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Abstract
A mechanism for fast magnetic reconnection in collisionless plasma is studied for understanding sawtooth collapse in
tokamak discharges using a two-fluid model for cold ions and electrons. Explosive growth of the tearing mode enabled
by electron inertia is analytically estimated using an energy principle with a nonlinear displacement map. Decrease
in the potential energy in the nonlinear regime (where the island width exceeds the electron skin depth) is found to
be steeper than in the linear regime, resulting in accelerated reconnection. Release of potential energy by such a
fluid displacement leads to unsteady and strong convective flow, which is not damped by the small dissipation effects
in high-temperature tokamak plasmas. Direct numerical simulation in slab geometry substantiates the theoretical
prediction of the nonlinear growth.

(Some figures may appear in colour only in the online journal)

1. Introduction

Sawtooth collapse in tokamak plasmas has been a puzzling
phenomenon for decades. Although the m = 1 kink-
tearing mode is essential for the onset of this dynamics,
Kadomtsev’s full reconnection model [1] and the nonlinear
growth of the resistive m = 1 mode [2] (both based on resistive
magnetohydrodynamic (MHD) theory) fail to explain the short
collapse times (∼100 µs) as well as the partial reconnections
observed in experiments [3–5]. Since resistivity is small
in high-temperature tokamaks, two-fluid effects are expected
to play an important role for triggering fast (or explosive)
magnetic reconnection as in solar flares and magnetospheric
substorms.

In earlier works [6–8], the linear growth rate of the kink-
tearing mode in the collisionless regime has been analysed
extensively using asymptotic matching, which shows an
enhancement of the growth rate due to two-fluid effects, even
in the absence of resistivity. Furthermore, direct numerical
simulations [9, 10] of two-fluid models show acceleration of
reconnection in the nonlinear phase, even though realistic
two-fluid simulation of high-temperature tokamaks is still a
computationally demanding task (especially when the resistive
layer width is smaller than the electron skin depth de ∼
1 mm). These simulation studies, as a rule, indicate explosive
tendencies of collisionless reconnection.

However, theoretical understanding of such explosive
phenomena is not yet established due to the lack of analytical
development. In the neighbourhood of the boundary (or
reconnecting) layer, a perturbative approach breaks down at an
early nonlinear phase and, consequently, asymptotic matching
requires a fully nonlinear inner solution [12]. Moreover,
in contrast to the quasi-equilibrium analysis developed
for resistive reconnection [2, 13], the explosive process
of collisionless reconnection should be a nonequilibrium
problem, in which inertia is not negligible in the force balance
and hence leads to acceleration of flow. Thus, the convenient
assumption of steady reconnection is no longer appropriate.
Recent theories [14–16] emphasize the Hamiltonian nature
of two-fluid models and try to gain deeper understanding of
collisionless reconnection in the ideal limit.

The purpose of this work is to predict the explosive
growth of the kink-tearing mode analytically by developing
a new nonlinear variational technique that is based on a
generalization of the MHD energy principle [17, 18] (for
generalization see [19]). For simplicity, we concentrate on
the effect of electron inertia, which is an attractive mechanism
for triggering fast reconnection in tokamaks; estimates of the
reconnection rate are favourable [20], nonlinear acceleration
is possible [10, 11], and even the more mysterious partial
reconnection may be explained by an inertia-driven collapse
model [21, 22]. While we address the same problem as that
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of [10] (see also [11]), our estimated nonlinear growth is
quantitatively different from that of this reference, and our
result is confirmed by direct numerical simulation. This
advance in nonlinear theory is indispensable for clarifying the
acceleration mechanism of collisionless reconnection.

This paper is organized as follows. In section 2, we
invoke a conventional 2D slab model for electron inertia-driven
reconnection and then construct its Lagrangian in terms of
the fluid flow map (as in the ideal MHD theory [23–25]).
In section 3, we obtain the linear growth rate of the inertial
tearing mode in the large-�′ regime (corresponding to the
m = 1 kink-tearing mode in tokamaks) by applying our
energy principle to this two-fluid model. We show that
a rather simple displacement field is enough to make the
potential energy decrease (δW < 0) and to obtain a tearing
instability whose growth rate agrees with the asymptotic
matching result [6]. Given these observations, we extend the
energy principle to a nonlinear regime in section 4, where
the displacement (or the magnetic island width) is larger than
de. Without relying on perturbation expansion, we directly
substitute a form of the displacement map into the Lagrangian
and attempt to minimize the potential energy W . We show
that a continuous deformation of magnetic field lines into a
Y -shape [26] asymptotically leads to a steeper decrease of W

than that of the linear regime, which is indeed found to be
responsible for the acceleration phase. In section 5, the effect
of small dissipation on this fast reconnection is considered and
implications of our results for sawtooth collapse are finally
discussed.

2. Model equations and their Lagrangian
description

We analyse the following vorticity equation and (collisionless)
Ohm’s law for φ(x, y, t) and ψ(x, y, t):

∂∇2φ

∂t
+ [φ, ∇2φ] + [∇2ψ, ψ] = 0, (1)

∂(ψ − d2
e ∇2ψ)

∂t
+ [φ, ψ − d2

e ∇2ψ] = 0, (2)

where [f, g] = (∇f × ∇g) · ez [27, 28]. The velocity and
magnetic fields are, respectively, given by v = ez × ∇φ and
B = √

µ0min0 ∇ψ × ez + B0ez, where B0 and the mass
density min0 are assumed to be constant (µ0 is the magnetic
permeability). Thus, ψ has the same dimension as φ (the so-
called Alfvén units). As noted in section 1, the parameter de

denotes the electron skin depth, which is much smaller than
the system size (de � L). The equation (2) can be seen as the
conservation law of the electron canonical momentum defined
by ψe = ψ − d2

e ∇2ψ . Since the magnetic flux ψ is no longer
conserved for de �= 0, the effect of electron inertia permits
magnetic reconnection within a thin layer (∼de) despite a lack
of resistivity in this model.

