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Abstract

The role of projectors associated with Poisson brackets of constrained
Hamiltonian systems is analyzed. Projectors act in two instances in a bracket: in
the explicit dependence on the variables and in the computation of the functional
derivatives. The role of these projectors is investigated by using Dirac’s theory
of constrained Hamiltonian systems. Results are illustrated by three examples
taken from plasma physics: magnetohydrodynamics, the Vlasov—Maxwell
system, and the linear two-species Vlasov system with quasineutrality.

PACS numbers: 45.20.Jj, 47.10.Df, 52.25.Dg, 52.30.Cv

1. Introduction

We consider an arbitrary Poisson bracket of a Poisson algebra of functionals of field variables
x(x) given by

{F,G} = /d"xFX -J(x) - Gy, (1)

where x € R”, x : R" — R9, and Fy -J-Gy=F, Ji G, with repeated indices summed. By
Poisson algebra we mean a Lie algebra realization on functionals with an associative product
of functionals that satisfies the Leibniz law. Also, we assume that the resulting equations of
motion given by x = {x, H}, for some Hamiltonian functional H[x], possess a conservation
law Q[x] = 0, where Q is a functional of the field variables and their derivatives. Here we
address the specific case where these conservation laws are obtained regardless of the choice
of Hamiltonian H, so @ = 0 is an intrinsic property of the bracket of the Poisson algebra.
There are two ways to define such a constrained Poisson algebra. The usual way is to
place a restriction on the set of field variables x in the Poisson algebra. However, this definition
raises the question of how to appropriately compute the constrained functional derivatives Fy.
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The second way is to define a Poisson algebra that does not include any constraint on the field
variables and, consequently, there is no ambiguity in defining the functional derivatives—
conservation laws such as @ = 0 take the form of Casimir invariants.

In this paper we investigate the links between these two ways of defining constrained
Hamiltonian structures, and we propose a way to lift Poisson structures defined via the
constrained field variables approach to ones that have the constraints as Casimir invariants. As
can be expected, the difficulty resides in assuring the validity of the Jacobi identity. If we keep
the same Poisson bracket but extended to the bigger algebra (the one without any constraint on
the field variables), then in general, the Poisson structure is only obtained when the constraint
is satisfied, i.e., the Jacobi identity is satisfied conditionally when Q[x] = 0. It turns out
that one can remedy this limitation by modifying the bracket with the inclusion of suitable
projectors that leave the functional derivatives unconstrained and guarantee the Jacobi identity
unconditionally. We identify such projectors acting on the functional derivatives and on the
explicit dependence of the bracket on x. We discuss the various choices of projectors and
highlight a particularly relevant one obtained from Dirac’s theory of constrained Hamiltonian
systems.

In order to illustrate our purpose, consider the relatively simple and common example, the
vorticity equation of a compressible or incompressible fluid in R?. The vorticity @ = V x v,
with v the velocity field, satisfies

ow

E:Vx(vxw). 2

In terms of a commonly used Poisson bracket (see, e.g., [1]),
{F,G}o = /d3xw- (VxF,) x (VxG,), 3)

Equation (2) has the form F = {F, H}, with the Hamiltonian H# = [ d3xv?/2. Here and
in what follows, we suppose boundary conditions are such that no surface terms appear in
subsequent calculations which, e.g., would be the case on a periodic box or all space. If
one forgets about the constraint on the vector fields @ or if one wants to lift the algebra of
functionals of divergence-free @ to the algebra of functionals of any vector field w, then the
bracket (3) does not satisfy the Jacobi identity. This is easily seen by the following counter
example:
1 R 1 R R
F = §/d3xw~xy2, P = §/d3xw~yzz, F; :/d3xw-zx,

which yields,

{F1,{F2, F3}olo+ O= — / dxw - V(yz) # 0.

Evidently, the bracket (3) satisfies the Jacobi identity only if V - @ = 0. We refer to such
Poisson brackets that only satisfy the Jacobi identity conditionally as tainted brackets. One of
the questions we address in this paper is how to correct a tainted bracket so that it satisfies
the Jacobi identity unconditionally. For this particular example, the correction is obtained by
inserting a projection operator, following [2], given by P, = 1 — VA~V so that it defines
a new bracket

{F,G} = /d%c(mw) (VX Fy) x (V x Gy).

