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Chapter 12

Continuum Hamiltonian Hopf Bifurcation I

In this chapter, Hamiltonian bifurcations in the context of noncanonical
Hamiltonian matter models are described. First, a large class of 1 + 1 Hamiltonian
multifluid models is considered. These models have linear dynamics with discrete
spectra, when linearized about homogeneous equilibria, and these spectra have
counterparts to the steady-state (55) and Hamiltonian Hopf (HH) bifurcations when
equilibrium parameters are varied. Examples of fluid sound waves and plasma and
gravitational streaming are discussed in detail. Next, using these 1 + 1 examples as a
guide, a large class of 2 + 1 Hamiltonian systems is introduced, and Hamiltonian
bifurcations with continuous spectra are examined. It is shown how to attach a
signature to such continuous spectra, which facilitates the description of the
continuous Hamiltonian Hopf (CHH) bifurcation. This chapter lays the foundation
for KreIn-like theorems associated with the CHH bifurcation that are more rigorously
discussed in Chapter 13 (our companion chapter).

12.1. Introduction

A common bifurcation to instability, one that occurs in so-called natural
Hamiltonian systems that have Hamiltonians composed of the sum of kinetic and
potential energy terms, occurs when under a parameter change, the potential energy
function changes from positive to negative curvature. In such a bifurcation, pairs of
pure imaginary eigenvalues corresponding to real oscillation frequencies collide at
zero and transition to pure real pairs, corresponding to growth and decay. This
behavior, which can occur in general Hamiltonian systems and is termed the 55
bifurcation, is depicted in the complex frequency w WR + i'"'( plane in

Chapter written by Philip J. MORRISON and George I. HAGSTROM.



248 Nonlinear Physical Systems

Figure 12.1(a). Alternatively, the HH bifurcation is the generic bifurcation that
occurs in Hamiltonian systems when pairs of non-zero eigenvalues collide in the
so-called Krein collision [KRE 80] between eigenmodes of positive and negative
signatures, as depicted in Figure 12.1(b). Such bifurcations occur in a variety of
mechanical systems [CUS 90, VAN 85]; however, HH bifurcations also occur in
infinite-dimensional systems with discrete spectra. In fact, one of the earliest such
bifurcations was identified in the field of plasma physics [STU 58] for streaming
instabilities, where signature was associated with the sign of the dielectric energy,
and this idea made its way into fluid mechanics [CAl 79, MAC 86b]. Streaming
instabilities were interpreted in the noncanonical Hamiltonian context in
[MOR 90, KUE 95a], where signature was related to the sign of the oscillation
energy in the stable Hamiltonian normal form [WIL 36, WEI 58] (see [12.15] below).

overcome to define signature for t
context of the Vlasov equation ir
[BAL 01]. Given this definit
[HAG l lb, HAG l l a] to define t
bifurcation.

In this chapter, we motivate an
further in Chapter 13. To this end,
of Hamiltonian systems that posse
about equilibria. These classes aJ

general for matter models in term:
W that represents the state of such
system has the form

y
ro - plane

y ro- p l a ne

Wt = {w ,H} =J ~~ '

Figure 12.1. Hamiltonian bifurcations with frequency W = WR + i'y.
a) Steady-state bifurcation with doublet bifurcating through the origin.

b) Hamiltonian Hopf bifurcation showing Krein collision with quartet; slow
modes (s) have opposite energy signature from fast (j)

(a)

f 5

(b)

5 f ro,.

where H [w] is the Hamiltonian fUJ

{F G} = Jd 8F ~[w] 8C
, J-L 8w J 8'l

In general, we may cons
W(J-L , t) = (WI , w2 , . ... ), with J I
realization on functionals (observ
canonical form, may depend on \
referred to in [MOR 80b] as none
bracket of [12.2] possesses Casimi

{ 0 , F} == ° \j F .

The aim of this chapter and of Chapter 13 is to describe Hamiltonian bifurcations
in the noncanonical Hamiltonian formalism (see [MOR 98]), which is the natural
form for a large class of matter models including those that describe fluids and
plasmas. Particular emphasis is on the CHH bifurcation, which is the terminology
that we introduce for particular bifurcations that arise in Hamiltonian systems when
there exists a continuous spectrum. There also exists a continuum steady-state (CSS)
bifurcation, but this will only be mentioned briefly. A difficulty is faced when
generalization of Krein's theorem is attempted, which states that a necessary
condition for the bifurcation to instability is that the colliding eigenvalues of the fIB
bifurcation have opposite signature to systems with continuous spectra. This
difficulty arises because 'eigenfunctions' associated with the continuous spectrum
are not normalizable, in the usual sense, and consequently, obstacles have to be

We refer the reader to [MOR 9:

In section 12.2, we consider
discrete spectra when linearized
procedure along with techniqu
transformation to conventional c
n?rmal form, respectively, are deve
dISplay both SS and HH bifurcati
theOries. The class is described ant
Vlasov-Poisson system is discusse
shOwn by introducing the waterb
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overcome to define signature for the continuous spectrum. This was done first in the
context of the Vlasov equation in [MOR 92, MOR 00] and for fluid shear flow in
[BAL01]. Given this definition of signature, it became possible in
[BAG 11b, HAG lla] to define the CHH, a meaningful generalization of the HH
bifurcation.

In this chapter, we motivate and explore aspects of the CHH, which are discussed
further in Chapter 13. To this end, we describe in sections 12.2 and 12.3 large classes
of Hamiltonian systems that possess discrete and continuous spectra when linearized
about equilibria. These classes are noncanonically Hamiltonian, as is the case in
general for matter models in terms of Eulerian variables. For a general field variable
Wthat represents the state of such a system, a noncanonical Hamiltonian dynamical
system has the form

OJ-pl a n e bH
Wt = {W, H} = J bW' [12.1]

s s f c.o,.

where H [w] is the Hamiltonian functional and { , } is the Poisson bracket defined by

[12.2]

(b)

hfrequency W = WR + i--y.
urcating through the origin.
Tn collision with quartet; slow
nature from fast (f)

In general, we may consider a J.L + 1 multicomponent theory, i.e.
W(J.L , t) = (WI ,w2

, .... ), with J being an operator that makes [12.2] a Lie algebra
realization on functionals (observables). Because the operator J need not have the
canonical form, may depend on Wand may possess degeneracy, this structure was
referred to in [MOR 80b] as noncanonical. Because of the degeneracy, the Poisson
bracket of [12.2] possesses Casimir invariants C[w] that satisfy

{C,F} == 0 VF. [12.3]

o describe Hamiltonian bifurcations
~ [MOR 98]), which is the natural
ling those that describe fluids and
urcation, which is the terminology
arise in Hamiltonian systems when
ists a continuum steady-state (CSS)
rriefly. A difficulty is faced when
d, which states that a necessary
the colliding eigenvalues of the HH
1S with continuous spectra. This
ated with the continuous spectrum
.onsequently, obstacles have to be

We refer the reader to [MOR 98, MAR 99] for further details.

In section 12.2, we consider a class of 1+1 multifluid theories that possess
discrete spectra when linearized about homogeneous equilibria. The linearization
procedure along with techniques for canonization and diagonalization, i.e.
transformation to conventional canonical form and transformation to the stable
normal form, respectively, are developed. Then, specific examples are considered that
display both SS and HH bifurcations. In section 12.3, we consider a class of 2+1
theories. The class is described and the CHH bifurcation for the particular case of the
Vlasov-Poisson system is discussed. The relationship to the results of section 12.2 is
shown by introducing the waterbag model, which is one way of discretizing the
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continuous spectrum, and motivates our definition of the CHH bifurcation. Finally, in
section 12.4, we summarize and introduce the material that will be discussed in
Chapter 13.

where the internal energy per lit

Ua = K,ph-I)/('Y - 1) where K,

The coupling between the fluids is

12.2. Discrete Hamiltonian bifurcations

We first describe a class of Hamiltonian theories of fluid type that have equilibria
with discrete spectra. Three examples are considered that demonstrate the occurrence
of Hamiltonian bifurcations like those of finite-dimensional systems. In the last
example of section 12.2.2.3, the HH bifurcation is seen to arise in the context of
streaming.