It should be remarked that, in comparison with the more
general two-fluid model [28], the above model assumes cold
ions and electrons; namely, it is too simplified to directly
apply to tokamaks. In particular, the effects of the ion-sound
gyroradius and the diamagnetic drift are known to modify the
linear stability criteria substantially, and resistivity is not so

Figure 1. Contours of ψ when ε = 4.2de (de/Lx = 0.01 and
Ly/Lx = 4π ). The heavy line highlights the contour ψ = 0, which
is in fact almost equal to the contour ψe = 0.

negligible as will be discussed later in section 5. Moreover,
the assumption of isothermal electrons (used in [28]) may
also lose its validity in a nonlinear phase according to a
fully gyrokinetic description [29]. Nevertheless, except for
resistivity, magnetic field lines can only be broken by electron
inertia in the collisionless limit [29], and we will study this key
mechanism by analysing the simplest model, (1) and (2).

In the same manner as in [10], we consider a static
equilibrium state,

φ(0) = 0 and ψ(0)(x) = ψ0 cos αx, (3)

on a doubly periodic domain D = [−Lx/2, Lx/2] ×
[−Ly/2, Ly/2] (where α = 2π/Lx), and analyse the nonlinear
evolution of the tearing mode with wavenumber in the
y-direction k = 2π/Ly at its early linear stage. For sufficiently
small k such that

πk2/4α3 = L3
x/8L2

y � de � Lx, (4)

this instability is similar to the m = 1 kink-tearing mode
in tokamaks (which belongs to the large-�′ regime; see
appendix A). Figure 1 shows contours of ψ calculated by
direct numerical simulation, where ε denotes the maximum
displacement of the fluid in the x-direction. Since ψe is
frozen into the displacement, we numerically measure ε from
the displacement of the contour ψe = 0 relative to its
initial position x = ±Lx/4. Our numerical code employs
a spectral method in the y-direction with up to 200 modes
and a finite difference scheme in the x-direction with uniform
grid points ∼10 000. The growth of ε accelerates when
ε̂ = ε/de > 1, as shown in figure 2 (which is faster than
exponential). In accordance with [10], a strong spike of
electric current J = −∇2ψ develops inside the reconnecting
layer and the width of this current spike continues to shrink
as time progresses, unless a dissipative term is added to (2).
Therefore, direct numerical simulation of (1) and (2) inevitably
terminates when this coherent energy cascade reaches the limit
of resolution.

In order to clarify the free energy source of this
explosive instability, we solve the conservation law (2) for
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Figure 2. Growth of ε̂ = ε/de with respect to time t̂ = t/τ0

(de/Lx = 0.01 and Ly/Lx = 4π ).

ψe = ψ − d2
e ∇2ψ by introducing an incompressible flow map

Gt : D → D, which depends on time and corresponds
to the identity map when t = −∞ (G−∞ = Id). Let
(x, y)(t) = Gt (x0, y0) be orbits of fluid elements labelled
by their position (x0, y0) at t = −∞. Then, the velocity field
(or φ) is related to Gt as

∂Gt

∂t
(x0, y0) = ez × ∇φ(x, y, t). (5)

Regarding Gt as an unstable fluid motion emanating from the
equilibrium state (3), we can solve Ohm’s law (2) by

ψe(x, y, t) = ψe(Gt (x0, y0), t) = ψ(0)
e (x0), (6)

where ψ
(0)
e (x) = (1 +d2

e α2)ψ0 cos(αx). Both φ and ψe (or ψ)
are thus expressed in terms of Gt . By adapting Newcomb’s
Lagrangian theory [23], we define the Lagrangian for the fluid
motion Gt as

L[Gt ] = K[Gt ] − W [Gt ], (7)

where

K[Gt ] = 1

2

∫
D

d2x |∇φ|2, (8)

W [Gt ] = 1

2

∫
D

d2x
(|∇ψ |2 + d2

e |∇2ψ |2) . (9)

Then, the variational principle δ
∫

L[Gt ] dt = 0 with respect
to δGt yields the vorticity equation (1).

Since the Hamiltonian corresponds to H = K + W

(= const.), we note that W plays the role of potential energy
and the equilibrium state (3) initially stores it as free energy. In
the same spirit as the energy principle [17, 18], if the potential
energy decreases (δW < 0) for some displacement map Gt ,
then such a perturbation will grow with the release of free
energy. In comparison with the ideal MHD case [23], the
electron’s kinetic energy (1/2)

∫
D

d2
e J 2d2x appears as a part of

the potential energy, because we have treated the conservation
law of electron’s momentum ψe as a kinematic constraint. To
avoid confusion, we will refer to this (1/2)

∫
D

d2
e J 2d2x as

current energy in this work.