It is rather straightforward (see [2]) to show that this bracket satisfies the Jacobi identity
unconditionally. We notice that V - @ is a Casimir invariant of the modified bracket, i.e.
{V - ®, G} = 0 for any functional G. Here V - w is viewed as a functional using the formula
V- ox) = [V ox)§E —Xx).
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As mentioned above, projectors are not only useful to lift algebras so as to satisfy the
Jacobi identity, they are also involved in the way functional derivatives are computed when
the field variables are constrained. As an illustration, we consider the incompressible Euler
equation for the velocity field v(x, #),

v=—-v-Vv—-VP

where P is determined by the constraint V - v = 0. This equation has a Hamiltonian structure
[3-6] given by the Hamiltonian H[v] = [ d3xv?/2 and the Poisson bracket

(F.G) = f &y - [F Gy,

where Fy are the functional derivatives of an observable F' with respect to the field variable v
and the Lie bracket [V, W], is given by

[V,W], = (W-V)V — (V- V)W.

It should be noted that the incompressible Euler equation cannot be directly obtained from
F = {F,H)} using unconstrained functional derivatives Fy since V - v .= 0 would not be
conserved by the flow. One way of correcting the bracket is to use an orthogonal projector
[4]. For divergence-free fields, this orthogonal projector is again givenby P, = 1 — VA~!V.
(see also [1, 2]). In other words, the constrained functional derivative F, must be computed
such that it satisfies V - F;, = 0. However, the fundamental reason for this constraint on the
functional derivative is unclear, even though it yields the correct equation of motion. For a
more general constraint Q[x] = 0, is it still the orthogonal projector that has to be used for
the constrained functional derivatives? In addition, this projector is in general not unique. It
therefore raises natural questions such as which is the most relevant projector and how is it
obtained in a systematic way?

In this paper, we investigate two possible placements of a projectors: one is on the
explicit dependence on the field variables, while the other is on the computation of the
functional derivatives. We clarify the choice of the relevant projector by using Dirac’s theory
of constrained Hamiltonian systems. In order to prove the relevance of these projectors, we
consider three examples taken from plasma physics. The first one is magnetohydrodynamics
(MHD), both compressible and incompressible, the second one is the Vlasov—Maxwell system,
and the third example involves semi-local constraints on linear Vlasov equations with two
species.

The goal of this paper is to present a general method which highlights the role of
appropriate projectors, and identifies a particular projector using a reformulation of Dirac’s
theory. From this general method, we show that the tainted brackets can be corrected
such that the new brackets satisfy the Jacobi identity unconditionally. In addition, we connect
these corrected brackets to the ones obtained from Dirac’s theory of constrained Hamiltonian
systems.

2. Formulation of the general method

2.1. Projected functional derivatives

At the outset we assume that the bracket (1) is a Poisson bracket on the algebra of functionals
of x, where x denotes a d-tuple of fields such that Q[x](x) = 0 and Q[x] is function of x
and its derivatives. These fields will be referred to as Q-free fields. In this section, our aim

3
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is to get a corresponding Poisson bracket on the algebra of any functionals of x, satisfying
Q[x](x) = 0 or not. The functional derivatives F, are defined in the following way:

5F = / d'xFy - 5%, o)

for all Q-free &), which here means that Q8 X = 0 where Q is the Fréchet derivative of Q
defined by

Qlx + 8x1(x) — QLxI(x) = Qdx + O(I5xII*).
This means that Fx is not uniquely defined: it is arbitrary up to an element of Rg Q7 since

Jd'x F x 0X = [ d"'x (F ¥+ Q"'g) -8 x where g is arbitrary. We define the constrained functional
derivative F, from the unconstrained one Fy by the following equation:

/d”xFX Sy = /d”xFX -8, (5)
where now §x is the constrained (Q-free) variation and §x the unconstrained one. For the
unconstrained variation dx, we use a linear operator P acting as §x = PT8x such that
OP" = 0. Moreover, the range of Athis operator PT should be Ker O and, in addition, P’

should act as the identity on Ker Q. This is equivalent to requiring that P be a projector.
Consequently, this leads to a condition on the possible projectors P such that F, = PF,, viz.