M

<I> (x, t) = L ~[P/3],
/3= 0

where ~ is a symmetric pseudo-d
and an arbitrary constant term Po h

From [12.6], we obtain

which constitute a system of fluid c

where the enthalpy ha = a(PaUc
Pa = p;aua/aPa' Using [12.7] w

and

{ua,H} = -Ua

12.2.1. A class of1 + 1 Hamiltonian multifluid theories

The noncanonical Poisson bracket for the class is obtained from that for the ideal
fluid [MOR 80b, MOR 82] reduced to one spatial dimension

For our purposes, here, it is sufficient to consider a class of 1+1 theories of
Hamiltonian fluid type. These theories have space-time independent variables (x,t),
where x E 'IT' c JR, where 'IT' = [0, 21r), on which we assume spatial periodicity for
dependent variables of fluid type, '1J = (PI, P2, ... UI , U2 , ... ), where Pa(x , t) and
U a (x , t) are the density and velocity fields, respectively, with a = 1,2, ... , M.
These fields will be governed by a coupled set of ideal fluid-like equations generated
by a Hamiltonian with a noncanonical Poisson bracket.

[12.4] The noncanonical bracket of I
Casimir invariants

These invariants satisfy {C~,I

significance of these Casimirs can
theory [MOR 87] (see section 12.3

12.2.1.1. Equilibrium and stability

Because of the existence of the
and, consequently, equilibria posse

where the shorthand a := a/ax is used and SF/SUa and SF/Spa are the usual
functional (variational) derivatives (see e.g. [MOR 98]). We consider Hamiltonian
functionals of the following form:

[12.5]

and C" =a

a= "-['1J] SH = "-['1J] SF
J S'1J J S'1J '
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1 of the CHH bifurcation. Finally, in
material that will be discussed in

where the internal energy per unit mass, Uo:, is arbitrary but often taken to be
U0: = t\,ph-1) / ( , - 1) where r: and the polytropic index 1 are positive constants.
The coupling between the fluids is included by means of a field <I> that satisfies

where 5,p is a symmetric pseudo-differential operator, IT dx f5,p[g] = IT dx g5,p[J],
and an arbitrary constant term Po has been included on the right hand side of [12.6].

ies of fluid type that have equilibria
red that demonstrate the Occurrence
e-dimensional systems. In the last
1 is seen to arise in the context of

M

<I> (x , t) = L 5,p[P{3],
{3= O

[12.6]

From [12.6], we obtain

where the enthalpy ho: = 8( po: Uo: )/ 8 po: and the pressure of each fluid is given by
Po: = p; 8Uo:/8po:. Using [12.7] with [12.4], gives

[12.7]andbH _ u; h <I>
bpo: - 2 + 0: +

s is obtained from that for the ideal
dimension

onsider a class of 1+1 theories of
e-time independent variables (x, t) ,
h we assume spatial periodicity for
. . . Ul , U2 ,· .. ) , where po:(x , t) and
.pectively, with a = 1,2, . . . , M .
ideal fluid-like equations generated
icket.

'heories

which constitute a system of fluid equations coupled through <I> alone.

[12.4]
The noncanonical bracket of [12.4] is degenerate and possesses the following

Casimir invariants

F / buo: and sr/bpo: are the usual
JR 98]). We consider Hamiltonian

c~ = hdx Po: and C~ = hdx u o: , a = 1, ... , M . [12.8]

[12.5]

These invariants satisfy {C~,P , F} == 0 for all functionals F. The physical
significance of these Casimirs can be traced back to the Liouville theorem of kinetic
theory [MOR 87] (see section 12.3.2.2).

12.2.1.1. Equilibrium and stability

Because of the existence of the Casimir invariants, the Hamiltonian is not unique
and, consequently, equilibria possess a variational principle since

_ bH bF
o= J[w] bw = J[w] bw '
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R.
Equations [12.9] have the equilibrium solution <I>e == 0, and P~ E R >o and u~ E

Expansion around such equilibria gives a linear dynamical system. Because the
equilibria of interest are homogeneous, we can use the following expression en route
to linearization:

where F = H + C. That is, oflow = 0 =} \lit = O. In the present context, this
amounts to of = 0 (H + L:a A~C~ + A~C~) = 0, with Lagrange multipliers A~'u E
R, or

12.2.1.2. Canonization and diagoru

The bracket of [12.11] is not ye
sums as follows:

It remains to determine the Ha
expansions of (Pa , ua) into [12.5].
in terms of Fourier amplitudes, but
dynamics, we expand in the smalln
Although this can be done in gener
equilibrium and stability in section
general comments about canonizatir

Observe that in the Poisson brad
k = 0 components of (Pa, ua), hav
degenerate in terms of the ostensible
choice of equilibrium selects the syi

[12.9]
of \ U

~ = PaUa + /\a = O.
uU a

and Ua = u~ + L uk(t) eikx ,
k EZ

of _ u; p _

oPa - 2 + ha + <I> + Aa - 0 and

Pa = P~ + L Pk(t) e
ikx

k EZ

where the equilibrium constants (p~ , u~) could be absorbed into the sum by
redefinition of the k = 0 terms. For linearization, we expand in the smallness of

(Pk ' uk)'

[j,g] M ik [( rL L ;1T ~
k EN a=l

Functionals of (Pk' uk) can be mapped onto functions of the Fourier components
by insertion of the Fourier series, i.e.

F[ ] - f( a a a . a a a )Pa, u.; - Po , P±l' P±2'··· ' v« ,U±l' U±2'··· ,

2M

~ ~ (!L~
D D a m r

kEN m=l qk 0

and this transformation (for our purposes) can be considered invertible upon using

a 1 l d () - ikxUk = - XUa X e .
21T 1r

Functional derivatives can also be expanded, e.g.

where in the second equality, the ca
real linear combinations of (P±k' 'I.

indexed by the wave number kEf
value of the species index a. In tern
for the linear dynamics is given by t
form

and ( OF) _~~
OUa -k- 21T aUk '

[12.10] 2M

~ ~ zm 2(kR Z
D D k mn ·

k,REN m,n=l

where the second equality follows from the chain rule (see, e.g., [TAS 11]). Using
[12.10] and its counterpart for Pa, the bracket of [12.4] becomes Where zm '- (qm pm) and the mk .- k ' k

equilibrium parameters (p~, u~).

[12.11] Given the system with Hamilto
a canonical transformation to a nor
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[J t = 0. In the present context, this
0, with Lagrange multipliers A~'u E

[12.9]

n <Pe == 0, and P; E IR>o and u; E

ear dynamical system. Because the
;e the following expression en route

1+L uk(t) ei k x
,

kE 7L.

Observe that in the Poisson bracket of [12.11] the Casimir invariants of [12.8], the
k = °components of (Po: ,uo:), have been removed, i.e. the bracket has become non­
degenerate in terms of the ostensible dynamical variables (pk' uk)' Geometrically, the
choice of equilibrium selects the symplectic leaf on which the dynamics takes place.

It remains to determine the Hamiltonian. This is done by inserting the Fourier
expansions of (Po: , uo:) into [12.5]. From this, we obtain the full nonlinear dynamics
in terms of Fourier amplitudes, but since our interest is in bifurcations of the linear
dynamics, we expand in the smallness of the amplitudes to obtain a quadratic form.
Although this can be done in general terms, we prefer to explore particular cases of
equilibrium and stability in section 12.2.2. However, before doing so, we make some
general comments about canonization and diagonalization.