3. Energy principle for linear stability analysis

In our linear stability analysis, the equilibrium state is
perturbed by an infinitesimal displacement, Gt (x0, y0) =
(x0, y0)+ξ(x0, y0, t), where ξ is a divergence-free vector field
on D. For a given wavenumber k = 2π/Ly , we seek a linearly
unstable tearing mode in the form

ξ(x, y, t) = ∇
[
ε(t)ξ̂ (x)

sin ky

k

]
× ez, (10)

with a growth rate ε(t) ∝ eγ t . We normalize the eigenfunction
ξ̂ (x) by max |ξ̂ (x)| = 1 so that ε(t) is equal to the maximum
displacement in the x-direction and, hence, measures the half
width of the magnetic island. The linear perturbations, say
φ(1) and ψ

(1)
e , are given by

φ(1) = −γ εξ̂
sin ky

k
and ψ(1)

e = −εξ̂∂xψ
(0)
e cos ky, (11)

which follow from the relations v(1) = ∂tξ and ψ
(1)
e =

−ξ · ∇ψ
(0)
e .

Upon omitting ‘(0)’ from equilibrium quantities, ψ(0),
ψ

(0)
e , J (0), etc, to simplify the notation, the eigenvalue problem

can be written in the form

−
[(

γ 2/k2 + ψ ′2
e

)
ξ̂ ′

]′
+ k2

(
γ 2/k2 + ψ ′2

e

)
ξ̂

= d2
e ψ ′

eJ
′′′ξ̂ + d2

e ψ ′
e∇2 1

1 − d2
e ∇2

∇2(ψ ′
eξ̂ ), (12)

where ∇2 should be interpreted as ∇2 = ∂2
x −k2 and the prime

(′) denotes the x derivative. Note, (12) ranks as a fourth order
ordinary differential equation (unless de = 0) because of the
integral operator (1 − d2

e ∇2)−1 on the right-hand side. By
multiplying the both sides of (12) by ξ̂ and integrating over the
domain, we obtain −γ 2I (2) = W(2), where

I (2) =
∫ Lx/2

−Lx/2
dx

1

k2

(
|ξ̂ ′|2 + k2|ξ̂ |2

)
, (13)

W(2) =
∫ Lx/2

−Lx/2
dx

[
− (ψ ′

eξ̂ )
∇2

1 − d2
e ∇2

(ψ ′
eξ̂ ) + ψ ′

eψ
′′′|ξ̂ |2

]
.

(14)

Under the periodic boundary condition on ξ̂ , the two operators
∇2 and (1−d2

e ∇2)−1 commute in (14). The functionals γ 2I (2)

and W(2) are, respectively, related to the kinetic and potential
energies for the linear perturbation. Hence, by invoking the
energy principle [17] (or the Rayleigh–Ritz method), we can
search for the most unstable eigenvalue (γ > 0) by minimizing
W(2)/I (2) with respect to ξ̂ .

Because we assume the ordering (4) that corresponds to
the kink-tearing mode, the eigenfunction ξ̂ is approximately
constant except for thin boundary layers at x = 0, ±Lx/2
and has discontinuities around them because of the singular
property of (12) in the limit of (γ /k), k, de → 0. The electron
inertia effect would smooth out these discontinuities. For this
reason, we choose a piecewise-linear test function shown in
figure 3. In a region containing the boundary layer at x = 0,
it is given explicitly by

ξ̂ (x) =



1 for x < −de

−x/de for − de < x < de

−1 for de < x.

(15)

3
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Figure 3. Test function that mimics the unstable tearing mode.

The outer layers at x = ±Lx/2 are equivalent owing to the
periodicity and symmetry of the problem. We recall that the
asymptotic matching analysis of [11, 30] has already produced
the inner solution ξ̂ 
 −erf(x/

√
2de) for this problem and the

test function (15) is simpler than but analogous to this result.
By substituting this test function into (13) and (14), we can
make W(2) negative and keep I (2) finite; i.e. we obtain

I (2) 
 4

dek2
and W(2) 
 −2

(
1

3
+ 9e−2

)
deτ

−2
H , (16)

where τ−1
H = α2ψ0 and we have extracted only the leading-

order term (see appendix A for details). The linear growth rate
is therefore estimated as follows:

γ =
√

−W(2)/I (2) =
√

0.776τ−2
0 = 0.881τ−1

0 , (17)

where τ−1
0 = dekτ−1

H . This result agrees with the general
dispersion relation derived by asymptotic matching [6]. Of
course, our analytical estimate of the growth rate depends
on how good the chosen test function mimics the genuine
eigenfunction. Nevertheless, the result predicted by the
simple function (15) shows satisfactory agreement with the
numerically calculated growth rate (see figure 4) in the small
k region corresponding to the ordering (4). In the following
simulations, we always put kLx = 0.5.

4. Variational estimate of explosive nonlinear growth

Next, we consider the nonlinear phase of the linear instability
discussed above. We remark in advance that a higher-order
perturbation analysis of the Lagrangian (i.e. weakly nonlinear
analysis) will not be successful, as was already pointed out
by Rosenbluth et al for the case of the ideal internal kink
mode [12]. For example, if we identify the flow map as a
Lie transform Gt = eξ·∇ , the Lie-series expansion [31] of (6)
leads to

ψe = e−ξ·∇ψ(0)
e = ψ(0)

e − ξ · ∇ψ(0)
e

+ 1
2ξ · ∇(ξ · ∇ψ(0)

e ) − O(ε3/d3
e ), (18)

where ξ should agree with the eigenmode (10) in the lowest
order. Thus, such a perturbation expansion easily fails to
converge when the displacement ε (or the island width) reaches
the boundary layer width ∼ de, due to a steep gradient ∂xξ̂ ∼
ξ̂ /de of the eigenfunction inside the layers (see figure 3). Naive
perturbation analysis is, therefore, only valid for 0 � ε � de,
while ε actually exceeds de without saturation as in figure 2.

