= @

Nonlinear Physical
Systems

Spectral Analysis, Stability and Bifurcations

Edited by
Oleg N. Kirillov
Dmitry E. Pelinovsky

Series Editor
Noél Challamel

Sle= WILEY



First published 2014 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2014
The rights of Oleg N. Kirillov and Dimtry E. Pelinovsky to be identified as the author of this work have
been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2013950133

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN: 978-1-84821-420-0

MIX

Paper from
responslble sources

am.mg FSC*® C013604

Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0O 4Y'Y



Chapter 12. Continuum Hamiltonian Hopf BifurcationI . . . . . .. .. .. 247
Philip J. MORRISON and George I. HAGSTROM

12.1. Introduction . . . . . . . . . ... 247
12.2. Discrete Hamiltonian bifurcations . . . ... .. ... ... ....... 250
12.2.1. A class of 1 + 1 Hamiltonian multifluid theories . . . . . ... ... 250
1222, Examples . . . . . ..o 254
12.2.3. Comparison and commentary . . . . . . .. .. ... ... ..... 261
12.3. Continuum Hamiltonian bifurcations . . . . . .. ... .......... 263
12.3.1. A class of 2 + 1 Hamiltonian mean field theories . . ... ... .. 263
12.3.2. Example of the CHH bifurcation . .. ... ... ... ....... 266
12.4. Summary and conclusions . . . . . . . ... ... Lo 278
12.5. Acknowledgments . . . . . ... ... L 279

12.6. Bibliography . . . . ... .. .. ... 279



Chapter 12

Continuum Hamiltonian Hopf Bifurcation I

In this chapter, Hamiltonian bifurcations in the context of noncanonical
Hamiltonian matter models are described. First, a large class of 1 + 1 Hamiltonian
multifluid models is considered. These models have linear dynamics with discrete
spectra, when linearized about homogeneous equilibria, and these spectra have
counterparts to the steady-state (SS) and Hamiltonian Hopf (HH) bifurcations when
equilibrium parameters are varied. Examples of fluid sound waves and plasma and
gravitational streaming are discussed in detail. Next, using these 1 + 1 examples as a
guide, a large class of 2 + 1 Hamiltonian systems is introduced, and Hamiltonian
bifurcations with continuous spectra are examined. It is shown how to attach a
signature to such continuous spectra, which facilitates the description of the
continuous Hamiltonian Hopf (CHH) bifurcation. This chapter lays the foundation
for Krein-like theorems associated with the CHH bifurcation that are more rigorously
discussed in Chapter 13 (our companion chapter).

12.1. Introduction

A common bifurcation to instability, one that occurs in so-called natural
Hamiltonian systems that have Hamiltonians composed of the sum of kinetic and
potential energy terms, occurs when under a parameter change, the potential energy
function changes from positive to negative curvature. In such a bifurcation, pairs of
pure imaginary eigenvalues corresponding to real oscillation frequencies collide at
zero and transition to pure real pairs, corresponding to growth and decay. This
behavior, which can occur in general Hamiltonian systems and is termed the SS
bifurcation, is depicted in the complex frequency w = wgr + iy plane in
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248 Nonlinear Physical Systems

Figure 12.1(a). Alternatively, the HH bifurcation is the generic bifurcation that
occurs in Hamiltonian systems when pairs of non-zero eigenvalues collide in the
so-called Krein collision [KRE 80] between eigenmodes of positive and negative
signatures, as depicted in Figure 12.1(b). Such bifurcations occur in a variety of
mechanical systems [CUS 90, VAN 85]; however, HH bifurcations also occur in
infinite-dimensional systems with discrete spectra. In fact, one of the earliest such
bifurcations was identified in the field of plasma physics [STU 58] for streaming
instabilities, where signature was associated with the sign of the dielectric energy,
and this idea made its way into fluid mechanics [CAl 79, MAC 86b]. Streaming
instabilities were interpreted in the noncanonical Hamiltonian context in
[MOR 90, KUE 95a], where signature was related to the sign of the oscillation
energy in the stable Hamiltonian normal form [WIL 36, WEI 58] (see [12.15] below).
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Figure 12.1. Hamiltonian bifurcations with frequency w = wr + 7.
a) Steady-state bifurcation with doubler bifurcating through the origin.
b) Hamiltonian Hopf bifurcation showing Krein collision with quartet; slow
modes (s) have opposite energy signature from fast (f)

The aim of this chapter and of Chapter 13 is to describe Hamiltonian bifurcations
in the noncanonical Hamiltonian formalism (see [MOR 98]), which is the natural
form for a large class of matter models including those that describe fluids and
plasmas. Particular emphasis is on the CHH bifurcation, which is the terminology
that we introduce for particular bifurcations that arise in Hamiltonian systems when
there exists a continuous spectrum. There also exists a continuum steady-state (CSS)
bifurcation, but this will only be mentioned briefly. A difficulty is faced when
generalization of Krein’s theorem is attempted, which states that a necessary
condition for the bifurcation to instability is that the colliding eigenvalues of the HH
bifurcation have opposite signature to systems with continuous spectra. This
difficulty arises because ‘eigenfunctions’ associated with the continuous spectrum
are not normalizable, in the usual sense, and consequently, obstacles have to be
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overcome to define signature for the continuous spectrum. This was done first in the
context of the Vlasov equation in [MOR 92, MOR 00] and for fluid shear flow in
(BAL 01].  Given this definition of signature, it became possible in
[HAG 11b, HAG 11a] to define the CHH, a meaningful generalization of the HH
pifurcation.

Tn this chapter, we motivate and explore aspects of the CHH, which are discussed
further in Chapter 13. To this end, we describe in sections 12.2 and 12.3 large classes
of Hamiltonian systems that possess discrete and continuous spectra when linearized
about equilibria. These classes are noncanonically Hamiltonian, as is the case in
general for matter models in terms of Eulerian variables. For a general field variable
¥ that represents the state of such a system, a noncanonical Hamiltonian dynamical
system has the form

0H
\Ilt:{ql»H}:\’Ké_

5 [12.1]

where H[V] is the Hamiltonian functional and {, } is the Poisson bracket defined by
OF oG
(F.C) = /dﬂﬁd[\p] = [12.2]

In general, we may consider a p + 1 multicomponent theory, i.e.
T(p,t) = (VU2 ..), with J being an operator that makes [12.2] a Lie algebra
realization on functionals (observables). Because the operator JJ need not have the
canonical form, may depend on ¥ and may possess degeneracy, this structure was
referred to in [MOR 80b] as noncanonical. Because of the degeneracy, the Poisson
bracket of [12.2] possesses Casimir invariants C[¥] that satisfy

{C,F}=0 VF. [12.3]

We refer the reader to [MOR 98, MAR 99] for further details.