Ker P = Rg Q. (6)
Note that given this condition, Q[ x](x) is a Casimir invariant that is naturally preserved by the
flow. Still this projector is not unique. In the literature (see, e.g., [4]), the functional derivative

is chosen such that QF, = 0, so that the projector satisfies QP = 0. This corresponds to the
orthogonal projector

PL=1-07(00"H"Q, (7
provided Q@ is invertible on Rg Q However it is not clear if it is the best choice for the
projection. Other solutions satisfy

PP =P,
PP, =P,

which are needed in order to satisfy equation (6). Given a particular projector P the bracket
(1) becomes

(F.G). = / ' (PE) - 1(0) - (PG, ®)

where now the functional derivatives are the unconstrained ones. We have released the
constraint on the functional derivatives but, in general the Poisson bracket (8) does not satisfy
the Jacobi identity for functionals of arbitrary ¥, i.e., ones no longer restricted to Q-free fields.
This is because J(x) may give contributions that do not satisfy the Jacobi identify when
9l x] # 0. However, if the projector P does not depend on the field variables y, as is the case
for the examples we deal with in this paper, then a bracket that satisfies the Jacobi identity for
all functionals of y, satisfying Q[x] = 0 or not, is given by

{F,G} = /d"x (PFy) - I(Px) - (PGy). )

In order to verify the Jacobi identity, we perform the change of variables x, = Py and
Xo = X — P so that bracket (9) formally becomes bracket (8) with x instead of x. Since xp
is by definition Q-free, the Jacobi identity is satisfied. For the Poisson bracket (9), we notice
that Q[ x](x) is a Casimir invariant, and that the equations of motion for x, are identical to
the ones given by the Poisson bracket (1) or (8).

4
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2.2. Dirac brackets

2.2.1. Local constraints. In order to identify the most appropriate projector, we use Dirac’s
theory of constrained Hamiltonian systems [7, 8]. We begin with the following good Poisson
bracket:

(F,G} = /d”xe I - Gy (10)

and then impose the local constraint ®(x) := Q[x](x) = 0, where as before Q[x](x) is a
function of x(x) and its derivatives. The Dirac procedure begins with the computation of the
matrix of Poisson brackets between the local constraints,

Cx,x) = {®(x), (X))} = 0JO'8(x — X).

We set A := Q,]] QT and we assume that this quantity is invertible. Then, the Dirac correction
to the bracket (10) is given by

_ / / d'xd"Y (F, ®())D(x, X ) {® (X)), G},

where D(x, X') = A7 (x(x))8 (x —x'). Since {F, ®(x)} = — QJ] - Fy, this contribution is equal
to

- / d"xFy - JO' A1 QT - G,

Therefore, the Dirac bracket is given by

{F,G}, = /d”xe () - Gy, 1D
where

Jo=1-1Q0"A7 Q. (12)
It is straightforward to verify that J, given by equation (12) Iis antisymmetric because A is
antisymmetric. We notice that QJ, = 0 (and therefore J,Q" = 0). As a consequence, the

constraint @ is a Casimir invariant. We notice that a sufficient but not necessary condition to
define the Dirac bracket (11) is that A is invertible on the range of Q. If A is not invertible
(neither globally nor in the range of Q), the matrix .A~! has to be chosen according to the
condition

JOT A TA-1) =0, (13)

in order to obtain the constraints as Casimir invariants.

The Poisson brackets obtained by the Dirac procedure are Poisson brackets of the form
(8) but untainted, i.e., they satisfy the Jacobi identity unconditionally even though they are not
of the form (9) in general. This can be seen by considering a projector P as discussed in the
previous section. Under the assumption that Ker P = Rg QF, we deduce that J,.(1 — P) = 0,
and consequently:

J.=PLP.
With this equality, the Poisson bracket becomes
(F.G). = [ &x(PEy 1.0 PGy,

The additional feature is that, a priori, the Poisson matrix J, is a function of both Py and
(1 —P) x. However, it is straightforward to check that (1 — P)x is a Casimir invariant.
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Dirac’s procedure shows that among the possible projectors P satisfying equation (6),
one turns out to be most convenient. The matrix J, can be rewritten using the Dirac projector

P,=1-07A"0]J, (14)
as
J. = PIP,,

so that the Dirac bracket becomes the same as the original one (10) with the exception that the
functional derivatives are projected using the Dirac projector,

(F, G}, = / & (P - J(X) - (PG, (15)

where we notice that the Poisson matrix is J and not J,. The main difference between the
orthogonal projector P, and the Dirac projector P, is that P, is a purely geometric object
since it only depends on the constraints, and P, is a dynamical object since it involves the
Poisson matrix.

Remark. We observe that the matrix corresponding to the Dirac bracket has the following
property:
J, =PIIP, =JP, =PIJ,

i.e., the Dirac bracket can be rewritten from equation (15) using only one Dirac projector, e.g.,

{F.G}, = fd"xe “J(x) - PuGy.

As a result, the computation of the Dirac bracket is made easier.