12.2.1.2. Canonization and diagonalization

The bracket of [12.11] is not yet in canonical form. To canonize, we rewrite the
sums as follows:

ld be absorbed into the sum by
en, we expand in the smallness of

unctions of the Fourier components

[j,g] " ~ i k [( 8g 81 81 89 )
L....J L....J 21r 8u O: 8pO: 8uO: 8pO:
kEN 0:= 1 k - k k-k

- (8~~ :p~ - 8~! :pgo:)]
-k k -k k

2M (81 8g 8g 81 )L L 8qm 8pm - 8qm 8pm '
kEN m=1 k k k k

[12.12]

[12.13]

considered invertible upon using

.g.

where in the second equality, the canonical fields (qk 'Pk) are obtained as particular
real linear combinations of (P±k' u±k)' Thus, modes, i.e. degrees of freedom, are
indexed by the wave number kEN and an index m that takes two values for every
value of the species index a . In terms of a choice of canonical fields, the Hamiltonian
for the linear dynamics is given by the second variation as 82 F =: 2HL and takes the
form

-k

1 81
21r 8uk' [12.10] 2M

H L =" " mOfk£ nL....J L....J Z k ~mn Z£ ,

k,£ EN m ,n=1

[12.14]

n rule (see, e.g., [TAS 11]). Using
12.4] becomes

[12.11]

where zk := (qk 'Pk) and the matrix 2tkit depends on the specific values of the
equilibrium parameters (p;, u;).

Given the system with Hamiltonian in the form of [12.14], it remains to effect
a canonical transformation to a normal form. For example, if the system is linearly
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stable, then there exists a canonical transformation (qr ,pr) f-t (Qr , PI:), from real
variables to real variables, where the Hamiltonian becomes the following in terms of
the new canonical coordinates

2M

HL= ~ L L <7r Wr ((PI:) 2 + (Qk)2) ,
kE N m=l

[12.15]

with corresponding momenta

A simple chain rule calculation

where the frequencies wr E IR>o and the signature <7r E {±1}. Thus, the stable
normal form is just an infinite sum over simple harmonic oscillators. Those for which
<7r = -1 are negative energy modes, stable oscillations with negative energy
(Hamiltonian). It is important to emphasize that even though the energy is negative,
the system is stable. For finite-dimensional systems, the method for constructing the
canonical transformation to normal coordinates (Qk ' PI:) is treated in standard texts
and this method carries over. However, when negative energy 'modes exist, the
method is somewhat complicated, and, although well-known in Hamiltonian
dynamics lore, is not usually treated in physics texts. An accessible treatment is given
in [TAS 11], where it is applied in a plasma physics context.

12.2.2. Examples

In order to make the ideas discussed in sections 12.2.1.1 and 12.2.1.2 more
concrete, we consider a few examples that explicitly demonstrate canonization,
diagonalization, and Hamiltonian bifurcations to instability in the context of
multifluid models; in particular, the HH bifurcation will emerge for particular modes
indexed by (k,a ), just as it appears in finite-dimensional systems.

12.2.2.1. Sound waves and multiplicity

First, consider the case of a single fluid with an equilibrium state given by Pe, some
positive constant, and U e =O. The linear Hamiltonian is evidently

where c; = P Pe = Pe(pU)pp(Pe) is the sound speed. The appropriate Poisson bracket
is that of [12.12] with a single a -term.

With some thought, canonization and diagonalization is possible in a single step,
but we will proceed in a direct manner by assuming the canonical coordinates are

2 (Of og
[j,g] = L L amam

kEN m=l qk Pk

Observe in [12.16] that indexi
multiplicity index m. Each mode, '
constitutes a single degree - of f
two-dimensional, and consequently
a stable degree of freedom, these ei
negative of the other. Here, we l:
mentioned when we diagonalize.

Now, using

1 (1 . 2)Uk = !<L qk + 2~kpk
2y27r

valid with k -t -k, in the Hamilton

HL[q,p] = ~ L (Pe lq~12 +.
k EN

The normal form is achieved
transformation:

i.e., HL becomes
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III (qk\ Pk) f-t (Qk ' pr:t from real
n becomes the following in terms of

with corresponding momenta

[12.15]

ature O"k E {±1}. Thus, the stable
irmonic oscillators. Those for which
~ oscillations with negative energy
even though the energy is negative,
ms, the method for constructing the
Qk' PJ:) is treated in standard texts
negative energy 'modes exist, the

ough well-known in Hamiltonian
x.ts. An accessible treatment is given
.cs context.

A simple chain rule calculation takes [12.12] into the following

[12.16]

Observe in [12.16] that indexing a degree of freedom by kEN requires a
multiplicity index m. Each mode, which is described by an amplitude and a phase ,
constitutes a single degree - of freedom; a single degree of freedom is thus
two-dimensional, and consequently, each mode corresponds to two eigenvalues . For
a stable degree of freedom , these eigenvalues correspond to two frequencies, one the
negative of the other. Here, we have multiplicity, the reason for which will be
mentioned when we diagonalize.

Now, using

valid with k -t -k, in the Hamiltonian H L gives

ctions 12.2.1.1 and 12.2.1.2 more
cplicitly demonstrate canonization,

to instability in the context of
on will emerge for particular modes
nsional systems .

1 (1 . 2)Uk = !<'L qk+ Zik: Pk
2y27f

1 (2 . 1)and Pk = !<'L qk+ 2'lk Pk ,
2y27f

.equilibrium state given by Pe, some
nian is evidently

7f L (P e1 Uk1 2+ c; (IPkI 2/ Pe) ,
kE Z

ed. The appropriate Poisson bracket

HL[q ,p] = ~ L (Pelqkl 2+ 4k
2c; Ip1 12/ Pe + c;l q~ 1 2 / Pe + 4k

2Pe Ip%1 2
) .

kE N

The normal form is achieved upon substitution of the following canonical
transformation:

lization is possible in a single step,
19 the canonical coordinates are

i.e., H L becomes

2

HdQ ,P] = ~ L L kCs( (Qk )2+ (PJ:)2).
kE N m = 1

[12.17]
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This is the sought after normal form where the frequency of all modes is kc; as
appropriate for sound waves.

We close this example with a few comments. First, for a given wavelength as
determined by kEN, there are in fact two modes : one that propagates to the right
and one to the left. This is accounted for by the multiplicity index, m. In obtaining
this normal form, we have assumed c; = Pp > 0, which can be traced back to a
property of U(p) and is in essence Le Chatelier's principle of thermodynamics, viz.,
that pressure increases upon compression. If we had some exotic fluid for which this
was not the case, then the system would be unstable and the normal form of [12.17]
would not be achievable. Imagine that the equilibrium parameter Pe can be varied
and that at some critical value, c; makes a transition from positive to negative. Since
a mode frequency w = kc. , it is evident that this transition happens at zero frequency
and, consequently, is a SS bifurcation (see Figure 12.1(a)). Moreover, because of the
multiplicity, this is a degenerate bifurcation, where for each fixed k, four pure
imaginary eigenvalues collide at zero frequency and then transition to four pure real
eigenvalues of growing and decaying pairs. The situation is completely degenerate
since this happens for all k values simultaneously. In section 12.2.3, we will see that
the HH bifurcation, as depicted in Figure 12.1(b), can be transformed to a similar
collision with four eigenvalues at zero frequency, but it differs in that after
bifurcation, we obtain the Hamiltonian quartet, four eigenvalues with both real and
imaginary parts, a situation that is sometimes called over stability.

12.2.2.2. Counterstreaming ion beams with isothermal electrons

Next, we consider a simple one-dimensional multifluid plasma configuration
consisting of two cold counterstreaming ion beams in a neutralizing isothermal
electron background. A detailed linear, nonlinear and numerical analysis of this
problem, from a Hamiltonian perspective, can be found in [KUE 95a, KUE 95b], and
we refer the reader to these references for further details.

P± and U±. As usual, the electric f
the class described in section 12.2.
Hamiltonian functional

and Poisson bracket of [12.4].

Homogeneous equilibria follow
which are consistent with an equilil

that we assume for simplicity. Thu
controlled by U e.