In section 12.2, we consider a class of 1+1 multifluid theories that possess
discrete spectra when linearized about homogeneous equilibria. The linearization
procedure along with techniques for canonization and diagonalization, i.e.
transformation to conventional canonical form and transformation to the stable
normal form, respectively, are developed. Then, specific examples are considered that
display both SS and HH bifurcations. In section 12.3, we consider a class of 2+1
theories. The class is described and the CHH bifurcation for the particular case of the
Vlasov-Poisson system is discussed. The relationship to the results of section 12.2 is
shown by introducing the waterbag model, which is one way of discretizing the
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continuous spectrum, and motivates our definition of the CHH bifurcation. Finally, in
section 12.4, we summarize and introduce the material that will be discussed in
Chapter 13.

12.2. Discrete Hamiltonian bifurcations

We first describe a class of Hamiltonian theories of fluid type that have equilibria
with discrete spectra. Three examples are considered that demonstrate the occurrence
of Hamiltonian bifurcations like those of finite-dimensional systems. In the last
example of section 12.2.2.3, the HH bifurcation is seen to arise in the context of
streaming.

12.2.1. A class of 1 + 1 Hamiltonian multifluid theories

For our purposes, here, it is sufficient to consider a class of 1+1 theories of
Hamiltonian fluid type. These theories have space-time independent variables (z, 1),
where z € T C R, where T = [0, 27), on which we assume spatial periodicity for
dependent variables of fluid type, ¥ = (p1, po,...u1,us,... ), where p,(z,t) and
uq{z,t) are the density and velocity fields, respectively, with o = 1,2,..., M.
These fields will be governed by a coupled set of ideal fluid-like equations generated
by a Hamiltonian with a noncanonical Poisson bracket.

The noncanonical Poisson bracket for the class is obtained from that for the ideal
fluid [MOR 80b, MOR 82] reduced to one spatial dimension

M
5G . 6F  6F _8C
_ _9F oG 124
(F.G) ;Ad:c (5%66% 6[)&65%), [124]

where the shorthand & := 8/8z is used and 6F/6u, and 6F/6p,, are the usual
functional (variational ) derivatives (see e.g. [MOR 98]). We consider Hamiltonian
functionals of the following form:

M
1 1
H[pa,ua} = Z /J;dx <§paui + paUal(pa) + 20a®> ) [12.5]
a=1
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where the internal energy per unit mass, Uy, is arbitrary but often taken to be
U, = ﬁp(vfl)/(y — 1) where « and the polytropic index ~y are positive constants.
The coupling between the fluids is included by means of a field @ that satisfies

M
o(z,t) = > Plog), [12.6]
#=0

where ‘B is a symmetric pseudo-differential operator, fT dz fBlg] = fT dz g¢B[f],
and an arbitrary constant term pg has been included on the right hand side of [12.6].

From [12.6], we obtain

oH w? o0H
5y % that® and == = poun, [12.7]
(03 O

where the enthalpy h, = 0(paUs)/Ips and the pressure of each fluid is given by
pa = p20U, /Opy. Using [12.7] with [12.4], gives

Ope _

a {pa, H} = =0(patia),

Oug

ot {Uaa H} = U O0lg — 8pa/,0a - 09,

which constitute a system of fluid equations coupled through & alone.

The noncanonical bracket of [12.4] is degenerate and possesses the following
Casimir invariants

cs = /dxpa and Cg:/dx“a, a=1,...,M. [12.8]
J

These invariants satisfy {C**, F} = 0 for all functionals F. The physical
significance of these Casimirs can be traced back to the Liouville theorem of kinetic
theory [MOR 87] (see section 12.3.2.2).

12.2.1.1. Equilibrium and stability

Because of the existence of the Casimir invariants, the Hamiltonian is not unique
and, consequently, equilibria possess a variational principle since

. 86H _ _§F
OZJ[‘I’]E:J[‘I’](S—\I;,
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where F' = H + C. Thatis, 6F /¥ = 0 = ¥, = 0. In the present context, this
amounts to 0F = 6 (H + Y, MCA + A2CY) = 0, with Lagrange multipliers A% ¢
R, or

5F a2 SF
ﬁ=%+ha+¢>+/\§:0 and = = paua + A5 =0.  [129]
83 (o1

Equations [12.9] have the equilibrium solution ®, = 0, and p¢, € R>? and u¢ €
R.

Expansion around such equilibria gives a linear dynamical system. Because the
equilibria of interest are homogeneous, we can use the following expression en route
to linearization:

pa =5+ Y pR(H)e™ and ug =uf + ) ui(t) e,
kEZ kEZ

where the equilibrium constants (pg,,u%,) could be absorbed into the sum by

redefinition of the & = 0 terms. For linearization, we expand in the smallness of
(P%,ug)-

Functionals of (p§, uf) can be mapped onto functions of the Fourier components
by insertion of the Fourier series, i.e.

Flpa,ual = f(07, 0515 PLos UG, UL, U, - - ),
and this transformation (for our purposes) can be considered invertible upon using

1 .
ue = — [ dru,(z)e .

(=g [ drua(®)
Functional derivatives can also be expanded, e.g.

: OF
7(57F7 = Z <6F> e’ and (—) = 1 ﬁ., [12.10]
Mgy = Sue / e ), 21 Ouf

where the second equality follows from the chain rule (see, e.g., [TAS 11]). Using
[12.10] and its counterpart for p,, the bracket of [12.4] becomes

M.
ik ([ 0g Of of dg
_ ik _ 91 99\ 12.11]
[:4] Z Z27r (aug dp™,  Oug 0p%, [

keZ a=1
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Observe that in the Poisson bracket of [12.11] the Casimir invariants of [12.8], the
i = 0 components of (p,, 1), have been removed, i.e. the bracket has become non-
degenerate in terms of the ostensible dynamical variables (pf, uy ). Geometrically, the
choice of equilibrium selects the symplectic leaf on which the dynamics takes place.

It remains to determine the Hamiltonian. This is done by inserting the Fourier
expansions of (pq, us) into [12.5]. From this, we obtain the full nonlinear dynamics
in terms of Fourier amplitudes, but since our interest is in bifurcations of the linear
dynamics, we expand in the smallness of the amplitudes to obtain a quadratic form.
Although this can be done in general terms, we prefer to explore particular cases of
equilibrium and stability in section 12.2.2. However, before doing so, we make some
general comments about canonization and diagonalization.

12.2.1.2. Canonization and diagonalization

The bracket of [12.11] is not yet in canonical form. To canonize, we rewrite the
sums as follows:

Mo
ik dg Of of dg
[fa g] = o |7<—a o Q.0 o
keN; m [\ Oup 0p%,  Ouf Op%,

_( 09 of  9f 9g [12.12]

ou®, 8p%  Ou*, 9p% ’

=Y % ( 0/ 99 _ 99 af) [12.13]

2 2 \oqg oy~ dur oo )

where in the second equality, the canonical fields (¢}*, pi*) are obtained as particular
real linear combinations of (p%,,u%;). Thus, modes, i.e. degrees of freedom, are
indexed by the wave number £ € N and an index m that takes two values for every
value of the species index «. In terms of a choice of canonical fields, the Hamiltonian
for the linear dynamics is given by the second variation as §2F =: 2H, and takes the
form

2M

Hp= > >zl 27, [12.14]
keN m,n=1

where z* 1= (¢}*,pp*) and the matrix 27" depends on the specific values of the

equilibrium parameters (pg, uf).