2.2.2. Semi-local constraints. The calculation of section 2.2.1 can be generalized to allow
semi-local constraints in phase space. To this end we split the set of coordinates into two
pieces, i.e., X = (X;, Xp) where x; € R"™ and x, € R". The semi-local constraints are given
by

®(x1) = Olxl(x) = f " QX1 (%),

where Q[ x](x) is a function of x(x) and its derivatives. The linear operator Q is defined by
the linear operator associated with the function Q by

é = /deZQ.

a AT
Since Q acting on a function of x is only a function of x;, the linear operator Q is defined by
the equation

A ~t
/d”_mxl Ox-wxp) = /d”xx(x) -Qw.

af A .
Consequently, Q is a linear operator acting on functions of x; as QF, ie., Q w(x;) =

Q'w(x;). In a manner similar to that of section 2.2.1, the computation of the Dirac bracket
shows that the operator

A af
AZQn]]Qv
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must be invertible. More explicitly, the linear operator A acts on functions of x; as
Aw(x)) = f d"x QT w(xy).
The expression of the Dirac projector is given by

AT 2
P.=1-0 A'QJ,
in a very similar way as the case of the local constraints. We notice that the linear operator .4

only needs to be invertible on Rg Q. Another important projector is the orthogonal projector
given by

AT ~aaf S
PL=1-0(QQ)'Q.
As in the case of local constraints, these two projectors satisfy J, = P'J,P, along with

the two properties P, P, = P, and P,P, = P,. In addition, the Dirac projector satisfies
Jy = ?IJP* = PIJ = JP..

3. Example 1: MHD

3.1. Compressible MHD

A particularly interesting example is afforded by the Hamiltonian structure of MHD. The
equations for the velocity field v(x, 7), the density p(X, ¢), the magnetic field B(x, 7), and the
entropy s(X, ¢) are given by

p==V-(pv),

V=—v-Vv—p'V(pU,) +p " (VxB) xB,

B=Vx (v x B),

s = —v-Vs,
where U is the internal energy and U, here denotes the partial derivative of U with respect to p.
The dynamical variables are p(x), v(x), B(x) and s(x) where x belongs to R3. The observables

of the system are functionals of these vector fields, denoted generically by F (p, v, B, s). In
these coordinates, this system has the following Hamiltonian

3 1 2 B2
H(p,v,B,s) = | d’x 7PV +pU(p,S)+7 .

There are two slightly different Poisson brackets that have been proposed in [9-11]. A
first one was given in [9],

{F,G} = —/d3x[FpV Gy +F, - VG, — p~'(V x V) - (Fy x Gy)
+p7'Vs - (F,Gy — F,Gy)] + {F, G}s, (16)
where the magnetic part {F, G}p of the Poisson bracket is chosen as {F, G}p = {F, G}
{F,Glg, = —/d3xp—' (F, - Bx (VxGp)—Gy-Bx (VxF)). (17)

It was pointed out in [11] that this bracket satisfies the Jacobi identity only when V - B = 0,
and also that V - B commutes with any other functionals, i.e., {F, V - B} = 0 for all F (it is
a Casimir-like property, even though we cannot call it a Casimir invariant since the Jacobi
identity is only satisfied when V - B = 0). As was the case for the vorticity equation (2), the
functional derivatives with respect to B must be divergence-free for coherence. However, we

7
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notice that here, since only V x Fy are involved in the expression of the magnetic part (16) of
the Poisson bracket, it does not make any difference whether Fp is divergence-free or not.

In order to extend the definition of the Poisson bracket to functionals of any B, ones not
necessarily divergence-free, a second Poisson bracket was proposed in [10, 11]. There the
magnetic part of the Poisson bracket (16) was replaced by

{F,Glp1 = —fd3X[(,071Fv -[VGsl — p~'Gy - [VF3]) - B

+B-([V(p'F)]-Gs — [V(p~'Gy)] - Fp)].

Here the notation a - [M] - b is a scalar explicitly given by >, jaiM;jb; for any vectors a
and b and any matrix [M]. It was shown that this bracket satisfies the Jacobi identity for all
functionals of (p, v, s, B) regardless of the condition V - B = 0. The magnetic part of this
Poisson bracket is rewritten as

{(F,G}p1 = —/d3xp—1 [Fy-B x (VxGg)—Gy-Bx (Vx Fp)]

+/d3xp‘1V-B(Fv-GB—FB-GV). (18)

The first line of the above bracket corresponds to the Poisson bracket introduced in [9]
(see equation (17)). With the additional terms (proportional to V - B) the Jacobi identity is
unconditionally satisfied for any functionals of (p, v, s, B). However, a property of the bracket
(16) with the magnetic part (17) has been lost, V - B does not Poisson-commute with any
functional, so it is not a Casimir invariant.