Linearizing about this equilibrii
linear dynamics

The dynamical system of interest in dimensionless form is given by

8u aat: + ua8ua + 8¢ = 0,

8Pa ( )at + 8 PaUa = 0,

82 ¢ = e¢ - p+ - p_ , [12.18]

Observe that the sign of H L rna'
perturbation; thus , we may have ins;

Expan sion in a Fourier series '
6¢ = L kEZ ¢keikx, and using
¢k = Nk/( l + k 2

) , where Ni, :=
becomes

where a E {±} labels each ion stream with velocity Ua. Here, Pa represents a
dimensionless number density instead of mass density. Equation [12.18], poisson's
equation, is a constraint and in principle the electrostatic potential can be solved as
¢ (p+, p_) so that the entire system is described in terms of the dynamical variables
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and Poisson bracket of [12.4].

that we assume for simplicity. Thus, we have a one-parameter family of equilibria
controlled by U e .

Linearizing about this equilibrium state gives the following Hamiltonian for the
linear dynamics

Homogeneous equilibria follow from 8F = °for A~ = -u;/2 and A± = ~ue/2 ,

which are consistent with an equilibrium of ion streams of equal density and speed,

E e = ¢e = 0,u t = - u ; = u e,
+ 1

Pe - Pe - 2'

~ rdx (~(8U+)2 + ~(8U_)2 + 2ue 8p+8u+
2 iT 2 2

-2ueop_ou_ + (80¢)' + (O¢)') .

H = 1dx (I: ~PaU~ + ld¢ ¢ e¢ + ~ (8¢)') ,
T a O

p±and U±. As usual , the electric field is given by E = -8¢. Thus, this system is of
the class described in section 12.2.1 , with [12.18] a specific case of [12.6]. It has the
lIamiltonian functional

al multifluid plasma configuration
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te frequency of all modes is kc; as

iless form is given by Observe that the sign of H L may be either positive or negative, depending on the
perturbation; thus, we may have instability or negative energy modes in the system.

[12.18]

.elocity U a . Here, Pa represents a
ensity. Equation [12.18], Poisson's
.trostatic potential can be solved as
in terms of the dynamical variables

Expansion in a Fourier series as in section 12.2 .1.1 , including the expansion
8¢ = L:kEZ ¢kei kx, and using the linearized Poisson equation [12.18] gives

¢k = N k / (1+ k 2
) , where N k .- pt + Pl:. With this expression, the energy H L

becomes

~ I: (Iutl' + Iukf' [12.19]
kEN
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where c.c. denotes complex conjugate. Under the transformation

PI: [12.20]

Thus, in terms of the canonica
k, but it remains to transform the 4
multiplicity, to normal form.

For values of U e for which tl
transformation is given explicitly
directed there to see how to obtain

with P:k = (pt)* and u:k = (ut)*, the Poisson bracket becomes that of [12.13]
with M = 2 and the linear Hamiltonian [12.19] becomes

4

H L = ~ L L (Pk 9J1~n P~ + qk QJ~n qk) ,
kE N m,n=l

where

1
kii; 0 0

2ue

ku;
k2u

e 0
k2u

e

1 + k2 1 + k 2

9J1k

1
-kue0 0

2u e

0
k2u

e -kue
k2u

e

1 + k2 1 + k 2

k2u
e kUe

k2u
e

0
1 + k2 1 + k 2

1
0 0kUe 2ue

QJk

k2u
e 0

k2u
e -kue

1 + k 2 1 + k2

-kue
1

0 0
2ue

~L(wt((P~)2
kEN

Evidently, for each value of k, 1

and two negative energy modes.
calculation of the frequencies, whic

±._ [1 2
W k .- k 2 (1 + k 2 ) + u e ±

which can be obtained from the pla

1 1 (c(k w) = 1 + - - - -
, k2 2 (w -

From [12.22] it is evident that
frequency as depicted in Figure 12.
vary U e , then there is a value of u;
becomes unstable with pure imagin
decay. Thus, this is another example
because of the imposed symmetry.
and obtain the HH bifurcation, but .
mathematically similar, context.

12.2.2.3. Jeans instability with stre.

The widely studied Jeans insta
models. For the present example, 1

model with two interpenetrating
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transformation

_1_ (PI - iq2)
J7rUe

_1_ (P3 - iq4) ,
J7rUe

[12.20]

Thus, in terms of the canonical coordinates of [12.20] the system is diagonal in
k, but it remains to transform the 4 x 4 block structure, the part corresponding to the
IIlultiplicity, to normal form.

For values of U e for which the system is stable, the diagonalizing canonical
transformation is given explicitly in an appendix of [KUE 9Sa]. The reader is
directed there to see how to obtain

ion bracket becomes that of [12.13]
iccornes

Hi ~ I: (wt((Pf)2 + (Q0 2
) -wJ:((pf)2 + (Q%)2)

kEN

+wt ((P:) 2 + (Q%) 2) - wJ: ((P:) 2 + (Qk)2
) ) .

[12.21]

Evidently, for each value of k , there exist four modes, two positive energy modes
and two negative energy modes. The symmetry of the equilibrium facilitates the
calculation of the frequencies, which are given by

o

which can be obtained from the plasma fluid dielectric (dispersion) function

1 1( 1 1)
c(k ,w)=l+ k2 -2 (w -kU

e)
2 + (w+ku

e)2
=0.

. [12.22]

[12.23]

o

o

-kue

1

From [12.22] it is evident that all bifurcations to instability occur through zero
frequency as depicted in Figure 12.1(a) and in fact are degenerate, i.e. if we fix k and
vary U e, then there is a value of U e at which w_, the slow mode, vanishes and then
becomes unstable with pure imaginary eigenvalues, two representing growth and two
decay. Thus, this is another example of a SS bifurcation that is forced to be degenerate
because of the imposed symmetry. In the next section, we will break this symmetry
and obtain the HH bifurcation, but for variety, we do so in a physically different, yet
mathematically similar, context.

12.2.2.3. Jeans instability with streaming

The widely studied Jeans instability occurs in Newtonian gravitational matter
models. For the present example, we suppose matter is governed by our 1+1 fluid
model with two interpenetrating streams. We refer the reader to [CAS 98] for
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background material and further details. The model is the same as that of
section 12.2.2.2 except Poisson's equation is replaced by

[12.24]

where we incorporate Einstein's device of introducing a cosmological repulsion term,
which in the Newtonian setting amounts to introducing a negative constant
gravitational mass of density PA . The sign change in [12.24] accounts for
gravitational attraction.

The equilibrium for this case is similar to that of section 12.2.2.2, except we allow
for asymmetry and, like the equilibrium of section 12.2.2.1, we allow for pressure in
each stream. Specifically, we have the equilibrium constant densities pt and p; such
that pt + p; = PA and cPe = 0, the two stream velocities ut > °and -u; > 0,
chosen in opposite directions, and two sound speeds c;.Upon scaling, these can be
reduced to four independent equilibrium parameters: ut, u;, j3 := P; j pt and c :=
-j +cs cs ·

From the results of sections 12.2.2.2 and 12.2.2.1 , we can immediately write down
the linearized Hamiltonian

H L ~1dx (pt(Ou+)2+ p;(OU_ )2+ 2ut op+ou+ - 2u; ss.s«.

+(c;f(Op+)2 / pt + (C-;;) 2(Op_)2/ p; - (80q,)2) .

Fourier expansion and canonization proceeds in the same manner as in the
previous examples. In the case where the equilibrium parameters indicate stabili~y,

the diagonalization can be shown to give a Hamiltonian of the form of [12.15] with
M=2.