Given the system with Hamiltonian in the form of [12.14], it remains to effect
a canonical transformation to a normal form. For example, if the system is linearly
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stable, then there exists a canonical transformation (¢i*, pp*) < (QF, P*), from real
variables to real variables, where the Hamiltonian becomes the following in terms of
the new canonical coordinates

2M
Hy =5 S e (1Y + (@), [12.15

keEN m=1

where the frequencies w}* € R>? and the signature o* € {£1}. Thus, the stable
normal form is just an infinite sum over simple harmonic oscillators. Those for which
ot = —1 are negative energy modes, stable oscillations with negative energy
(Hamiltonian). It is important to emphasize that even though the energy is negative,
the system is stable. For finite-dimensional systems, the method for constructing the
canonical transformation to normal coordinates (Q}", P{"*) is treated in standard texts
and this method carries over. However, when negative energy modes exist, the
method is somewhat complicated, and, although well-known in Hamiltonian
dynamics lore, is not usually treated in physics texts. An accessible treatment is given
in [TAS 11], where it is applied in a plasma physics context.

12.2.2. Examples

In order to make the ideas discussed in sections 12.2.1.1 and 12.2.1.2 more
concrete, we consider a few examples that explicitly demonstrate canonization,
diagonalization, and Hamiltonian bifurcations to instability in the context of
multifluid models; in particular, the HH bifurcation will emerge for particular modes
indexed by (k, o), just as it appears in finite-dimensional systems.

12.2.2.1. Sound waves and multiplicity

First, consider the case of a single fluid with an equilibrium state given by p,., some
positive constant, and 4. = 0. The linear Hamiltonian is evidently

1
Hp =3 /Tdr (pe(6u)* + c2(6p)% /pe) = 7> (peluxl® + €2 (Ipxl?/pe)
kez

where ¢2 = p,, = pe(pU)pp(pe) is the sound speed. The appropriate Poisson bracket
is that of [12.12] with a single a-term.

With some thought, canonization and diagonalization is possible in a single step.
but we will proceed in a direct manner by assuming the canonical coordinates are

g = Vor(ug +u_y) and gy = V27 (px + p-i),
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with corresponding momenta

/2 /2
Pllc: z’k/ (pk —p—x) and P%: z'k/ (up ~u-—k).

A simple chain rule calculation takes [12.12] into the following

ZZ(af O _ O af). [12.16]
keN m=1 Ogi" Opi Ogi" Op

Observe in [12.16] that indexing a degree of freedom by & € N requires a
multiplicity index m. Each mode, which is described by an amplitude and a phase,
constitutes a single degree of freedom; a single degree of freedom is thus
two-dimensional, and consequently, each mode corresponds to two eigenvalues. For
a stable degree of freedom, these eigenvalues correspond to two frequencies, one the
negative of the other. Here, we have multiplicity, the reason for which will be
mentioned when we diagonalize.

Now, using
up = —— (qh+2ikpR) and pr = —— (g% + 2k p}),
2\/% 2y 27

valid with £ — —k, in the Hamiltonian Hj, gives

1
Hilapl =) (pe\qklz + 4k |prl*/ pe + c2ai P/ pe + 4K pe D | )
keN

The normal form is achieved upon substitution of the following canonical
transformation:

[2kc 2kp c
= s p 2 _ €N 2 _ s_ p2
k Qk? k» Q= Cs Qk) D 2]{3/)6 P
ie., Hy, becomes
1 2
=330 > ke (@) + () [12.17)

keN m=1
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This is the sought after normal form where the frequency of all modes is kc; as
appropriate for sound waves.

We close this example with a few comments. First, for a given wavelength as
determined by & € N, there are in fact two modes: one that propagates to the right
and one to the left. This is accounted for by the multiplicity index, m. In obtaining
this normal form, we have assumed c? = p, > 0, which can be traced back to a
property of U(p) and is in essence Le Chatelier’s principle of thermodynamics, viz.,
that pressure increases upon compression. If we had some exotic fluid for which this
was not the case, then the system would be unstable and the normal form of [12.17]
would not be achievable. Imagine that the equilibrium parameter p, can be varied
and that at some critical value, ¢ makes a transition from positive to negative. Since
a mode frequency w = kc,, it is evident that this transition happens at zero frequency
and, consequently, is a SS bifurcation (see Figure 12.1(a)). Moreover, because of the
multiplicity, this is a degenerate bifurcation, where for each fixed k, four pure
imaginary eigenvalues collide at zero frequency and then transition to four pure real
eigenvalues of growing and decaying pairs. The situation 1s completely degenerate
since this happens for all k values simultaneously. In section 12.2.3, we will see that
the HH bifurcation, as depicted in Figure 12.1(b), can be transformed to a similar
collision with four eigenvalues at zero frequency, but it differs in that after
bifurcation, we obtain the Hamiltonian quartet, four eigenvalues with both real and
imaginary parts, a situation that is sometimes called over stability.

12.2.2.2. Counterstreaming ion beams with isothermal electrons

Next, we consider a simple one-dimensional multifluid plasma configuration
consisting of two cold counterstreaming ion beams in a neutralizing isothermal
electron background. A detailed linear, nonlinear and numerical analysis of this
problem, from a Hamiltonian perspective, can be found in [KUE 95a, KUE 95b], and
we refer the reader to these references for further details.

The dynamical system of interest in dimensionless form is given by

Ou,,
ot
Opa
ot
Pp=e®—p, —p_, [12.18]

+ uq Oty + 0¢ =0,

+ 0 (paue) =0,

where o € {+} labels each ion stream with velocity w,. Here, p, represents &
dimensionless number density instead of mass density. Equation [12.18], Poisson’s
equation, is a constraint and in principle the electrostatic potential can be solved 25
¢ (py,p_) so that the entire system is described in terms of the dynamical variables
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p+ and vy . As usual, the electric field is given by I/ = —d¢. Thus, this system is of
the class described in section 12.2.1, with [12.18] a specific case of [12.6]. It has the
Hamiltonian functional

B 1, ¢ 1 2
H—/de <;§paua+/od¢¢€¢+§(a¢) )7

and Poisson bracket of [12.4].

Homogeneous equilibria follow from §F' = 0 for M. = —u?2/2 and A% = Fu./2,
which are consistent with an equilibrium of ion streams of equal density and speed,
Po = Po = = uj‘:—ue_:ue, E. = ¢, =0,
that we assume for simplicity. Thus, we have a one-parameter family of equilibria
controlled by wu,.

Linearizing about this equilibrium state gives the following Hamiltonian for the
linear dynamics

1 1 1
H, = = /dx (—(6u+)2 + S (6u_)? 4 2ue 8py Suy
2 o7\ 2 2

~2u,6p_du_ + (05¢)* + (5¢)2) .

Observe that the sign of /{7, may be either positive or negative, depending on the
perturbation; thus, we may have instability or negative energy modes in the system.