Figure 4. Dependence of linear growth rate γ on k (for
de/Lx = 0.01). The solid line is calculated by our numerical code.

To avoid difficulties of a rigorous fully nonlinear analysis,
we again take advantage of a variational approach. Namely, we
devise a trial fluid motion (parametrized by the amplitude ε)
that tends to decrease the potential energy W as much
as possible. When such a motion is substituted into the
Lagrangian (7), it is expected to be nonlinearly unstable.

Owing to the symmetry of the mode pattern, it is enough
to discuss the boundary layer at x = 0 and, moreover, focus
on only the first quadrant, 0 < x and 0 < y < Ly/2. In
a heuristic manner, based on the above linear analysis and
simulation results, we consider a displacement map Gε :
(x0, y0) �→ (x, y), where the displacement in the x-direction
is prescribed by

x =




gε(x0) for (i)0 < y0 <
Ly

4
− l

2
x0 +

2

l
for (ii)

Ly

4
− l

2
< y0 <

Ly

4
+

l

2

×
(

y0 − Ly

4

)
×

(
x0 − gε(x0)

)
2x0 − gε(x0) for (iii)

Ly

4
+

l

2
< y0 <

Ly

2
.

(19)

The regions (i)–(iii) are indicated in figure 5 (left) and we
furthermore define gε as

gε(x0) =



e−ε̂x0 for 0 < x0 < de

dee
x0−ε

de
−1 for de < x0 < de + ε

x0 − ε for de + ε < x0.

(20)

As illustrated in figure 5, this displacement map deforms the
contours of ψe into a pattern with Y -shaped ends [26]. In
a nonlinear regime with de � ε � Lx , we find that such a
deformation decreases the potential energy (9) in a manner that
is close to the steepest descent. Leaving the detailed estimate
of δW to appendix B, our reasoning process can be detailed as
follows.

First, in the region (i), the flux ψe of the red area of figure 5
(left) is squeezed into a thin boundary layer whose width is 2de

in figure 5 (right). On the other hand, the flux is expanded in
the region (iii) and the blue area of figure 5 (left) is almost
doubled in figure 5 (right). The resultant forms of ψe and ψ

4
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Figure 5. Deformation of contours of ψe by the displacement map (19).

0 0

Figure 6. Changes of ψe and ψ from the equilibrium state ψ(0)
e 
 ψ(0) around the domains (i) and (iii), due to the displacement map (19)

with ε = 5de.

are shown in figure 6. Since the magnetic flux ψ approximately
conforms to ψe except in the neighbourhood of the boundary
layers, both deformations tend to decrease the magnetic energy
(1/2)

∫ |∇ψ |2 d2x as ε3 when de � ε � Lx . This overall loss
of magnetic energy is the earmark of collisionless magnetic
reconnection.

Inside the boundary layers (i.e. the red regions in figure 5
(right)), care must be taken in representing the formation
of the strong current spikes [10], which are observed as
J = (ψe − ψ)/d2

e in figure 6(i). These spikes tend to
increase the current energy (1/2)

∫
d2

e J 2 d2x in (9). However,
the asymptotic form of the current is approximated by a
logarithmic function, J 
 τ−1

H ε̂ log |x/de| for ε̂ = ε/de � 1,
and the current energy change is, at most, of the second
order O(ε̂2). Therefore, in the regions (i) and (iii), the
dominant contribution of the potential energy decreases at the
rate of order O(ε̂3) despite the minor increase in the current
energy.

Only in the intermediate region (ii) located between (i)
and (iii), does the potential energy tend to increase due to the
bending of magnetic field lines over the distance l. But, we
can minimize this contribution from the region (ii) by taking
its width l to be sufficiently small: l � Ly . We are allowed to
use this approximation as far as the ordering (4) is concerned;
Ly is the longest scale length in this ordering and, in fact,
Ly → ∞ is similar to the behaviour of the m = 1 kink-tearing
mode.

By noting that there are, respectively, eight regions that
are equivalent to (i) and (iii) in the whole domain D, analytical

estimates given in appendix B can be gathered into the
following:

δW [Gε] 
 8δW(i) + 8δW(iii) = −Lyτ
−2
H d3

e

[
ε̂3

2
+ O(ε̂2)

]
,

(21)

for de � ε � Lx .
To evaluate the nonlinear growth rate of ε, it is necessary to

estimate the kinetic energy. By introducing time-dependence
in ε(t) via the displacement map (19), a straightforward
analysis (given in appendix C) eventually results in

K[Gε(t)] 
 8K(i) + 8K(iii) = π2 log 2

6
Lyτ

−2
H d3

e

(
dε̂

dt̂

)2

, (22)

where t̂ = t/τ0. This estimate is not remarkably different from
that of the linear regime.

With these estimates, the Lagrangian (7) reduces to

L[Gε(t)] 
 π2 log 2

6
Lyτ

−2
H d3

e

[(
dε̂

dt̂

)2

− U(ε̂)

]
, (23)

where the normalized potential energy is given by

U(ε̂) = −(3/π2 log 2)ε̂3 +O(ε̂2) = −0.439ε̂3 +O(ε̂2). (24)

The equation of motion is, of course, d2ε̂/dt̂2 = F(ε̂) with
F(ε̂) = −(1/2)dU/dε̂.