The frequencies are roots of the following "diagravic" function

1 + j3 = °,[12.25]
f(k ,w) = 1 + 2 [(w _ kut )2 _ k2] 2 [(w+ CkU; )2 _ c2k2]

with two fast modes being positive energy modes and two slow modes being negative
energy modes (see Figures 1 and 3 of [CAS 98]). In general, all four modes ~e

distinct, but if we symmetrize parameters as in section 12.2.2.2, then the quadratIC
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brium parameters indicate stability,
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agravic" function

e
. = 0 , [12.25]
(w + cku-;)2 - c2 k2J

and two slow modes being negative
8]). In general , all four modes are
section 12.2.2.2, then the quadratic

obtained from [12.25] becomes biquadratic and is easily solved, indicating
degenerate modes of each sign as before. Evidently, this system possesses a rich
parameter space, and various bifurcations to instability for various k-values are
possible. In addition to the four parameters above, we can use k as a control
parameter: we have scaled the system size to 21T, but upon reinstatement, this
translates into varying k. The Jeans instability is a long wavelength instability, and
we can observe the transition to instability as k decreases. This is immediate if
c = f3 = 1 and U e = 0, in which case [12.25] implies w 2 = k 2 - 1. Using k as the
control parameter, as the wavelength is increased, we see the instability set in as a
degenerate 55 bifurcation. The situation is complicated with the presence of two
streams, the subject of this section, and the HH bifurcation as depicted in
Figure 12.1(b) is clearly present (see Figure 2 of [CAS 98]). This is quite generally
the case for fluid systems with steaming equilibria. In section 12.3.2.2, we will see
how multifluid streaming relates to the waterbag distribution of kinetic theory, and
we will discuss explicitly the HH bifurcation in this context.

12.2.3. Comparison and commentary

It is evident from the discussion of section 12.2.2 that a requisite for determining
an HH bifurcation is the identification of the energy for the linear system. In the
context of noncanonical Hamiltonians systems, this naturally comes from second
variation 62F , the Hamiltonian for the linear system. Sometimes "energy"
expressions are obtained by direct manipulation of the linear equations of motion as
done, for example, in the original MHD energy principle paper [BER 58], but this
procedure can obscure the notion of signature. For example, a system of two simple
harmonic oscillators conserves WI (qr + pi) ± W2 (q~ + p~) for both signs and either
might be obtained by manipulation of the equations of motion. The unambiguous
sign for the correct energy is uniquely given by 62 F; this is important because this
sign can drastically affect the behavior of the system when dissipation or nonlinearity
is considered. For example, a system with a negative energy mode can become
unstable to arbitrarily small deviations from the equilibrium when nonlinearity is
added (see Cherry's example as described in [MaR 90, MaR 89]).

In the plasma literature, other definitions of energy are usually considered, e.g. in
the context of streaming instabilities, the dielectric energy, which is proportional to
wiE 1

2 Be/ Bw, where E is the electric field amplitude, is incorporated. This expression
was originally derived by von Laue [VON 05] for the energy content in a dielectric
medium by tracking the energy input due to an external agent. However, we have seen
how it arises from 62F , and only then can we be assured that it represents a quantity
conserved by the linear dynamics. In fact, for our general multifluid model, the e (k, w)
takes the form c(k, w) = 1 + l::aXa(k, w), with a contribution Xa from each fluid,
e.g. that for counterstreaming and Jeans are [12.23] and [12.25], respectively, (also
see [12.37] below) and it can be seen in general that 62 F rv wIEI2Be/Bw. For neutral
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modes embedded in the continuous spectrum of Vlasov theory (see Chapter 13), the
formula w1E128c:j8w remains valid [MOR 94, SHA 94], but this formula is incorrect
for excitation of the continuous spectrum as shown in [MOR 92], where the correct
alternative formula was first derived, and the notion of signature for the continuous
spectrum was defined.

Sometimes, energy is defined in terms of the Lagrangian displacement variable
as was done by manipulation of the linear equations of motion in [BER 58, FRI 60].
Such expressions can also be obtained by expansion of an appropriate Hamiltonian,
62 H. It was shown in [MOR 90, MOR 98] that this procedure gives an expression that
is essentially equivalent to 62F. See [AND 13] for a recent general discussion in the
context of MHD . · .

In conventional Krein theory, the signature is defined in terms of the Lagrange
bracket. (see, e.g., [MOS 58]). However, it is a simple matter to see that. this
corresponds to the normal form definition [MAC 86a, MOR 90], which follows by
comparison of terms in the diagonalization procedure (see [WHI37, TAS 11]). In
[MOR 90], it was argued that all these definitions of signature, using the dielectric
energy, 62 F, 62 H, and the Lagrange bracket, are essentially the same when they are
meaningful.

One ostensible difference between the HH and SS bifurcations is that the latter
occurs at zero frequency. However, one can affect a time-dependent canonical
transformation so that all four HH eigenvalues of Figure 12.1(b) collide at zero
frequency. To see this, consider one of the stable degrees of freedom, which has a
contribution to the Hamiltonian in action-angle variables (f) I , JI) given by
HI = wI JI , where wI depends on the bifurcation control parameter and takes the
value w* at the bifurcation point. Using the mixed variable generating function F2 to
transform to new canonical variables (8, J):

[12.26]
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Thus, in the new frame, the frequency W f - w* vanishes at the bifurcation point.
At bifurcation, the companion mode W s has the same value w*; consequently, a
similar transformation will bring this mode to zero frequency at bifurcation. At first
glance, we might think this has made the HH bifurcation identical to a degenerate SS
bifurcation, but the behavior of the two beyond the bifurcation point is different. The
degenerate SS bifurcation transitions to two purely growing and two purely decaying
eigenvalues, while the HH transforms to over stability, i.e. it obtains a quartet
structure immediately upon bifurcation. (We could argue that the frame shift could be
a function of the control parameter, but with this line of reasoning all bifurcations
could be made to look like SS bifurcations, even in the nonlinear regime.) The frame
shift of [12.26] is identical to a Galilean shift that can be done for fluid and plasma
theories in order to bring modes to zero frequency at bifurcation. This artifice is used
in the development of the single-wave model [BAL 13] and will be considered in
Chapter 13.

The connection between degeneracy and symmetry is well known, and there is a
very large literature on bifurcations in finite-dimensional Hamiltonian systems with
symmetry (see, e.g. [DEL 92] for an entryway) . In our examples above we have seen,
as expected, that this is also the case for infinite systems with discrete spectra. In fact,
it is quite common for the dispersion relation to factor as a consequence of symmetry
[TAS 08]. However, systems with symmetry and continuous spectra are less well­
studied, but counterparts exist, e.g., the degeneracy of the SS bifurcation of Jeans
inability with U e = 0 of section 12.2.2.3 has a CSS counterpart when described by the
Vlasov system (see section HID of [BAL 13]).

12.3. Continuum Hamiltonian bifurcations

Now, we tum to the general class of 2+1 Hamiltonian mean-field theories in
which the linear theories around equilibria possess a continuous spectrum. This is
followed by the exposition of the two-stream instability in the Vlasov-Poisson
equation, which is a standard example of the CHH bifurcation. Next, we introduce
the waterbag reduction of the Vlasov-Poisson equation and use it to connect the
two-stream instability to Krein-bifurcations in the corresponding waterbag model,
linking this section to section 12.2.