In order to have both the Jacobi identity unconditionally satisfied and V - B a Casimir
invariant, we apply the prescription (9) on the magnetic part (17). At every instance in the
Poisson bracket where B is explicitly mentioned, we replace B with B =B — VA~!V.B. The
magnetic part becomes

(F.Gla =~ [ o™ (B (B x (¥ x Gu) = Gy (B x (V x Fa).
and it is rewritten as

{F,Glp = —fd%cp*‘ (Fy- (B x (V xGp) — Gy - (B x (V xFg)))

+/d3xv BAT'V. (p7'Fy x (Vx Gg) — p 'Gy x (V x F)). (19)

Here we notice that the correction term still contains terms proportional to V - B but is different
from the one in equation (18). The main difference is that V - B is not a Casimir invariant for
the Poisson bracket (18) whereas it is one for the Poisson bracket (19) since it only involves
terms like V x Gg.

3.2. Incompressible MHD

For incompressible MHD we begin with the equations for compressible MHD from
section 3.1 and apply constraints. The Poisson bracket given by equations (16)—(19) is of
the form (10) with

0 -V. 0 0

] -V —p NV xV)x —p ' Bx(Vx) p7'Vs
0 —Vx(p 'Bx) 0 0
0 —p~ Vs 0 0
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We impose the following local constraints on the field variables x = (p, v, B, s),
QIx1(x) = (p, V- V).

The reduction to incompressible MHD using Dirac’s theory has already been done in [2]
and the reduction to the incompressible Euler equation in [12, 13]. Here we propose a more
compact way to present this reduction using the operators introduced in the previous sections.
The expressions of the intermediate operators are

~ (1 0 00
QZ(O V-0 0)’
1 0
. 1o
Q_ O O 9
0 0
0 A

A:(—A V~(p1(V><V)><V))’

A= ATV (oM (Vxv)xV) —A7!
- A1 0 /)

The orthogonal projector is given by equation (7) and its expression is
PLFy = (0. K, Fy. Fy),

where F, = F, — VA~V . Fy. The Dirac projector, computed from the Poisson bracket (16)
where B has been replaced by B = B — VA~!V . B, is given by

P*FX = (F*7FV5FB7FY)7
where
Fo=A"'V.-(p7' ((VxV)xF —Bx (V xF) — F,Vs)).

We notice that the two projectors differ in the first component. Even though the two projectors
‘P, and P, are different, both of these projectors satisfy the equation J, = PTIP, which is
always the case for the Dirac projector but not true in general for the orthogonal projector.
Actually any projector PF, = (F (FV, s, Fy), F,, Fg, F,) satisfies J,, = PTJP for any function
F,. The first component is thus irrelevant, and consequently the orthogonal projector is the
simplest projector to be used for constrained functional derivatives. From this projector, we
compute the Dirac bracket from equation (15), and it gives the same bracket as that produced
in [2]:

(F.G). = / Exo (V x V) - (Fy x Gy) — Vs- (FGy — F,Gy)
+B - (F, x (VxGp)+ (V x Fg) xGy)),
where F, = F, — VA~V . F,.

4. Example 2: Vlasov—-Maxwell equations

4.1. Vlasov—Maxwell modified bracket as a Dirac bracket

As a second example, we consider the Vlasov—Maxwell equations for the distribution of
charged particles in phase space f(x, v, t) and the electromagnetic fields E(x, t) and B(x, ¢)

9



J. Phys. A: Math. Theor. 46 (2013) 125203 C Chandre et al

given by
f=-v-Vf—(E+vxB) df,
E=VxB-J,
B=-V xE,

where J = [ d®v vf. The Hamiltonian of this system is given by

2 E2 B2
H:/dézf%+/d3x —; ,

where we denote z = (x, v). The Poisson bracket between two functionals of f(x, v), E(x)
and B(x) is given by

{F,G}) = /dézf([Ff, Gyle + [Fr, Grlg + Gg - 0yFf — Fg - 0yGy)

+/ﬁ%0vaGB—vXﬁ.&m (20)
where the two brackets [+, -]. and [, -]g are defined by

[f.8le =Vf-og—0df Vg, (21)

[f, gl =B (3vf X 9yg). (22)

The Poisson bracket (20) was proposed in [14], except the second term given in [15] (see also
[16]) which removed an obstruction to the Jacobi identity. However, it was pointed out in [11]
that the Poisson bracket (20) only satisfies the Jacobi identity when V - B = 0, which is to
say that it does not satisfy the Jacobi identity for arbitrary functionals of (f, E, B) (see [17]
for the details of the direct proof of the Jacobi identity up to this condition). This problem is
actually already present in the Lagrangian description (for the dynamics of charged particles)
since [, -] + [+, -]z only satisfies the Jacobi identity for functions B such that V - B = 0,
whereas, individually, [-, -] and [-, -] satisfy the Jacobi identity for an arbitrary function B.
In order to remedy this problem, we modify the bracket [-, -]g to take the form of (9),

[f,gls, = B —VAT'V-B)- (df x 3y9).