In the linear regime (ε � de), we have already shown
that the potential energy decreases as U(ε̂) = −0.776ε̂2

5
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Figure 7. Contours of ψe convected by the fixed flow (25) (when
ε = 5de).

and ε(t) grows exponentially. The steeper descent where
U(ε̂) = −0.439ε̂3 in the nonlinear regime (de � ε � Lx)
indicates an explosive growth of ε, namely, it reaches the order
of the system size Lx during a finite time ∼ τ0.

We remark that the nonlinear force F(ε̂) ∼ O(ε̂2)

obtained here is different from F(ε̂) ∼ O(ε̂4) in the earlier
theory by Ottaviani and Porcelli [10]. While similar fluid
motion around the X and O points is considered in [10], they
directly integrate the vorticity equation (1) over the quadrant
[0, Lx/2] × [0, Ly/2] and arrive at an equation of motion
d2ε̂/dt̂2 = F(ε̂) ∼ O(ε̂4). However, unless the assumed
trial motion happens to be an exact solution, their treatment
may lead to a wrong equation of motion that does not satisfy
energy conservation (see appendix D for details). Moreover,
their ansatz of the ‘fixed flow-pattern’ is also found to be
inappropriate in our trial-and-error process. If we try fixing
the stream function φ throughout the linear and nonlinear
regimes as

φ(x, y, t) = −dε

dt
(t)ξ̂ (x)

sin ky

k
, (25)

with the same ξ̂ (x) as (15), the contours of ψe are deformed
into a mushroom-like shape as shown in figure 7. With this
choice, the potential W does not continue to decrease—such
a fixed flow-pattern merely circulates the flux ψe from the X

point side to the O point side via the boundary layer.
In direct numerical simulation, we have calculated the

potential energy U(ε̂) (or, equivalently, the kinetic energy
(dε̂/dt̂ )2) as a function of ε̂. As shown in figure 8, the decrease
in U(ε̂) agrees with our scaling and does not support the scaling
U ∼ −ε̂5 of [10].

5. Small dissipation

In this section, we consider the effect of small dissipation by
introducing resistivity (η) and electron perpendicular viscosity
(µe) into Ohm’s law (2); i.e.

∂ψe

∂t
+ v · ∇ψe = −ηJ + µed

2
e ∇2J. (26)

Both terms on the right-hand side only dissipate the potential
energy W . For sufficiently small η and µe, we can still employ
the energy principle in the manner used to describe the resistive
wall mode in [32]. Thus, the energy principle is extended as

− γ 2I (2) = W(2) + W
(2)

dis + O(η2, µ2
e), (27)

Figure 8. Potential energy U(ε̂) (where de/Lx = 0.01 and
Ly/Lx = 4π in simulation).

where

W
(2)

dis = − 1

γ

∫ Lx/2

−Lx/2
dx

(
η|Ĵ |2 + µed

2
e |∇Ĵ |2

)
< 0, (28)

and

Ĵ = ∇2

1 − d2
e ∇2

(ψ ′
eξ̂ ). (29)

By substituting the same test function ξ̂ of (15) into W
(2)

dis , the
linear growth rate (17) is modified to

γ = 0.881τ−1
0 + 0.367τ−1

e + 0.347τ−1
d + τ−1

0 O

(
τ 2

0

τ 2
e

,
τ 2

0

τ 2
d

)
,

(30)

where τe = d2
e /η is the electron collision time and τd = d2

e /µe

is the electron diffusion time over a distance de. Small η and
µe, therefore, enhance the linear growth rate. This result also
implies that the extended energy principle is only valid for
τ0/τe � 1 and τ0/τd � 1. When either τ0/τe or τ0/τd is
large, collisional reconnection dominates in the boundary layer
and the diffusion process of the inner solution is no longer
legitimately described by Lagrangian mechanics.

Now, let us interpret our result for tokamak parameters.
The time scale τ0 in a typical tokamak was already estimated
by Wesson [20], where he compared it with Kadomtsev’s
reconnection time. Here, we will repeat a similar argument,
but compare τ0 with τe and τd.

Since τe/τd ∼ (ρe/de)
2, where ρe is the electron

gyroradius, the effect of electron viscosity is typically much
smaller than that of resistivity, τe/τd � 1, in strongly
magnetized plasmas in tokamaks.

However, the time scales τ0 and τe can sometimes
be similar in tokamak plasmas. For the m = 1 kink-
tearing mode in tokamaks, τ−1

0 = dekτ−1
H corresponds to

τ−1
0 = deq

′
1ωA0, where q ′

1 is the derivative of the safety factor
q at the q = 1 surface and ωA0 is the toroidal Alfvén
frequency at the magnetic axis. For sample parameters,
ωA0 = 6.4 × 106 s−1, Te = 6 keV, n = 3.5 × 1019 m−3 and
q ′

1 = 2.0 m−1, corresponding to TFTR experiments that have
sawtooth crashes [4, 5], we obtain τ0 = 90 µs and τe = 270 µs,
although the ratio τ0/τe = 0.33 can drastically change in
proportion to T

−3/2
e n2.
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Figure 9. Instantaneous growth rates (τ0/ε)dε/dt versus resistivity
τ0/τe, numerically evaluated at several levels of amplitude ε/de

(de/Lx = 0.01 and Ly/Lx = 4π ).