Expansion in a Fourier series as in section 12.2.1.1, including the expansion
6 = D ez ére**®, and using the linearized Poisson equation [12.18] gives
¢r = Np/(1+ k?), where Ny := p,j + py, - With this expression, the energy Hp,
becomes

m _ _
S M (T [1219]
keN

_ - | Nie|®
+2ue(pguf,€ — PR U_y T+ c.c.) - 21 )
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where c.c. denotes complex conjugate. Under the transformation

+ uck .

Py V3 (p2 —iq1),
Y Ly S
P = T2 P4 q3)

with p“f,c = (p,f)* and ufk = (ufj)*, the Poisson bracket becomes that of [12.13]

4 1
T
k 2./,
_ 1
u =
k 2\/T e

with M = 2 and the linear Hamiltonian [12.19] becomes

4
1 ;
Ho=5 30 3 (o vk + 6 U ),

keN mn=1

where
r 1
k
2u, te
b, k2w,
L+ k2
mk =
0 0
0 ku,
L 1+ k2
I kgue
T ke
1
ku. S,
gt =
k‘2
Ue 0
1+ k2
0 0

1+ k2

ku.
1+ k2

—kue

k%u,
1+ k2

k2w,
14 k2
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Thus, in terms of the canonical coordinates of [12.20] the system is diagonal in
k, but it remains to transform the 4 x 4 block structure, the part corresponding to the
multiplicity, to normal form.

For values of wu, for which the system is stable, the diagonalizing canonical
transformation is given explicitly in an appendix of [KUE 95a]. The reader is
directed there to see how to obtain

By = 53 (WP + @) - wp (PP +(@D%) 1220
keN

+wf (P2 + (@D —wy (PO + (@)

Evidently, for each value of k, there exist four modes, two positive energy modes
and two negative energy modes. The symmetry of the equilibrium facilitates the
calculation of the frequencies, which are given by

1
1 1 2 |?
+ 2 ©
=k |— +u’ + >0, 12.22
Ve [2(1+k2) e V 4(1+k2)2 (1+k2)} 22l

which can be obtained from the plasma fluid dielectric (dispersion) function

(hyw) =1+ = — 2 ! P =0 [12.23]
N E T T o (kw2 (wrku)?) :

From [12.22] it is evident that all bifurcations to instability occur through zero
frequency as depicted in Figure 12.1(a) and in fact are degenerate, i.e. if we fix k£ and
vary u, then there is a value of u. at which w. , the slow mode, vanishes and then
becomes unstable with pure imaginary eigenvalues, two representing growth and two
decay. Thus, this is another example of a SS bifurcation that is forced to be degenerate
because of the imposed symmetry. In the next section, we will break this symmetry
and obtain the HH bifurcation, but for variety, we do so in a physically different, yet
mathematically similar, context.

12.2.2.3. Jeans instability with streaming

The widely studied Jeans instability occurs in Newtonian gravitational matter
models. For the present example, we suppose matter is governed by our 1+1 fluid
model with two interpenetrating streams. We refer the reader to [CAS 98] for
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background material and further details. The model is the same as that of
section 12.2.2.2 except Poisson’s equation is replaced by

¢ =ps+p-—p,, [12.24]

where we incorporate Einstein’s device of introducing a cosmological repulsion term,
which in the Newtonian setting amounts to introducing a negative constant
gravitational mass of density p,. The sign change in [12.24] accounts for
gravitational attraction.

The equilibrium for this case is similar to that of section 12.2.2.2, except we allow
for asymmetry and, like the equilibrium of section 12.2.2.1, we allow for pressure in
each stream. Specifically, we have the equilibrium constant densities pT and g such
that o} + p. = pa and ¢. = 0, the two stream velocities ul > 0 and —u_ > 0,
chosen in opposite directions, and two sound speeds ¢. Upon scaling, these can be
reduced to four independent equilibrium parameters: u}, u., 8 := p. /pt and ¢ :=
c; /et

From the results of sections 12.2.2.2 and 12.2.2.1, we can immediately write down
the linearized Hamiltonian

1 . .
H;, = 3 /d:r <p2(6u+)2 +p7 (6u_)? +2uf Spydur — 2u; dp_du_
T

+(e)?(8p ) pf + (c7)(8p-)% )0z — (55¢)2>-

Fourier expansion and canonization proceeds in the same manner as in the
previous examples. In the case where the equilibrium parameters indicate stability,
the diagonalization can be shown to give a Hamiltonian of the form of [12.15] with
M =2

The frequencies are roots of the following “diagravic” function

| B
. _ 2.25]
T = o] 2w vk -] O

with two fast modes being positive energy modes and two slow modes being negative
energy modes (see Figures 1 and 3 of [CAS 98]). In general, all four modes ar¢
distinct, but if we symmetrize parameters as in section 12.2.2.2, then the quadratic
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obtained from [12.25] becomes biquadratic and is easily solved, indicating
degenerate modes of each sign as before. Evidently, this system possesses a rich
parameter space, and various bifurcations to instability for various k-values are
posSible. In addition to the four parameters above, we can use k£ as a control
parameter: we have scaled the system size to 2w, but upon reinstatement, this
translates into varying k. The Jeans instability is a long wavelength instability, and
we can observe the transition to instability as k decreases. This is immediate if
¢c=f = 1and u, = 0, in which case [12.25] implies w? = k? — 1. Using k as the
control parameter, as the wavelength is increased, we see the instability set in as a
degenerate SS bifurcation. The situation is complicated with the presence of two
streams, the subject of this section, and the HH bifurcation as depicted in
Figure 12.1(b) is clearly present (see Figure 2 of [CAS 98]). This is quite generally
the case for fluid systems with steaming equilibria. In section 12.3.2.2, we will see
how multifluid streaming relates to the waterbag distribution of kinetic theory, and
we will discuss explicitly the HH bifurcation in this context.

12.2.3. Comparison and commentary

It is evident from the discussion of section 12.2.2 that a requisite for determining
an HH bifurcation is the identification of the energy for the linear system. In the
context of noncanonical Hamiltonians systems, this naturally comes from second
variation §2F, the Hamiltonian for the linear system. Sometimes ‘“‘energy”
expressions are obtained by direct manipulation of the linear equations of motion as
done, for example, in the original MHD energy principle paper [BER 58], but this
procedure can obscure the notion of signature. For example, a system of two simple
harmonic oscillators conserves wy (g% + p?) + wa(g3 + p3) for both signs and either
might be obtained by manipulation of the equations of motion. The unambiguous
sign for the correct energy is uniquely given by §2F; this is important because this
sign can drastically affect the behavior of the system when dissipation or nonlinearity
is considered. For example, a system with a negative energy mode can become
unstable to arbitrarily small deviations from the equilibrium when nonlinearity is
added (see Cherry’s example as described in [MOR 90, MOR §9]).