With this modified gyrobracket, we readily check that [-, -] + [-, -]s, satisfies the Jacobi
identity. Next, we consider the modified Poisson bracket (20) obtained by replacing [-, -]g by
[-, -Is,, i.e., we consider the Poisson bracket

{F,Glvm = /d62f([Ff, Grle + [Fy, Grlg, + GE - 0vFf — Fg - 0yGy)

+/ﬁ%mvaGB—vX&.&m (23)

which satisfies the Jacobi identity unconditionally. This follows from the change of variable
Br =B— VA~!'V.Band By = VA~V . B where it should be noted that

V x Gg =V x Gg,,

since the operator P = 1 — VA~V satisfies PVx = Vx.

Here it should be noticed that V - B is a Casimir invariant for the Poisson bracket (23).
The untainted form of the Vlasov—Maxwell bracket (23) gives the Hamiltonian structure of the
Vlasov—Maxwell equations in terms of physical fields without introducing the vector potential,
i.e., without the restriction of V- B = 0.

10
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In order to realize the link between brackets defined using projectors and Dirac brackets,
we show below that the Poisson bracket (23) is a Dirac bracket of some parent bracket obtained
using two constraints which, by definition, are Casimir invariants of the bracket (23)

Qlf.E,B](x) =(V-E—p,V-B),

where p = [ d*v f. As expected there is an infinite number of solutions for the parent bracket.
A family of solutions is given by

{F,G} ={F,G}ym + / &x (V-FgDV -Gg — V - FgD'V - Gp), (24)

where D is a linear operator independent of the field variables, so that the Jacobi identity is
guaranteed by Morrison’s lemma of [11]. This statement uses the fact that the Vlasov—Maxwell
bracket has been made untainted; it would not be true if the original tainted Vlasov—Maxwell
bracket (20) was considered instead of the Poisson bracket (23).

Now, if we apply the Dirac procedure on the extended Poisson bracket (24) with the
primary constraint V - E — p, we get the secondary constraint V - B, and the reduced Dirac
bracket is obtained from J, = PJP, where P, is the Dirac projector (14). The Dirac projector
can be explicitly computed. However, in order to further simplify the computation of the Dirac
bracket, we use the orthogonal projector since, as in the case of incompressible MHD (see
section 3.2), it satisfies the same relation as the Dirac projector, i.e., J, = PI‘,]IP* = PL]IP L,
where

PLFy = (Fg — VA~V - Fg, Fg, Fy).

This implies the expected result that the Vlasov—Maxwell bracket (23) is the Dirac bracket of
the bracket (24) with Dirac constraints (V- E — p, V - B).

With the extended bracket (24), the Casimirs (V - E — p, V - B) of the Vlasov—-Maxwell
system now have dynamics given by

9
5@%E—@=Aﬂv3,

2V-B:—ADV~E.
ot

We notice that here V- B and V - E — p are no longer constant since they are no longer Casimir
invariants of the extended bracket (24). However even though V - E — p is not zero, the
total charge remains conserved (i.e., [ d®zf is still a Casimir invariant). The above equations
suggest two particularly interesting choices for our still undetermined operator D. Defining
D = A ! givesto V-E — p and V - B the dynamics of stationary waves when p = 0, whereas
defining D = (—A)~'/? gives them the dynamics of propagating waves. We note that these
operators always act on divergences of vector fields.

Remark. As a side note, we point out that the choice of D = (—A)~!/2 naturally exhibits the

operator Vs := V(—A)~!/2V. which corresponds to V x for the compressible part of a vector
field. Indeed, the operator

VA 'Vxs=VATlV,,
is the orthogonal projector onto the kernel of Vx, justas —V x A™!Vx =1 - VA~!V.is
the complementary projector onto the kernel of V. With this choice, the resulting dynamical

equations associated with the Poisson bracket (24) for the solenoidal and the compressible
parts of the electromagnetic fields become independent and similar:

DES = _JSa DEC = _JC7
OBg =V x Js, OBc =V * Jc,
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where [J is the d’Alembert operator [ = 9%/3t> — A and ¥ is the solenoidal part of the
vector field ¥, ie., g = —V x A7V x ¥ = (1 — VA~'V) - ¥ and ¥ is its compressible
part, which is ¥ = —V x A”!'V x ¢ = VA~V . 4. In the absence of matter, the fields ¥
and ¥ propagate as independent free waves.