12.3.1. A class of2 + 1 Hamiltonian mean field theories

We begin with the class of2+1 Hamiltonian field theories introduced in [MOR 03],
which have with a single dynamical variable, f( q, p , t) , a time-dependent density on
the phase space variables z := (q,p). The density satisfies a transport equation

afat + [1,£] = 0, [12.27]



264 Nonlinear Physical Systems

where the bracket [f, g] = fqgp - gqfp is the Poisson bracket for a single particle, and
the particle energy £ depends globally on f. Equation [12.27] is therefore a mean field
theory, where f is a density of particles in phase space that generates E and is advected
along the single particle trajectories that result from E. The resulting equations are
typically quasi-linear partial integro-differential equations. We assume that the particle
energy arises from a Hamiltonian functional of the form H [f] = HI +H2 +H3 +... ,
where generally Hs, is the n-point energy, e.g.

this case, a function space) with
Casimir invariants and which inh
bracket. The evolution of f is res
equations on a single leaf are cano

In addition to the Casimir invai
momenta P[f] generally arising
kernels hI , h2 , . . .• The system (
transformation of the phase space .
particle coordinates z := (8,1), th
with z(z), one of the following twr

with hI and h2 being interaction kernels. Here, we will only consider Hamiltonian
systems with up to binary interactions, and we will assume that that h2 possesses the
symmetry h2 (z, Zl) = h2 (Zl , z). If £ is obtained from the field energy by functional
differentiation

8H r 2 1 ( ') (')E := 8J = hI + } zd Z h2 Z , z f z ,

then H[f] is a constant of motion for [12.27].

or

hI 0 Z = 0,

In the first case,

h2 0 (z, Z l )

Equation [12.27] with £ = 8H/8f is a Hamiltonian field theory [MOR 03] in
terms of the noncanonical Lie-Poisson bracket of [MOR 80a, MOR 82]

r 2 [8F 8G]{F,G} = }zd z f 8f ' 8f . [12.28]

is conserved, while in the second I

and thus two components of the me

This bracket depends explicitly upon f, unlike usual Poisson brackets that only
depend on (functional) derivatives of the canonical variables. The bracket of [12.28]
is anti symmetric and satisfies the Jacobi identity, though it is degenerate, unlike
canonical brackets. The equations of motion may be written as

These momenta can be very u
discussed further here.

As mentioned in section 12.1, degeneracy of the Poisson bracket gives rise to

Casimir invariants, quantities that are conserved for any Hamiltonian. For the bracket
of [12.28] the Casimir invariants are elf] = Jz d2zC(f), where C(() is an arbitr~

function. The existence of Casimir invariants leads to a foliation of phase space (In

of [ 8H]ot = {f,H} = - i, 8J = -[f,£],

where H = HI + H2 + ....

[12.29]

For equilibrium states f is a fr
only, i.e. the single particle energy f.
has an equilibrium that only depend
corresponding to a given E, For this
then when a choice of fa is made,
The phase space is Z = V x T, i.1
D = JR. Upon substitution of f =
[12.31] can be written as follows:

£[fa + (] = £[fa] + Ere] =:
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this case, a function space) with symplectic leaves, which are the level sets of the
Casimir invariants and which inherit a symplectic structure from the Lie-Poisson
bracket. The evolution of f is restricted to one of these symplectic leaves, and the
equations on a single leaf are canonical.

In addition to the Casimir invariants and the total energy, there may be conserved
momenta P[f] generally arising from translation symmetries of the interaction
kernels hI , liz , . . .. The system conserves momentum if there exists a canonical
transformation of the phase space Z, z = (q,p) +-----t z := (e ,1) such that in the new
particle coordinates z := (e ,1), the interactions hI, h2 , etc., have upon composition
with z(z), one of the following two forms:
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11 assume that that h2 possesses the
from the field energy by functional

or

hI 0 Z = 0,

In the first case,

h2 0 (z , z' ) = h2 (I , I' , Ie - e' l) [12.30]

[12.31]

ultonian field theory [MOR 03] in
[MOR 80a, MOR 82]

[12.28]

.e usual Poisson brackets that only
11 variables. The bracket of [12.28]
y, though it is degenerate, unlike
be written as

[12.29]

f the Poisson bracket gives rise to
Jr any Hamiltonian. For the bracket
:2z C(f) , where C(() is an arbitrary
Js to a foliation of phase space (in

is conserved, while in the second case, we have two kinds of translation invariance
and thus two components of the momentum

These momenta can be very useful (see e.g., [BAL 01]), but they will not be
discussed further here.

For equilibrium states f is a function of the single particle constants of motion
only, i.e. the single particle energy E and possibly momenta. The example treated here
has an equilibrium that only depends on I , where (e, 1) are the action-angle variables
corresponding to a given E. For this reason, we set f(e , I , t ) = fo(1) + ((e , I , t) and
then when a choice of fa is made, ((e , I , t) represents the main dynamical variable.
The phase space is Z = V x 11', i.e. periodic in e E [0 ,271") = 11' and I E V where
V = ~. Upon substitution of f = fa + ( into E, both of the forms of [12.30] and
[12.31] can be written as follows:

E[fo + (] = E[fo] + E[(] =: h(1) + <1>(e ,1) ,
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with

<1>(e ,1) = K(:= IvdI' ~de' K(I , I' , Ie - e'l) ((e' , I' , t) ,

where hand K are determined by hI and h2 . Thus the governing equation is

eliminate q (which is e in the p:
(k (p, t) becomes our dynamical v(

(t + [fa , <1>] + [(,h + <1>] = 0, [12.32]
which simplifies to the following i

where [I, g] = feg! - geh and 0,(1) = h'. Equation [12.32] will serve as a starting
point for our subsequent linear analyses.

12.3.2. Example ofthe eRR bifurcation

All of the models described in section 12.3.1 possess CHH bifurcations; however,
here , we will concentrate on the Vlasov-Poisson system. First , we describe it, then we
make connections to the multifluid results of section 12.2.1 and in this way relate the
CHH to the ordinary HH bifurcation.

12.3.2.1. Vlasov-Poisson system

The Vlasov-Poisson equation arises out of [12.27] through definition of the single
particle energy E and potential cP, where E = p2/2 + cP and

Here, we have introduced the t

changes in fa we will study to und

The linearized equations inl
noncanonical form, linearization re
the Hamiltonian. In terms of the va

with the Poisson bracket

[12.33]

The interaction kernels for this model are: hI = p2/2 and h2 = Iq - q'l.

The function f represents the density of a positive charge species in phase space,
under the assumption that there is a neutralizing background with uniform negative
charge density. The particle s interact with each-other through electrostatic forces,
which are included by the Poisson equation. Under the identification q = e, p = I,
we recover [12.30]. Arbitrary functions of palone, f(q ,p) = fo(p) == fa(1), form an
important class of solutions to this model , the spatially homogeneous equilibria. The
analog of [12.32] is

Upon linearizing the Vlasov-Poisson system around a homogeneous stable
equilibrium, i.e. dropping the nonlinear term (p cPq , and then supposing ( = (k eikq to

Observe from [12.35] that k E
that are almost canonically conjuga

and

whence it can be shown directly thz

Now, we consider properties of
~uppose (k varies as exp(-iwt), w

or convenience, we also use u :=

the system size. The system is sail
l~ss than or equal to zero or the fn
SInce the system is Hamiltonian tl
spectrum is confined to the imagi~aJ
are guaranteed to grow at most sube
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the governing equation is

[12.32]
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eliminate q (which is 8 in the previous language) in lieu of the wave number k,
(k(P , t) becomes our dynamical variable that satisfies

which simplifies to the following integro-differential equation for (k:

ion [12.32] will serve as a starting [12.34]

issess CHH bifurcations; however,
stem. First, we describe it, then we
,n 12.2.1 and in this way relate the

n] through definition of the single
+¢and

Here, we have introduced the time evolution operator 'Ik , whose spectrum under
changes in fo we will study to understand the CHH bifurcation.

The linearized equations inherit a Hamiltonian structure. Because of the
noncanonical form, linearization requires expansion of the Poisson bracket as well as
the Hamiltonian. In terms of the variables (k and (-k, the Hamiltonian is

with the Poisson bracket

1 - kfdV. [12.33] [12.35]

:ive charge species in phase space,
iackground with uniform negative
ither through electrostatic forces ,
r the identification q = 8, p = I ,
f(q ,p) = fo(p) == fo(I), form an
ially homogeneous equilibria. The

1 around a homogeneous stable
and then supposing ( = (k eikq to

Observe from [12.35] that kEN, and thus , (k and (-k are independent variables
that are almost canonically conjugate. Thus the complete system is

and

whence it can be shown directly that the spectrum is Hamiltonian.