By recalling that the resistive layer width δη for the
case of �′ = ∞ is given by δη ∼ (η/q ′

1ωA0)
1/3, namely,

δη/de ∼ (τ0/τe)
1/3, we expect the reconnection to be relatively

collisionless when τ0 is shorter than τe. In fact, the nonlinear
acceleration phase is observed numerically for τ0/τe < 1.
Figure 9 shows instantaneous growth rates of ε(t) for different
values of resistivity τ0/τe(∝ η). The linear growth rate γ ,
which emerges at the small amplitude ε/de = 0.1(� 1),
obeys the dispersion relation γ τ0 = (τ0/τe + γ τ0)

1/3 obtained
by asymptotic matching [11, 30]. As the amplitude ε enters
into the nonlinear phase ε/de > 1, acceleration occurs for
τ0/τe < 1. Since the electron skin depth de is wider than
the resistive layer width δη for τ0/τe < 1, collisionless
reconnection governs macroscopic fluid motion. In contrast,
for τ0/τe > 1, the resistive layer initiates the reconnection
process and hence deceleration occurs in figure 9, which
is more like the quasi-equilibrium evolution caused by the
resistive kink mode [2].

To obtain a description that is more relevant to actual
sawtooth crashes, we would need to improve our development
by including both ion and electron thermal effects. In
various high-temperature regimes, the linear stability of
the m = 1 kink-tearing mode has been treated by many
authors. For instance, the ion-sound gyroradiusρs (i.e. electron
parallel compressibility) enhances the growth rate (17) up
to γ ∼ τ−1

0 (ρs/de)
2/3 for ρs > de [8]. On the other hand,

diamagnetic effects (stemming from density gradient) rotate
the mode and reduce the growth rate in both collisional and
collisionless regimes [30, 33]. Since the reconnection layer
is often narrower than the ion gyroradius, a fully kinetic
treatment of ions is appropriate for retaining finite gyroradius
effects to all orders [34]. The assumption of isothermal
electrons along magnetic fields (which is often used as a
closure of two-fluid models) cannot be also justified by a
kinetic description of the electrons [29]. By allowing for
parallel thermal conductivity derived from electron kinetics,
the electron temperature gradient is shown to have a strong
stabilizing effect [34–36]. These linear stability theories
serve to predict the onset of sawteeth, especially, in the
semi-collisional regime [36, 37]. However, the nonlinear
relaxation model remains somewhat heuristic [37], and further
application of this work might provide a pathway for progress
on this issue.

6. Summary

In this work, we have analytically elucidated the acceleration
mechanism for collisionless reconnection enabled by electron
inertia. A variational method based on the Lagrangian
description of collisionless plasma is shown to be useful
especially for predicting nonlinear evolution; conventional
asymptotic matching does not apply to this problem unless
an exact nonlinear and unsteady solution is available around
the boundary layers.

We have demonstrated the existence of a nonlinear
displacement map that decreases the potential energy of the
Lagrangian system into the nonlinear regime. No matter how
small the electron skin depth de, electron inertia enables ideal
fluid motion to release free energy (
 magnetic energy) of the
equilibrium state because the frozen-in flux is switched from ψ

to ψe = ψ − d2
e ∇2ψ , producing a reconnecting layer of width

de. In the large-�′ limit, the formation of Y -shaped structures
connected by a current layer in the magnetic configuration is
favourable for the steepest descent of the potential energy. This
descent scales as O(ε̂3) for ε̂ = ε/de � 1 with respect to the
displacement ε (or the island width). The associated explosive
growth of ε would continue until ε reaches the system size and
leads to an equilibrium collapse during a finite time ∼ τ0.

Although our analytical model is too simple to explain
all sawtooth physics in tokamaks, the time scale of explosion
(τ0 ∼ 90 µs) that is predicted in this work is comparable
to experimentally observed sawtooth collapse times [4, 5].
However, resistivity is not negligible in tokamaks and tends to
decelerate the reconnection. Our simulations exhibit nonlinear
acceleration only for the case of τ0/τe = η/d3

e q ′
1ωA0 < 1,

which can be fulfilled by the experiments. In more realistic
plasmas, the strong current spike generated by electron inertia
would cause rapid heating of the plasma, which would reduce
the local resistivity η, and, what is more, would produce
runaway electrons. Since these effects also act as positive
feedback, we expect that sawtooth collapse occurs once the
acceleration condition τ0/τe < 1 is satisfied at the q = 1
surface.

We infer that the state of lowest potential energy is
similar to Kadomtsev’s fully reconnected state (where q at
the magnetic axis is q0 = 1) [1]. But, if dissipation were
sufficiently small, it would also corresponds to the state of
maximum kinetic energy, where a strong convective flow
remains. As shown in numerical simulations [21, 22], such
a residual flow causes a secondary reconnection and restores
a magnetic field similar to the original equilibrium (q0 < 1).
If our analytical result is adapted to cylindrical geometry, this
partial reconnection model will be corroborated theoretically.

We expect further application of our variational
approach to be fruitful for describing strongly nonlinear and
nonequilibrium dynamics of sawtooth collapses. As is well
known, finite-Larmor-radius effects and diamagnetic effects
would modify the island structure and dynamics significantly
on the ion scale which is larger than de. Our approach
is feasible even for multiscale problems that require nested
boundary layers, as long as dissipation is not the dominant
factor. Extensions of the present analysis to more general two-
fluid equations are in progress and will be reported elsewhere.
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Appendix A. Linear stability analysis

In the ideal MHD limit (de = 0), it is well known that the
equilibrium (3) has a marginally stable eigenmode (γ = 0)
which is expressed by ψ̂ = ψ0 cos κ(α|x| − π/2) (where
κ =

√
1 − k2/α2) in terms of ψ̂ = −ψ ′ξ̂ . When k2 < α2,

this eigenmode formally makes W(2) negative;

W(2) = −2 ψ̂ψ̂ ′
∣∣∣x=+0

x=−0
= −2ψ2

0 ακ sin (κπ) < 0, (A.1)

which also implies that the tearing index is positive,
�′ = ψ̂ ′/ψ̂ |x=+0

x=−0 = 2ακ tan κ π
2 > 0. The corresponding

ξ̂ = −ψ̂/ψ ′ is, however, discontinuous at x = 0, ±Lx/2 and
hence I (2) = ∞. It is therefore reasonable to infer that this
marginal mode would be destabilized by adding electron inertia
de � Lx .