In the plasma literature, other definitions of energy are usually considered, e.g. in
the context of streaming instabilities, the dielectric energy, which is proportional to
w|E|?0e /Ow, where E is the electric field amplitude, is incorporated. This expression
was originally derived by von Laue [VON 05] for the energy content in a dielectric
medium by tracking the energy input due to an external agent. However, we have seen
how it arises from 62 F', and only then can we be assured that it represents a quantity
conserved by the linear dynamics. In fact, for our general multifluid model, the & (k, w)
takes the form e(k,w) = 1 + 3, Xa(k,w), with a contribution x, from each fluid,
e.g. that for counterstreaming and Jeans are [12.23] and [12.25], respectively, (also
see [12.37] below) and it can be seen in general that §2F ~ w|FE|?0¢/dw. For neutral
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modes embedded in the continuous spectrum of Vlasov theory (see Chapter 13), the
formula w|F|?8¢ /Hw remains valid [MOR 94, SHA 94], but this formula is incorrect
for excitation of the continuous spectrum as shown in [MOR 92], where the correct
alternative formula was first derived, and the notion of signature for the continuous
spectrum was defined.

Sometimes, energy is defined in terms of the Lagrangian displacement variable
as was done by manipulation of the linear equations of motion in [BER 58, FRI 60].
Such expressions can also be obtained by expansion of an appropriate Hamiltonian,
82 H. It was shown in [MOR 90, MOR 98] that this procedure gives an expression that
is essentially equivalent to §2F. See [AND 13] for a recent general discussion in the
context of MHD. '

In conventional Krein theory, the signature is defined in terms of the Lagrange
bracket (see, e.g., [MOS 58]). However, it is a simple matter to see that. this
corresponds to the normal form definition [MAC 86a, MOR 90], which follows by
comparison of terms in the diagonalization procedure (see [WHI 37, TAS 11]). In
[MOR 90], it was argued that all these definitions of signature, using the dielectric
energy, 6°F, 62 H, and the Lagrange bracket, are essentially the same when they are
meaningful.

One ostensible difference between the HH and SS bifurcations is that the latter
occurs at zero frequency. However, one can affect a time-dependent canonical
transformation so that all four HH eigenvalues of Figure 12.1(b) collide at zero
frequency. To see this, consider one of the stable degrees of freedom, which has a
contribution to the Hamiltonian in action-angle variables (fy,.J;) given by
H; = wyJy, where wy depends on the bifurcation control parameter and takes the
value w* at the bifurcation point. Using the mixed variable generating function F; to
transform to new canonical variables (0, 7):

Fy(6s,T5) = (9f —w't)J, [12.26]
we obtain
o a1'72 _ * B 8F2 .
@—aj—Of w*t and J_c’)@f_j’

which amounts to moving into a rotating coordinate system with new Hamiltonian

ﬁ:H+a—;;115—2:(wf—w*)\7-
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Thus, in the new frame, the frequency wy — w* vanishes at the bifurcation point.
At bifurcation, the companion mode w, has the same value w*; consequently, a
sjimilar transformation will bring this mode to zero frequency at bifurcation. At first
glance, we might think this has made the HH bifurcation identical to a degenerate SS
bifurcation, but the behavior of the two beyond the bifurcation point is different. The
degenerate SS bifurcation transitions to two purely growing and two purely decaying
eigenvalues, while the HH transforms to over stability, i.e. it obtains a quartet
structure immediately upon bifurcation. (We could argue that the frame shift could be
a function of the control parameter, but with this line of reasoning all bifurcations
could be made to look like SS bifurcations, even in the nonlinear regime.) The frame
shift of [12.26] is identical to a Galilean shift that can be done for fluid and plasma
theories in order to bring modes to zero frequency at bifurcation. This artifice is used
in the development of the single-wave model [BAL 13] and will be considered in
Chapter 13.

The connection between degeneracy and symmetry is well known, and there is a
very large literature on bifurcations in finite-dimensional Hamiltonian systems with
symmetry (see, e.g. [DEL 92] for an entryway). In our examples above we have seen,
as expected, that this is also the case for infinite systems with discrete spectra. In fact,
it is quite common for the dispersion relation to factor as a consequence of symmetry
[TAS 08]. However, systems with symmetry and continuous spectra are less well-
studied, but counterparts exist, e.g., the degeneracy of the SS bifurcation of Jeans
inability with ue = 0 of section 12.2.2.3 has a CSS counterpart when described by the
Vlasov system (see section ITIID of [BAL 13]).

12.3. Continuum Hamiltonian bifurcations

Now, we turn to the general class of 2+1 Hamiltonian mean-field theories in
which the linear theories around equilibria possess a continuous spectrum. This is
followed by the exposition of the two-stream instability in the Vlasov—Poisson
equation, which is a standard example of the CHH bifurcation. Next, we introduce
the waterbag reduction of the Vlasov—Poisson equation and use it to connect the
two-stream instability to Krein-bifurcations in the corresponding waterbag model,
linking this section to section 12.2.

12.3.1. A class of 2 + 1 Hamiltonian mean field theories

We begin with the class of 2+1 Hamiltonian field theories introduced in [MOR 03],
which have with a single dynamical variable, f(g,p,t), a time-dependent density on
the phase space variables z := (g, p). The density satisfies a transport equation

of B
o +1f,€] =0, [12.27]
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where the bracket [f, g] = fq9, — 94 fp is the Poisson bracket for a single particle, and
the particle energy £ depends globally on f. Equation [12.27] is therefore a mean field
theory, where f is a density of particles in phase space that generates £ and is advected
along the single particle trajectories that result from £. The resulting equations are
typically quasi-linear partial integro-differential equations. We assume that the particle
energy arises from a Hamiltonian functional of the form H|[f] = Hy + Hy+ H3+. ..,
where generally I7,, is the n-point energy, e.g.

M= [ @ 0, B0 =g [E: [ #2056 ) 1),

with h; and hy being interaction kemels. Here, we will only consider Hamiltonian
systems with up to binary interactions, and we will assume that that h, possesses the
symmetry ho(z, 2’) = ho(2', 2). If £ is obtained from the field energy by functional
differentiation

£ = 6—H =hy + /dQZ/ hy(z,2') f(2'),
6f z

then H|[f] is a constant of motion for [12.27].

Equation [12.27] with & = §H/df is a Hamiltonian field theory [MOR 03] in
terms of the noncanonical Lie~Poisson bracket of [MOR 80a, MOR 82]

{F,G} = /ngzf {W’ 57 [12.28]

This bracket depends explicitly upon f, unlike usnal Poisson brackets that only
depend on (functional) derivatives of the canonical variables. The bracket of [12.28]
is antisymmetric and satisfies the Jacobi identity, though it is degenerate, unlike
canonical brackets. The equations of motion may be written as

OF 6G}

A=y =1

5 5H} =—[f,&], [12.29]

>W
where H = Hy + Hy + .. ..