Now, we consider properties of the evolution operator 'Ik defined by [12.34]. We
suppose (k varies as exp( -iwt), where w is the frequency and iw is the eigenvalue.
For convenience, we also use u := w/k, where we can view k E IR>o by varying
the system size . The system is said to be spectrally stable if the spectrum of'Ik is
less than or equal to zero or the frequency is always in the closed lower half plane.
Since the system is Hamiltonian, the question of stability reduces to deciding if the
spectrum is confined to the imaginary axis. The solutions of a spectrally stable system
are guaranteed to grow at most subexponentially.
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The operator Cfk is the sum of a multiplication operator and an integral operator,
and the multiplication operator causes the continuous spectrum to be composed of the
entire imaginary axis except possibly for some discrete points. Instability comes from
the point spectrum. The linearized Vlasov-Poisson equation is not spectrally stable
when the time evolution operator has an element of the point spectrum away from the
imaginary axis (implying a doublet or quartet of modes with non-trivial real part). The
point spectrum is composed of the roots of the plasma dispersion function

1 1. ~fE(k,u) := 1 - k
2

dp_o_ .
lR p-u

Here, U = w/ k. The one-dimensional linearized Vlasov-Poisson system with
homogeneous equilibrium fo is spectrally unstable if for some k E JR>o and u in the
upper half plane, the plasma dispersion function vanishes.

Using the Nyquist method that relies on the argument principle of complex
analysis , Penrose [PEN 60] was able to relate the vanishing of E(k, u) to the winding
number of the closed curve determined by the real and imaginary parts of E as u runs
along the real axis. Such closed curves are called Penrose plots . The crucial quantity
is the integral part of E as u approaches the real axis from above

1 1. ~flim - dp _0_ = H[j~](u) + if~ (u),
U-+ O+ 1r lR P - u

where H[j6J denotes the Hilbert transform, H[j6J = ~fdp f6/(p - u), where f :=

PVf lR indicates the Cauchy principle value, leading to the following expression for
the contour, parametrized by u E JR, in the complex plane:

The image of the real line under this mapping is the Penrose plot , and its winding
number about the origin is the number of members of the point spectrum of Cfk in the
upper half plane.

Figure 12.2 shows the derivative of the distribution function, f6, for the case of

a Maxwellian distribution f o = e-p2 and Figure 12.3 shows the contour - H[j6J ­
if6(u) that emerges from the origin in the complex plane at u = - 00, descends and
then wraps around to return to the origin at u = 00. From this figure, it is evident that
the winding number of the E(k, u)-plot is zero for any fixed k E JR, and as a result,
there are no unstable modes. Here , we take the value of k to be fixed.
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Penrose plots can be used to visually determine spectral stability. As described
above, the Maxwellian distribution function is stable as the resulting s-plot does not
encircle the origin. However, it is not difficult to construct unstable distribution
functions. In particular, the superposition of two displaced Maxwellian distributions,
fa = e -(p+c) 2 + e - (p-c) 2, is such a case. As c increases, the distribution goes from
stable to unstable. This instability is known as the two-stream instability.
Figures 12.4(a) and (b) demonstrate how the transition from stability to instability is
manifested in a Penrose plot.

At the bifurcation point , the Penrose plot crosses the ongm, indicating the
vanishing of the dispersion relation on the real axis and therefore the presence of a
member of the point spectrum. This eigenmode will be stable because u E JR and will
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be embedded within the continuous spectrum. Thus , the two-stream instability is an
example of the CHH bifurcation.

Figure 12.4. Penrose plots fo r a superposition ofMaxwellian distribution
functions with a) a stable separation and b) an unstable separation

f(q ,p, t ) = f a if Pa <

The description of the CHH bifurcation requires that we are able to assign an
energy signature to the continuous spectrum. Because eigenfunctions associated with
continuous spectra are not normalizable, this requires some delicacy. This was first
done in the Vlasov context in [MOR 92], where a comparison to the usual energy
signature for discrete modes was given, followed by a rigorous treatment of signature
in [MOR 00]. In the context of shear flow, signature was defined in [BAL 01], in
magnetofluids in [HIR 08] and for the general system described in the present section
in [MOR 03] . A rigorous version of Krein's theorem for the CHH bifurcation was
given in [HAG 11b]. We will give a general description of this energy signature for
the continuous spectrum in Chapter 13, but we motivate it here first by treating the

Where f a is a positive constant. Th.
equations of single particle motion fOJ

Pa ,t + Pa Pa ,q = - ¢q and

and this system is Hamiltonian, with f



Continuum Hamiltonian Hopf Bifurcation I 271

us, the two-stream instability is an analogous version of this instability in the context of the waterbag model, which will
have the advantage of only possessing a discrete spectrum.

1.5

1.5

We begin by assuming f to be a piecewise constant between M curves Pa(q,t),
i.e.

[12.36]f(q ,p ,t) = j 0 z (q,p, t) ,

where z (q,p, t) = (q(q,p ,t) ,p(q ,p,t)) is a canonical transformation.

12.3.2.2. Bifurcations in the waterbag model: Vlasov interpretation

One important feature of the system [12.27] is that its solution is a symplectic
rearrangement of the initial condition j (q,p) = f (q,P, 0), i.e. its solution has the
form

The rearrangement comes from the solution of the ordinary differential equation
for a single particle in the self-consistent potential ¢. This implies that the level set
topology of the initial condition is preserved, which can be leveraged to simplify the
equations in the case of certain types of initial conditions. One such simplification is
known as the waterbag reduction (see, e.g., [BER 67]) , in which it is assumed that
the initial condition j is a sum of characteristic functions. This property is preserved
under composition with the symplectic map z so that the solution remains a sum of
characteristic functions . The equations simplify to equations for the locations of the
contours separating different regions of constant f. Piecewise constant initial
conditions lead to a fluid closure that is exact for waterbag initial conditions, and the
1 + 1 theories in the previous section can be seen to arise from such an ansatz. We
will exploit the reduction by using a layered waterbag or onion-like initial condition
to closely approximate a continuous distribution function that undergoes the
bifurcation to linear instability we are interested in. In this way, we will be able to
connect the HH bifurcation with the CHH bifurcation that we describe later.

'1 ofMaxwellian distribution
0) an unstable separation

f(q ,p ,t) = fa if p., < p < Pa+l ,

ires that we are able to assign an
ruseeigenfunctions associated with
uires some delicacy. This was first
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irem for the CHH bifurcation was
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iotivate it here first by treating the

where f a is a positive constant. The equations for the curves Pa come from the
equations of single particle motion for a particle at (Pa(q,t) ,q),

and this system is Hamiltonian, with Hamiltonian function being the classical energy
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Here, ~fa = fa-l - f a, is the change in the distribution function when crossing
the oth waterbag layer. The Poisson bracket is similar to those seen in Hamiltonian
fluid theories [MOR 98]

The equilibria of the waterbag model that we are interested in studying are charge
neutral and spatially homogeneous, Pa = PaD constant, such that the electric potential
cP == O. We chose such a state and linearize about it, yielding the equations of motion

Moving to Fourier space and eliminating the dependence on q in favor of the wave
number k gives

Pk,t + ikpgPk = ik :Lfa(p~+l - Pk) ,
a

the equations of motion for the Fourier coefficients. In terms of the Fourier
coefficients, the Hamiltonian of the linearized system is

Here, the term -pg~fa arises from the term -pf6 in the linearized Vlasov
equation, which indicates the signature of the continuous spectrum. The bracket is
the bracket of the original nonlinear system written in terms of the Fourier modes

~~ ik (0 f og og 0f )
[j,g] = L.J L.J ~ -f opa opa - opa opa .

kEN a J a k - k k -k

This bracket is non-degenerate, and therefore, the system is nearly canonical in
terms of the new variables. In particular, for a given pair k , -k, the linear equations
form a finite-dimensional canonical Hamiltonian system upon scaling similar to that
of section 12.2.2.