Note that the integrand of the potential energy (14) is
composed of two quadratic terms, which are, respectively,
positive and negative definite. Since ψ ′

e 
 ψ ′ for small
de, the main role of the electron inertia is to weaken the
magnetic tension (equal to the former positive term) through
the smoothing operator (1 − d2

e ∇2)−1.
By assuming the ordering (4) (in which �′ 
 8α3/πk2

is large) and employing the test function ξ̂ in figure 3, let us
estimate only the leading-order term in (13) and (14). For that
purpose, we can always use an approximation ∇2 
 ∂2

x . Then,
(13) easily yields the estimate of I (2) in (16).

To calculate the potential energy (14), we introduce a
neighbourhood [−d0, d0] of the boundary layer [−de, de],
where d0 is supposed to be a few times larger than de. The
potential energy in the outer region [−Lx/2 + d0, −d0] ∪
[d0, Lx/2 − d0] is estimated by

W
(2)
[−Lx/2+d0,−d0]∪[d0,Lx/2−d0] = −2 ψ̂ψ̂ ′

∣∣∣x=d0

x=−d0


 −4
d0

τ 2
H

,

(A.2)

where τ−1
H = ψ0α

2, because ψ̂ 
 ψ0 cos(α|x| − π/2) in this
region.

Next, we focus on the inner region [−d0, d0] using a
local coordinate x̂ = x/de and approximating the equilibrium
profile by ψ ′

e 
 ψ ′ 
 −(de/τH )x̂. For given

ψ̂e = −ψ ′
eξ̂ = de

τH

{−x̂2 for |x̂| < 1
−|x̂| for 1 < |x̂|, (A.3)

the corresponding ψ̂ is obtained by solving ψ̂e = ψ̂ − ∂2
x̂
ψ̂

under the boundary condition, ψ̂ → ψ̂e as |x̂| → ∞. This
analysis results in

ψ̂ = de

τH




−(x̂2 + 2) +
3

2
e−1(ex̂ + e−x̂ ) |x̂| < 1

−|x̂| +
3e−1 − e

2
e−|x̂| 1 < |x̂|,

(A.4)

where ψ̂(0) �= 0 indicates that this perturbation causes
magnetic reconnection. The potential energy inside the layer
[−d0, d0] is calculated as

W
(2)
[−d0,d0] 
 1

de

∫ d0/de

−d0/de

dx̂
[
|∂x̂ψ̂ |2 + |∂2

x̂ ψ̂ |2
]


 de

τ 2
H

(
−1

3
− 9e−2 + 2

d0

de

)
, (A.5)

where we have neglected e−d0/de by making d0 larger than de to
some extent. Since other boundary layers at x = ±Lx/2 can
be treated equivalently, the total potential energy on the whole
domain [−Lx/2, Lx/2] is estimated as (16).

Appendix B. Estimate of potential energy change

Here we estimate change in the potential energy W [Gε] that
is caused by the nonlinear displacement map Gε given in (19).
In a way similar to that of the linear analysis (see appendix A),
we introduce a domain [0, d0] × [0, Ly/2] where d0 is now
taken to be somewhat larger than 2de + 2ε. This domain is
deformed by the map Gε as shown in figure B1, where we
refer to shrinking and expanding domains as

D(i) = [0, d0 − ε] ×
[

0,
Ly

4
− l

2

]
, (B.1)

D(iii) = [0, d0 + ε] ×
[
Ly

4
+

l

2
,
Ly

2

]
, (B.2)

respectively, and their intermediate domain as D(ii). The
potential energy will not change significantly outside of
these domains, because the fluid is simply subject to parallel
translation along the x-direction. Moreover, we are only
interested in the domains D(i) and D(iii), on which efficient
decrease in the potential energy is observed as follows.

Appendix B.1. Potential energy on D(i)

The equilibrium (3) is approximated by ψ
(0)
e (x) 
 ψ(0)(x) 


ψ0(1 − α2x2/2) and it is deformed into ψe(x, y, ε) =
ψ

(0)
e (g−1

ε (x)) on D(i). Therefore, δψe = ψe −ψ
(0)
e is given by

δψe = 1

τH




1

2
(1 − e2ε̂ )x2 for 0 < x < dee

−ε̂

−1

2

[
de

(
log

x

de
+ 1

)
+ ε

]2

for dee
−ε̂ < x < de

+
x2

2

−εx − ε2

2 for de < x.

(B.3)

For large ε̂ = ε/de � 1, we can neglect the innermost region
0 < x < dee

−ε̂ and the asymptotic form of δψe contains a
logarithmic function as follows.