As mentioned in section 12.1, degeneracy of the Poisson bracket gives rise (0
Casimir invariants, quantities that are conserved for any Hamiltonian. For the bracket
of [12.28] the Casimir invariants are C[f] = [, d*2C(f), where C(() is an arbitrary
function. The existence of Casimir invariants leads to a foliation of phase space (i



Continuum Hamiltonian Hopf BifurcationI 265

this case, a function space) with symplectic leaves, which are the level sets of the
Casimir invariants and which inherit a symplectic structure from the Lie-Poisson
pracket. The evolution of f is restricted to one of these symplectic leaves, and the
equations on a single leaf are canonical.

In addition to the Casimir invariants and the total energy, there may be conserved
momenta P[f] generally arising from translation symmetries of the interaction
kernels ki, ho,.... The system conserves momentum if there exists a canonical
transformation of the phase space Z, z = (g, p) «— z := (60, I} such that in the new
particle coordinates z := (6, I), the interactions h1, h, etc., have upon composition
with z(Z), one of the following two forms:

hioz=hi(I), hyo(z,2") = ho(1, 1,10 — &) [12.30]
or
hioz=0, hyo(z,2) =ho(|I - 1,16 -6). [12.31]

In the first case,

Plf] = L 21 f(z)

is conserved, while in the second case, we have two kinds of translation invariance
and thus two components of the momentum

Pl[f]:/zdzzlf(z) and Pz[f]:/Zszﬁf(z).

These momenta can be very useful (see e.g., [BAL 01]), but they will not be
discussed further here.

For equilibrium states f is a function of the single particle constants of motion
only, i.e. the single particle energy £ and possibly momenta. The example treated here
has an equilibrium that only depends on I, where (6, I) are the action-angle variables
corresponding to a given £. For this reason, we set (8, 1,t) = fo(I) + ¢(6,1,t) and
then when a choice of fy is made, {(0, I,t) represents the main dynamical variable.
The phase space is £ = D x T, i.e. periodic in § € [0,27) = T and [ € D where
D = R. Upon substitution of f = fy + ¢ into &, both of the forms of [12.30] and
[12.31] can be written as follows:

Elfo + (] = Elfol + €[] = h(I) + ©(6,1),
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with
B(0,1) = K¢ = /Ddl’ /Tde’ K(I,T,10—0))c(0, T, 1),
where h and K are determined by ki and hy. Thus the governing equation is

where [f, g] = fogr — gof1 and Q(I) = B’. Equation [12.32] will serve as a starting
point for our subsequent linear analyses.

12.3.2. Example of the CHH bifurcation

All of the models described in section 12.3.1 possess CHH bifurcations; however,
here, we will concentrate on the Vlasov—Poisson system. First, we describe it, then we
make connections to the multifluid results of section 12.2.1 and in this way relate the
CHH to the ordinary HH bifurcation.

12.3.2.1. Viasov—Poisson system

The Vlasov—Poisson equation arises out of [12.27] through definition of the single
particle energy £ and potential ¢, where £ = p?/2 + ¢ and

ff:_[f>g]:_pfq+¢qu and ¢qq:l*/%fdv~ [12.33]

The interaction kernels for this model are: h; = p?/2 and hy = |g — ¢'|.

The function f represents the density of a positive charge species in phase space,
under the assumption that there is a neutralizing background with uniform negative
charge density. The particles interact with each-other through electrostatic forces,
which are included by the Poisson equation. Under the identification ¢ = 6, p = 1,
we recover [12.30]. Arbitrary functions of p alone, f(q,p) = fo(p) = fo(I), form an
important class of solutions to this model, the spatially homogeneous equilibria. The
analog of [12.32] is

Gt +p8q — fodg — Cppy =0 and czﬁqq:—/deg.

Upon linearizing the Vlasov-Poisson system around a homogeneous stable
equilibrium, i.e. dropping the nonlinear term ¢, ¢,, and then supposing ¢ = (ie**? t0
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eliminate ¢ (which is 8 in the previous language) in lieu of the wave number £,
(x(p, t) becomes our dynamical variable that satisfies

Che = —ikpCe + ik fodr, and ¢ =k 2 /RdﬁCk(f% t),

which simplifies to the following integro-differential equation for (x:

Gu = koG + if k™ [ dpGu(pt) = ~Tude. (1234
R
Here, we have introduced the time evolution operator €y, whose spectrum under
changes in f we will study to understand the CHH bifurcation.

The linearized equations inherit a Hamiltonian structure. Because of the
noncanonical form, linearization requires expansion of the Poisson bracket as well as
the Hamiltonian. In terms of the variables (. and (_, the Hamiltonian is

Hip G, (k] = %Z ( de% |Ck|? + |¢k(2> ;

keN

with the Poisson bracket

{F.G}p = Zz‘k/kdvfg)

keN

(5F 0G oF 6G) ‘ [12.35]

8k 6C-k 8¢k 8k

Observe from [12.35] that £ € N, and thus, {; and {_ are independent variables
that are almost canonically conjugate. Thus the complete system is

Cet = —FTiCi and okt = —F_kl_k,

whence it can be shown directly that the spectrum is Hamiltonian.

Now, we consider properties of the evolution operator ¥, defined by [12.34]. We
suppose (j, varies as exp(—iwt), where w is the frequency and iw is the eigenvalue.
For convenience, we also use u := w/k, where we can view £ € R>? by varying
the system size. The system is said to be spectrally stable if the spectrum of T is
less than or equal to zero or the frequency is always in the closed lower half plane.
Since the system is Hamiltonian, the question of stability reduces to deciding if the
spectrum is confined to the imaginary axis. The solutions of a spectrally stable system
are guaranteed to grow at most subexponentially.
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The operator T, is the sum of a multiplication operator and an integral operator,
and the multiplication operator causes the continuous spectrum to be composed of the
entire imaginary axis except possibly for some discrete points. Instability comes from
the point spectrum. The linearized Vlasov—Poisson equation is not spectrally stable
when the time evolution operator has an element of the point spectrum away from the
imaginary axis (implying a doublet or quartet of modes with non-trivial real part). The
point spectrum is composed of the roots of the plasma dispersion function

1 1o
elk,u):=1— = [d o .
(ks u) el e
Here, u = w/k. The one-dimensional linearized Vlasov—Poisson system with

homogeneous equilibrium fq is spectrally unstable if for some & € R>% and  in the
upper half plane, the plasma dispersion function vanishes.

Using the Nyquist method that relies on the argument principle of complex
analysis, Penrose [PEN 60] was able to relate the vanishing of £(k, u) to the winding
number of the closed curve determined by the real and imaginary parts of € as w runs
along the real axis. Such closed curves are called Penrose plots. The crucial quantity
is the integral part of € as u approaches the real axis from above

1 /
Jim - fan P g+ gy

where H[f§] denotes the Hilbert transform, H[fj] = 2 fdp f;/(p — u), where § :=
PVf]R indicates the Cauchy principle value, leading to the following expression for
the contour, parametrized by u € R, in the complex plane:

e(k,u) =1 — 7wk 2H[f3)(u) —irk 2 f}(u).

The image of the real line under this mapping is the Penrose plot, and its winding
number about the origin is the number of members of the point spectrum of Ty, in the
upper half plane.

