation was first noted in Ref. 42 for two-

dimensional axisymmetric equilibria and generalized,

including the helical case, in Ref. 40.

VI. SUMMARY AND DISCUSSION

In this paper, we have written the noncanonical Hamil-

tonian structure of MHD in a general form that includes

translational, azimuthal, and helical symmetry. From the

noncanonical Poisson bracket, we obtained Casimir invari-

ants for all symmetries, including a new ones that did not

appear in Ref. 24. From these invariants, we constructed var-

iational principles for equilibria, including helical symmetry,

and showed how to reduce these variational principles to

fewer numbers of variables. A general equilibrium equation

that includes general flow was presented.

The variational principles we obtained are useful for

constructing solutions by the direct method of the calculus of

variations.43 One can insert sequences of functions and

reduce the extremization to the solution of algebraic equa-

tions. Approximate solutions for the case of axisymmetric

and fully 3D equilibria have been obtained in this way in

Refs. 44–48. Similarly, axisymmetric equilibria with flow

have been obtained for application to laboratory and astro-

physical plasmas8 and plasma thrusters.9,49 Likewise, the

variational principle of Eq. (67) can be used to construct hel-

ical equilibria with and without flow that are of importance

for both laboratory and naturally occurring plasmas. We list

several possibilities.

First, the plasma thruster problem treated in Refs. 9 and

49 can be generalized to include the helical structures that

have been observed to arise from the saturation of kink

modes.50,51 Ascertaining the nature of these structures is im-

portant for determining the effectiveness of these thrusters.

This will be the subject of a future publication.

Another potential application would be to analyze heli-

cal structures called “snakes” that were detected in the JET

experiment at Culham.52 These structures, detected by soft

x-ray emission, are formed by local plasma cooling caused

by the ablation of a pellet injected into the tokamak. They

have been interpreted as a persistent local modification along

a closed magnetic field line of the global toroidal axisym-

metric equilibrium. This structure in the plasma and its per-

sistence might be described as a helical static equilibrium

along the closed magnetic flux tube crossed by the pellet,

and thus would be accessible by our variational principle.

Helical configurations that appear in reverse field pinch

configurations, the so-called quasi single helicity states (e.g.,

Ref. 50) present another application. These states result from

plasma self-organization, where a dominant mode tends to

suppress modes with different helicity, and have reduced

magnetic turbulence and better energy confinement. Since

all these helical states have a large aspect ratio, toroidal cur-

vature effects may be neglected to first order and their equi-

librium configuration can be described by our variational

principles. Helical structures (flux ropes) are also found to

arise in numerical simulations of three-dimensional magnetic

reconnection processes.53

Similarly, helical equilibria can be used to model

straight (large aspect ratio) stellarator configurations (e.g.,

Ref. 54). The Helically Symmetric Experiment at Madison

Wisconsin55 has a quasi-helically symmetric magnetic field

structure and thus avoids the consequences of the lack of

symmetry in the magnetic fields in conventional stellarators,

which results in large deviations of particle orbits from mag-

netic surfaces and direct loss orbits.

Helical equilibria are of special importance for space

configurations where they arise naturally as the result of the

plasma streaming and kinking. In Refs. 32 and 56, the

explicit construction of globally regular helical solutions for

helical equilibria was carried out. These solutions are of

mathematical interest since they show that helical equilib-

rium solutions can be found as continuous deformations of

cylindrically symmetric equilibria. At the same time, they

provide useful models of plasma jets in space. The extension

from static to stationary helical equilibria (i.e., equilibria

with flow) is of major interest for the description of plasma

jets in space. In this case, exact solutions of our generalized

JOKF equation (57) can be searched for by means of our

reduced variational principle (67), in a manner similar to that

used to obtain the axisymmetric thruster equilibria of Refs. 9

and 49.

Obtaining equilibria that are extrema of the variational

principle (67) allows us to consider their stability by effect-

ing the second variation. We will consider a variety of such

energy stability calculations for a variety of equilibrium

states in Ref. 23.
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