4.2. From Viasov—-Maxwell to Vlasov—Poisson equations

In order to obtain Vlasov—Poisson equations from the Vlasov—Maxwell equations we impose
two constraints:

Qlf.E,B](x) = (B —By(x), V x E),

where By is a non-uniform background magnetic field. The operators Qand OF are given by

A 0 Vx 0
Qz(o 0 1>’

and
A 0 0
O"'=[Vx 0
0 1
The orthogonal projector P, given by equation (7) is given by
1 0 0
P, =0 VA~lV. 0
0 0 0

In contrast to the orthogonal projector, the expression of the Dirac projector depends on the
dynamics, and in particular on the Poisson matrix J which is given by

I=\|-r8, 0 Vx|,
0 —-Vx 0

where the small bracket [, -] is given by [+, -] = [-, -]o + [+, -], with these two brackets given
by equations (21)—(22). The operator A is given by

_ 0 (Vx)?
A_<—(Vx)2 0 )

The operator A is not invertible; however, the Dirac procedure still applies as explained in
section 2.2.1 with a choice for A~! given by

-1 _ 0 Al
SIS

so that equation (13) is satisfied. As a result, the Dirac projector is computed,

1 0 0
Py = 0 VA~lv. 0
—A7IV x foy 0 VA~'V.

We notice that both projectors P, and P, satisfy the equation J, = P'JP and the Poisson
matrix of the Vlasov—Poisson equations is given by

—[f, ] —VATIV.8,f 0
J.= | =VA~IV .- (fdy) 0 0
0 0 0

12
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It leads to the expression of the Poisson bracket,
{F,G}, = /d6zf[Ff — AV Fg,Gp— AT'V - Gg].

Like for the incompressible MHD equations, even if the Dirac and orthogonal projectors are
different, both of them can be used to compute the Dirac bracket from the Poisson matrix J,
the orthogonal projector being slightly simpler and more straightforward to compute.

5. Example 3: quasi-neutrality as semi-local constraints

In this section, we give an example of a set of physically relevant constraints where the
orthogonal projector does not exist, and where the Dirac projector is a natural replacement for
computing the constrained functional derivatives. We consider the following Vlasov equation
with two species, ions and electrons, linearized about spatially homogeneous distribution
functions «;(v) and «,.(v). The equations for the phase space density fluctuation of ions
fi(x, v) and electrons f; (X, v), are given by

fs = -V st + esavas . V¢7
where A¢p = — Z; e f d®v f, and e, = =+1 is the charge of the particles of each species
s=1i,e.
The field variables are x(z) = (fi(z), f.(z)), which are functions of z = (x, v). The
Poisson bracket, in this case, is defined by the Poisson matrix J given by

J:_<[ai(v>,~] 0 )
0 lee), 1)

with [os(V), G] = —dyas- VG. According to [4] (see also [18]), the corresponding Hamiltonian
can be found as the quadratic functional corresponding to the second derivative of the
Hamiltonian (plus Casimirs) of the nonlinear Vlasov—Poisson system, evaluated at f; = a(v).
This is true for ion and electron densities close to equilibria that are isotropic in velocity (like
a Maxwellian for instance). We impose the set of two semi-local constraints

Qlx1(x) = (/ o — fo), /d3UV'V(fi _fe)>~

The first component of the constraint is the quasi-neutrality. The second component is
a secondary constraint associated with quasi-neutrality according to Dirac’s theory of
constrained Hamiltonian systems [19]. Since the constraints are linear with respect to the

field variables, the operators Q and Q are given by
A 1 -1 AT 1 —v.V
Q= 3 —
/dv(v. v ),andQ_<_1 V~V>'

At
The operator Q acts on functions of x only. In order to compute the Dirac projector, the matrix
~ At
A = OJQ needs to be computed
A= 0 (0 +ae)A
@ ta)A 2B+ B)-VA)’

with @, = [ d*v ey and B, = [ d*v va,. This operator is invertible and its inverse is

2(B.
. 24P gp-r _p
A 0
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Note that the operators .A and A~ act on functions of x and return a function of x. The Dirac
projector P, has the form

_1 * B . —_ .
Pe=1- —_A V_ /d3v’ (v+v —2v) (_[(Ei; ].] [(E[ae’.]]) ,

A AT

where v = (B; + B.)/(¢; + & ). Concerning the orthogonal projector, we note that QQ given

by
a2t (1 —v.V
Qe _2/d”(v-v —(v-V)2>’

does not exist since it is unbounded when it acts on functions of x. As a consequence,
the orthogonal projector cannot be a solution for the computation of constrained functional
derivatives. Here a convenient choice is afforded by the Dirac projector.