Figure 12.2 shows the derivative of the distribution function, fj, for the case of
a Maxwellian distribution fo = e~? and Figure 12.3 shows the contour —H[fo] =
i f}(u) that emerges from the origin in the complex plane at 1. = —oo, descends and
then wraps around to return to the origin at u = co. From this figure, it is evident that
the winding number of the &(k,u)-plot is zero for any fixed k € R, and as a result;
there are no unstable modes. Here, we take the value of £ to be fixed.
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Figure 12.3. Stable Penrose plot for a Maxwellian distribution function

Penrose plots can be used to visually determine spectral stability. As described
above, the Maxwellian distribution function is stable as the resulting £-plot does not
encircle the origin. However, it is not difficult to construct unstable distribution
functions. In particular, the superposition of two displaced Maxwellian distributions,
fo= e’("’*c)2 + e’(p’c)2, is such a case. As ¢ increases, the distribution goes from
stable to unstable. This instability is known as the two-stream instability.
Figures 12.4(a) and (b) demonstrate how the transition from stability to instability is
manifested in a Penrose plot.

At the bifurcation point, the Penrose plot crosses the origin, indicating the
vanishing of the dispersion relation on the real axis and therefore the presence of a
member of the point spectrum. This eigenmode will be stable because » € R and will
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be embedded within the continuous spectrum. Thus, the two-stream instability is an
example of the CHH bifurcation.
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Figure 12.4. Penrose plots for a superposition of Maxwellian distribution
functions with a) a stable separation and b) an unstable separation

The description of the CHH bifurcation requires that we are able to assign an
energy signature to the continuous spectrum. Because eigenfunctions associated with
continuous spectra are not normalizable, this requires some delicacy. This was first
done in the Vlasov context in [MOR 92], where a comparison to the usual energy
signature for discrete modes was given, followed by a rigorous treatment of signature
in [MOR 00]. In the context of shear flow, signature was defined in [BAL 01], in
magnetofluids in [HIR 08] and for the general system described in the present section
in [MOR 03]. A rigorous version of Krein’s theorem for the CHH bifurcation was
given in [HAG 11b]. We will give a general description of this energy signature for
the continuous spectrum in Chapter 13, but we motivate it here first by treating the
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analogous version of this instability in the context of the waterbag model, which will
have the advantage of only possessing a discrete spectrum.

12.3.2.2. Bifurcations in the waterbag model: Viasov interpretation

One important feature of the system [12.27] is that its solution is a symplectic
rearrangement of the initial condition f(q p) = f(g,p,0), i.e. its solution has the
form

o

flg,p,t) = foZ(q,p,t), [12.36]

where 2(q,p,t) = (4(q, p,t),p(q, p, ) is a canonical transformation.

The rearrangement comes from the solution of the ordinary differential equation
for a single particle in the self-consistent potential ¢. This implies that the level set
topology of the initial condition is preserved, which can be leveraged to simplify the
equations in the case of certain types of initial conditions. One such simplification is
known as the waterbag reduction (see, e.g., [BER 67]), in which it is assumed that
the initial condition f is a sum of characteristic functions. This property is preserved
under composition with the symplectic map Z so that the solution remains a sum of
characteristic functions. The equations simplify to equations for the locations of the
contours separating different regions of constant f. Piecewise constant initial
conditions lead to a fluid closure that is exact for waterbag initial conditions, and the
1 + 1 theories in the previous section can be seen to arise from such an ansatz. We
will exploit the reduction by using a layered waterbag or onion-like initial condition
to closely approximate a continuous distribution function that undergoes the
bifurcation to linear instability we are interested in. In this way, we will be able to
connect the HH bifurcation with the CHH bifurcation that we describe later.

We begin by assuming f to be a piecewise constant between M curves p,(g,t),
1e.

f(Q>pat):fa if Do <P < Datl

where f,, is a positive constant. The equations for the curves p, come from the
equations of single particle motion for a particle at (p, (g, t), q),

Po,t + PaPag = _qu and ¢qq =1- Zfa(]’oﬁ»l _pa),
o

and this system is Hamiltonian, with Hamiltonian function being the classical energy

Afa [ 1
H:Z ; qupiJri/sz(qbqf
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Here, Af, = fa—1 — fa, is the change in the distribution function when crossing
the ath waterbag layer. The Poisson bracket is similar to those seen in Hamiltonian
fluid theories [MOR 98]

- dg_GF , 5G
{F G} Z/Afa Do 6pa

The equilibria of the waterbag model that we are interested in studying are charge
neutral and spatially homogeneous, p, = po constant, such that the electric potential
¢ = 0. We chose such a state and linearize about it, yielding the equations of motion

Dot + Po0Pag = _¢q and d)qq = - Z fa(pa+1 _pa>-
o

Moving to Fourier space and eliminating the dependence on g in favor of the wave
number k gives

pktﬂkpopk—zkz:fa 2 —pd),

the equations of motion for the Fourier coefficients. In terms of the Fourier
coefficients, the Hamiltonian of the linearized system is

1
H=-23 (Zpgﬁfa pR]* + kQImIQ) :

keZ a

Here, the term —p§Af, arises from the term —pf{ in the linearized Vlasov
equation, which indicates the signature of the continuous spectrum. The bracket is
the bracket of the original nonlinear system written in terms of the Fourier modes

ZZ <_8L 9y 89 of )
Afa \Opg 0p%,  9p p%,

keN «

This bracket is non-degenerate, and therefore, the system is nearly canonical in
terms of the new variables. In particular, for a given pair k, ~k, the linear equations
form a finite-dimensional canonical Hamiltonian system upon scaling similar to that
of section 12.2.2.
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The dispersion relation for this system, for a given wave number &, and u = w/k,
is derived by multiplying the ath equation by A f,, and summing, which is analogous
to that for the Vlasov system,

This dispersion relation can be analyzed graphically in terms of u. There are poles
of the dispersion function where u = pg. For u € (pg, p5™"), the dispersion function
always has a zero if A f, 41 has the same sign as A f,,, because € will converge to the
opposite value of infinity at each end of the interval. Therefore, there will be at least
one zero in each interval that has this property. In intervals where Af,,1 and Af,
have different signs, there are either no zeros or an even number of zeros, because &
must converge to the same value of infinity.

The reader may have noticed a similarity between the above formulas and the
multifluid formulas of section 12.2.1. In fact, the waterbag models are examples of
multifluid models, which are thus exact fluid closures of the Vlasov—Poisson system.
This can be seen by writing the waterbag model in terms of new variables p,, and w4
given by

Pa = (pa _pa-l)/fa and u, = (pa +pa—1)/2,

where p,, is a fluid density, and u,, is a fluid velocity. Under this change of variables,
the equations governing the waterbag model take the following form:

pot + (Uapa)y =0, dgg=— pa
23
(paua)t + (uipa + Pifi/m)q = —paPq -

Evidently, under the identification p, = p2 f2/12 (or hy = p2 f2/8), the above
equations are identified as a multifluid Hamiltonian system.