The dispersion relation for this ~
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The dispersion relation for this system, for a given wave number k, and u = w/ k,
is derived by multiplying the o th equation by tlfa and summing, which is analogous
to that for the Vlasov system,

1 L tlfac(u, k) = 1- - -- = O.
k2 U _ p a

a 0

This dispersion relation can be analyzed graphically in terms of u. There are poles
of the dispersion function where u = Po. For u E (Po ,pg-l), the dispersion function
always has a zero if tlfa+l has the same sign as tlfa , because E will converge to the
opposite value of infinity at each end of the interval. Therefore, there will be at least
one zero in each interval that has this property. In intervals where tlfa + l and tlfa

have different signs, there are either no zeros or an even number of zeros, because E

must converge to the same value of infinity.

The reader may have noticed a similarity between the above formulas and the
multifluid formulas of section 12.2.1. In fact, the waterbag models are examples of
multifluid models, which are thus exact fluid closures of the Vlasov-Poisson system.
This can be seen by writing the waterbag model in terms of new variables Pa and U a
given by

)
rm -Pf6 in the linearized Vlasov
mtinuous spectrum. The bracket is
.n in terms of the Fourier modes

~ , the system is nearly canonical in
ven pair k , -k, the linear equations
system upon scaling similar to that

where Pa is a fluid density, and U a is a fluid velocity. Under this change of variables,
the equations governing the waterbag model take the following form:

Pa,t + (ua Pa )q = 0, ¢ qq = - L Pa
a

Evidently, under the identification Pa = p~/;/12 (or ha = p~/;j8), the above
equations are identified as a multifluid Hamiltonian system.

The dispersion function can also be rewritten in terms of the new variables so that
it resembles the analogous expressions (i.e. the diagravic or dielectric functions of the
multifluid section). After linearizing around an equilibrium state with Po' uo,and then
performing some algebraic manipulations yields

ei]: w) = 1 _ ""' Po
, ~ (w - kUO)2 - k2(ue)2'

[12.37]
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where u(J := y!(pg)2 / f~ is a thermal velocity that measures the width in velocity
space of a waterbag. Thus, bifurcations in the waterbag model, the Vlasov-Poisson
system and Hamiltonian multifluid equations are all described using similar
mathematical expressions.

Because the waterbag system is a finite-dimensional canonical linear Hamiltonian
system, the standard results of that theory apply, including Krein's theorem. We can
therefore determine whether there are any unstable modes by counting the total
number of neutral eigenvalues. If it is equal to the number of degrees of freedom of
the system, then we can expect stability; otherwise, due to the fact that eigenvalues
off the imaginary axis come in quartets, we can expect instability.

Now, we determine the signature of each of the stable discrete modes of the
waterbag model. Beginning with the linearized equations, and assuming the
normalization condition, 1 = L:a !:::..faPa/k = -kcPk, we find the Fourier
eigenvector Pk = l/[k(pg - u)]. Using this in the expression for the energy, we get a
formula for the energy of a discrete mode, viz.
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[12.38]

Next, replacing pg in the numerator of [12.38] by pg = u + (pg - u) leads to

where in the last expression, we obtain the dielectric energy (with the electric field
amplitude dependence scaled away).

The energy of a discrete mode is proportional to the derivative of the dispersion
function at the frequency corresponding to the mode. As mentioned previously, this
familiar formula is also true for embedded modes in the Vlasov equation [SHA 94],
and is particularly convenient for use in the waterbag model because it allows
geometric evaluation of the signature of modes in the waterbag model. Suppose at
first that u > O. Then, the signature of a mode is positive if the dispersion function is
increasing at the mode and negative if it is decreasing at the mode. If !:::..fa does not
change sign from one interval to the next and there is one mode in the corresponding
interval, the mode will have signature - sgn(pg!:::..fa). Similarly, any modes in the
same interval must have opposite signature (or one must have zero signature) because
the dispersion function must cross the axis in opposite directions at each discrete
mode. An example of such a waterbag distribution function is plotted in
Figure 12.5(a), and the dispersion relation is plotted in Figure 12.5(b), where we have
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marked the zeros with crosses and circles that indicate their signature. As noted , in
the general case , there is exactly one mode in intervals where .6..fex does not change
sign and either zero or two modes in intervals where it does change sign .
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Figure 12.6. Plot ofa waterbag distribution fun ction meant to capture the
electron two-stream instability. As the small waterbag is moved closer to the
large waterbag, a positive energy mode will collide with a negative energy

mode and give rise to the two-stream or bump on tail instability

Using the waterbag model , we can replicate the most important instabilities of
the Vlasov-Poisson equation, in particular the two stream instability and bump on tail
instability. Both of these instabilities can be emulated by a waterbag model with only a
few "layers" (fluids). In particular, we will consider the special case of a waterbag with
five layers as depicted in Figure 12.6. Observe that the outermost two have vanishing
distribution function, i.e. !I = Is = 0, while we choose 12 = 1, 13 = 0 and 14 = 0.5
so that the distribution has two peaks, one large and one small , separated by a valley.
The stability of this model depends on the various parameters involved in defining the
equilibrium. For a very large separation of the two peaks, the two-stream distribution
function will be stable as depicted in Figure 12.7(a); as the peaks are moved closer
together the two modes in the valley of the distribution function between the two
peaks move closer together, eventually colliding, as depicted in Figure 12.7(b), and
leaving the axis to become a pair of exponentially growing and decaying modes as
depicted in Figure 12.7(c).
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This transition here is identical to that which occurs in the two-stream instability
of the Vlasov equation (or the corresponding bump on tail instability). In the waterbag
case, there is a positive energy mode that collides with a negative energy mode in the
valley of the distribution function.
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Figure 12.7. Dispersion function for a two-stream distribution function for
parameter values corresponding to a) stable, b) neutral and c) unstable

equilibria. Circles and crosses correspond to positive and negative energy
modes, respectively, while the diamond indicates a mode at criticality.
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12.4. Summary and conclusions

In this chapter, we have described bifurcations in general classes of noncanonical
Hamiltonian systems that describe, e.g., matter as fluid or kinetic theories. In the
multifluid systems of section 12.2, we showed how to linearize, canonize and, for
stable systems with discrete spectra, diagonalize to obtain a normal form.
Hamiltonian bifurcations to instability were described, examples of SS bifurcations
were given, but the emphasis was on the HH bifurcation. From the normal form,
signature was identified, and it was seen that Krein's theorem applies, just as for
finite-dimensional systems. Next, the class of 2+1 Hamiltonian theories of
section 12.3 were defined and considered. These theories generically posses
continuous spectra when linearized, but the specific case of the Vlasov-Poisson
systems was treated in detail. In particular, Penrose plots, which allow us to describe
transitions to instability, via embedded modes in a continuous spectrum, were
described . The technique here is of general utility, e.g. it was worked out also in
detail for shear flow in [BAL 99]. It was also shown how to canonize the linearization
of these 2+1 theories. Next, in order to understand the relationship between discrete
bifurcations and the CSS and CHH bifurcations, we introduced the waterbag model,
which is a reduction of the 2+1 class to a class of systems with a countable number of
degrees of freedom, in which the continuous spectrum is discretized . The
identification of the waterbag models with the multifluid models of section 12.2 was
made and, consequently, the procedure for canonization and diagonalization of the
waterbag models was established.

A main motivation for studying Hamiltonian systems is their universality, i.e. we
are interested in understanding features of one system that apply to all. In this chapter
we have shown how infinite-dimensional noncanonical Hamiltonian systems enlarge
this universality class. It is clear that the same bifurcations occur in a variety of systems
that describe different physical situations. Any specific system within our classes of
systems may possess SS bifurcations, positive and negative energy modes and KreIn's
theorem for HH bifurcations. Our aim is to show that an analogous situation transpires
for CSS and CHH bifurcations. However, continuous spectra are harder to deal with
mathematically and functional analysis is essential , but the existence of analogous
behavior in the cases considered here guides us to develop a theory. For example , we
can interpret the CHH bifurcation as an HH bifurcation with the second mode coming
from the continuous spectrum. As stated before , the contents of this chapter are to set
the stage for the explicit treatment of bifurcation s with the continuous spectrum of
Chapter 13, to which we direct the reader.
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