Acknowledgments

We acknowledge financial support from the Agence Nationale de la Recherche (ANR GYPSI).
This work was also supported by the European Community under the contract of Association
between EURATOM, CEA, and the French Research Federation for fusion study. The views
and opinions expressed herein do not necessarily reflect those of the European Commission.
PJM was supported by US Department of Energy contract DE-FG05-80ET-53088. The authors
also acknowledge fruitful discussions with the Equipe de Dynamique Nonlinéaire of the Centre
de Physique Théorique of Marseille.

References

[1] Zakharov V E and Kuznetsov E A 1997 Phys—Usp. 40 1087
[2] Chandre C, Morrison P J and Tassi E 2012 Phys. Lett. A 376 737
[3] Arnold V 11966 Ann. Inst. Fourier 16 319
[4] Holm D D, Marsden J E, Ratiu T S and Weinstein A 1985 Phys. Rep. 123 1
[5] Holm D D, Marsden J E and Ratiu T S 1998 Adv. Math. 137 1
[6] Marsden J E and Ratiu T S 2002 Introduction to Mechanics and Symmetry (Berlin: Springer)
[7]1 Dirac P AM 1950 Can. J. Math. 2 129
[8] Morrison P J, Lebovitz N and Biello J 2009 Ann. Phys. 324 1747
[9]1 Morrison P J and Greene J M 1980 Phys. Rev. Lett. 45 790
[10] Morrison P J and Greene J M 1982 Phys. Rev. Lett. 48 569
[11] Morrison P J 1982 AIP Conf. Proc. 88 13
[12] Nguyen S and Turski L A 1999 Physica A 272 48
[13] Nguyen S and Turski L A 2001 Physica A 290 431
[14] Morrison P J 1980 Phys. Lett. A 80 383
[15] Marsden J E and Weinstein A 1982 Physica D 4 394
[16] Bialynicki-Birula I, Hubbard J C and Turski L A 1984 Physica A 128 509
[17] Morrison P J 2013 Phys. Plasmas 20 012104
[18] Morrison P J 1998 Rev. Mod. Phys. 70 467
[19] Hanson A, Regge T and Teitelboim C 1976 Constrained Hamiltonian Systems (Roma: Accademia Nazionale
dei Lincei)

14


http://dx.doi.org/10.1070/PU1997v040n11ABEH000304
http://dx.doi.org/10.1016/j.physleta.2011.12.015
http://dx.doi.org/10.5802/aif.233
http://dx.doi.org/10.1016/0370-1573(85)90028-6
http://dx.doi.org/10.1006/aima.1998.1721
http://dx.doi.org/10.4153/CJM-1950-012-1
http://dx.doi.org/10.1016/j.aop.2009.04.003
http://dx.doi.org/10.1103/PhysRevLett.45.790
http://dx.doi.org/10.1103/PhysRevLett.48.569
http://dx.doi.org/10.1063/1.33633
http://dx.doi.org/10.1016/S0378-4371(99)00194-6
http://dx.doi.org/10.1016/S0378-4371(00)00449-0
http://dx.doi.org/10.1016/0375-9601(80)90776-8
http://dx.doi.org/10.1016/0167-2789(82)90043-4
http://dx.doi.org/10.1016/0378-4371(84)90189-4
http://dx.doi.org/10.1063/1.4774063
http://dx.doi.org/10.1103/RevModPhys.70.467

	1. Introduction
	2. Formulation of the general method
	2.1. Projected functional derivatives
	2.2. Dirac brackets

	3. Example 1: MHD
	3.1. Compressible MHD
	3.2. Incompressible MHD

	4. Example 2: Vlasov–Maxwell equations
	4.1. Vlasov–Maxwell modified bracket as a Dirac bracket
	4.2. From Vlasov–Maxwell to Vlasov–Poisson equations

	5. Example 3: quasi-neutrality as semi-local constraints
	Acknowledgments
	References