The dispersion function can also be rewritten in terms of the new variables so that
it resembles the analogous expressions (i.e. the diagravic or dielectric functions of the
multifluid section). After linearizing around an equilibrium state with pg, ug, and then
performing some algebraic manipulations yields

ehw)=1-Y o8 , [12.37]

o (W~ kud)? — k2(ug)?
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where ug = \/(p§)?/f2 is a thermal velocity that measures the width in velocity
space of a waterbag. Thus, bifurcations in the waterbag model, the Vlasov-Poisson
system and Hamiltonian multifluid equations are all described using similar
mathematical expressions.

Because the waterbag system is a finite-dimensional canonical linear Hamiltonian
system, the standard results of that theory apply, including Krein’s theorem. We can
therefore determine whether there are any unstable modes by counting the total
number of neutral eigenvalues. If it is equal to the number of degrees of freedom of
the system, then we can expect stability; otherwise, due to the fact that eigenvalues
off the imaginary axis come in quartets, we can expect instability.

Now, we determine the signature of each of the stable discrete modes of the
waterbag model. Beginning with the linearized equations, and assuming the
normalization condition, 1 = 3  Afopa/k = —k¢i, we find the Fourier
eigenvector pf = 1/[k(p§ — u)]. Using this in the expression for the energy, we get a
formula for the energy of a discrete mode, viz.

Po Afo 1
H=-) 2% - 12.38
R r— 5 [12.38]

Next. replacing pg in the numerator of [12.38] by p§ = u + (p§ — u) leads to

Afapo Afs 1_ Afapf _ @
k22< = ) 2 kzz w—-pe2  “ou

U pO po —Uu

where in the last expression, we obtain the dielectric energy (with the electric field
amplitude dependence scaled away).

The energy of a discrete mode is proportional to the derivative of the dispersion
function at the frequency corresponding to the mode. As mentioned previously, this
familiar formula is also true for embedded modes in the Vlasov equation [SHA 94],
and is particularly convenient for use in the waterbag model because it allows
geometric evaluation of the signature of modes in the waterbag model. Suppose at
first that u > 0. Then, the signature of a mode is positive if the dispersion function i
increasing at the mode and negative if it is decreasing at the mode. If A f,, does not
change sign from one interval to the next and there is one mode in the corresponding
interval, the mode will have signature — sgn(p§A fe,). Similarly, any modes in the
same interval must have opposite signature (or one must have zero signature) becausé
the dispersion function must cross the axis in opposite directions at each discret®
mode. An example of such a waterbag distribution function is plotted if
Figure 12.5(a), and the dispersion relation is plotted in Figure 12.5(b), where we have
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marked the zeros with crosses and circles that indicate their signature. As noted, in
the general case, there 1s exactly one mode in intervals where A f,, does not change
sign and either zero or two modes in intervals where it does change sign.

3F —_— - 7 ( -

(a)

| | :*. ;U |
SRR

SRR O B _

-10

(®)

Figure 12.5. a) Multilevel waterbag distribution. b) Plot of corresponding
dispersion relation, with positive and negative signature modes indicated by
circles and crosses, respectively
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Using the waterbag model, we can replicate the most important instabilities of
the Vlasov—Poisson equation, in particular the two stream instability and bump on tail
instability. Both of these instabilities can be emulated by a waterbag model with only a
few “layers” (fluids). In particular, we will consider the special case of a waterbag with
five layers as depicted in Figure 12.6. Observe that the outermost two have vanishing
distribution function, i.e. f; = f5 = 0, while we choose fo =1, fs =0 and f, = 0.5
so that the distribution has two peaks, one large and one small, separated by a valley.
The stability of this model depends on the various parameters involved in defining the
equilibrium. For a very large separation of the two peaks, the two-stream distribution
function will be stable as depicted in Figure 12.7(a); as the peaks are moved closer
together the two modes in the valley of the distribution function between the two
peaks move closer together, eventually colliding, as depicted in Figure 12.7(b), and
leaving the axis to become a pair of exponentially growing and decaying modes as
depicted in Figure 12.7(c).

0.6 T

04r = 1

Figure 12.6. Plot of a waterbag distribution function meant to capture the
electron two-stream instability. As the small waterbag is moved closer to the
large waterbag, a positive energy mode will collide with a negative energy
mode and give rise to the two-stream or bump on tail instability

This transition here is identical to that which occurs in the two-stream instability
of the Vlasov equation (or the corresponding bump on tail instability). In the waterbag
case, there is a positive energy mode that collides with a negative energy mode in the
valley of the distribution function.
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Figure 12.7. Dispersion function for a two-stream distribution function for
parameter values corresponding to a) stable, b) neutral and c) unstable
equilibria. Circles and crosses correspond to positive and negative energy
modes, respectively, while the diamond indicates a mode at criticality.
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12.4., Summary and conclusions

In this chapter, we have described bifurcations in general classes of noncanonical
Hamiltonian systems that describe, e.g., matter as fluid or kinetic theories. In the
multifluid systems of section 12.2, we showed how to linearize, canonize and, for
stable systems with discrete spectra, diagonalize to obtain a normal form.
Hamiltonian bifurcations to instability were described, examples of SS bifurcations
were given, but the emphasis was on the HH bifurcation. From the normal form,
signature was identified, and it was seen that Krein’s theorem applies, just as for
finite-dimensional systems. Next, the class of 2+1 Hamiltoman theories of
section 12.3 were defined and considered. These theories generically posses
continuous spectra when linearized, but the specific case of the Vlasov—Poisson
systems was treated in detail. In particular, Penrose plots, which allow us to describe
transitions to instability, via embedded modes in a continuous spectrum, were
described. The technique here is of general utility, e.g. it was worked out also in
detail for shear flow in [BAL 99]. It was also shown how to canonize the linearization
of these 2+1 theories. Next, in order to understand the relationship between discrete
bifurcations and the CSS and CHH bifurcations, we introduced the waterbag model,
which is a reduction of the 2+1 class to a class of systems with a countable number of
degrees of freedom, in which the continuous spectrum is discretized. The
identification of the waterbag models with the multifiuid models of section 12.2 was
made and, consequently, the procedure for canonization and diagonalization of the
waterbag models was established.

A main motivation for studying Hamiltonian systems is their universality, i.e. we
are interested in understanding features of one system that apply to all. In this chapter
we have shown how infinite-dimensional noncanonical Hamiltonian systems enlarge
this universality class. It is clear that the same bifurcations occur in a variety of systems
that describe different physical situations. Any specific system within our classes of
systems may possess SS bifurcations, positive and negative energy modes and Krein’s
theorem for HH bifurcations. Our aim is to show that an analogous situation transpires
for CSS and CHH bifurcations. However, continuous spectra are harder to deal with
mathematically and functional analysis is essential, but the existence of analogous
behavior in the cases considered here guides us to develop a theory. For example, we
can interpret the CHH bifurcation as an HH bifurcation with the second mode coming
from the continuous spectrum. As stated before, the contents of this chapter are to set
the stage for the explicit treatment of bifurcations with the continuous spectrum of
Chapter 13, to which we direct the reader.
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