δψe = d2
e

τH




−(1 + ε̂) log x̂ − 1
2 (1 + ε̂)2 +

x̂2

2
for 0 < x̂ < 1

−ε̂x̂ − ε̂2

2
for 1 < x̂,

(B.4)
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Figure B1. Closeup of three regions (i)–(iii) in figure 5.

where x̂ = x/de, and the corresponding spike is recognized in
figure 6(i). By solving (1 − ∂2

x̂
)δψ = δψe for δψ , the change

in current δJ = −∂2
x (δψ) turns out to be

δJ = 1

τH

{−(ε̂ + 1)Ec(x̂) − 1 + c1 cosh(x̂) for 0 < x̂ < 1
c2e

−x̂ for 1 < x̂,

(B.5)

where we have defined Ec(x) = [exEi(−x) + e−xEi(x)]/2
using the exponential integral Ei(x) = p.v.

∫ x

−∞(es/s) ds. The
coefficients c1 and c2 are matching data at the interface x̂ = 1,
which are linear functions of ε̂ as follows;

c1(ε̂) = (ε̂ + 1)[Ec
′(1) + Ec(1)] + 1

e
, (B.6)

c2(ε̂) = (ε̂ + 1)
[
cosh(1)Ec

′(1) − sinh(1)Ec(1)
] − sinh(1).

(B.7)

Since Ec(x̂) 
 log |x̂| near x̂ = 0, a strong current spike
develops in the form of logarithmic function, as noted earlier
in [10]. However, the asymptotic form of δJ = J − J (0)

remains square-integrable and, hence, the current energy
change in (9) is, at most, of the second order;

1

2

∫ d0

0
dx d2

e (|J |2 − |J (0)|2) = d3
e

τ 2
H

× O(ε̂2). (B.8)

On the other hand, the magnetic flux ψ = ψ(0) + δψ is
free from such logarithmic singularity and its derivative,

∂xψ = de

τH




−(1 + ε̂)∂x̂

[
log x̂ − Ec(x̂)

]
for 0 < x̂ < 1

−c1 sinh(x̂)

−(x̂ + ε̂) + c2e
−x̂ for 1 < x̂

(B.9)

is again square-integrable and linearly depends on ε̂. Hence,
the leading-order estimate of magnetic energy is simply

1

2

∫ d0−ε

0
dx|∂xψ |2 = d3

e

τ 2
H

[
1

2

∫ (d0/de)−ε̂

1
dx̂ (x̂ + ε̂)2 + O(ε̂2)

]

= 1

τ 2
H

[
d3

0

6
− ε3

6
+ O(ε̂2d3

e )

]
, (B.10)

which decreases as ε̂3 for ε̂ � 1. This decrease in the magnetic
energy dominates the increase in current energy (B.8).
Therefore, the potential energy change on D(i) is found to be

δW(i) =
(

Ly

4
− l

2

)
1

τ 2
H

[
−ε3

6
+ O(ε̂2d3

e )

]
. (B.11)

Appendix B.2. Potential energy on D(iii)

For the purpose of estimating δW on D(iii) to leading order,
one may approximate the inverse map of (19) as

x0 =
{x

2
for 0 < x < 2ε

x − ε for 2ε < x,
(B.12)

for large ε̂. The equilibrium flux ψ
(0)
e (x) 
 ψ0(1 − α2x2/2)

is expanded by this outflow and is deformed into a flat-topped
shape (see figure 6(iii)). In the same manner as for the domain
D(i), we first obtain

δψe = 1

τH




3x2

8
for 0 < x < 2ε

2εx − ε2

2
for 2ε < x,

(B.13)

and calculate the current change as follows:

δJ = 1

τH




−3

4
+

(
ε̂

2
+

3

4

)
1

2
ex̂−2ε̂ for 0 < x < 2ε

(
ε̂

2
− 3

4

)
1

2
e−x̂+2ε̂ for 2ε < x.

(B.14)

By keeping the smallness of e−ε̂ in mind, we confirm that the
current energy change is again of the second order O(ε̂2). The
asymptotic form of ∂xψ is estimated by

∂xψ = de

τH




− x̂

4
−

(
ε̂

2
+

3

4

)
1

2
ex̂−2ε̂ for 0 < x < 2ε

−(x̂ − ε̂) +

(
ε̂

2
− 3

4

)
1

2
e−x̂+2ε̂ for 2ε < x,

(B.15)

and the magnetic energy is also found to decrease as ε̂3;

1

2

∫ d0+ε

0
dx |∂xψ |2

= d3
e

2τ 2
H

[∫ 2ε̂

0
dx̂

x̂2

16
+

∫ d0/de+ε̂

2ε̂

dx̂ (x̂ − ε̂)2 + O(ε̂2)

]

= 1

τ 2
H

[
d3

0

6
− ε3

12
+ O(ε̂2d3

e )

]
. (B.16)

The flat-topped region of ψe(
 ψ) corresponds to the magnetic
island, on which the magnitude of ∂xψ obviously decreases.
The potential energy on D(iii) therefore decreases as follows:

δW(iii) =
(

Ly

4
− l

2

)
1

τ 2
H

[
− ε3

12
+ O(ε̂2d3

e )

]
. (B.17)
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Appendix C. Estimate of kinetic energy

Here we estimate the kinetic energy K[Gε(t)] of the
displacement map Gε(t) given in (19), where only ε(t) is
assumed to be time-dependent. By invoking figure B1 again,
the dominant part of kinetic energy turns out to exist in the
domains D(i), D(ii) and D(iii). Since D(ii) is ignored in this
work (by assuming l � Ly), we exhibit only the results for
D(i) and D(iii) as follows.

Appendix C.1. Kinetic energy on D(i)

Owing to our special choice of gε , the x-component of the
velocity field on D(i) is simply given by

vx(x, y, ε) = dε

dt

dgε

dε
(g−1

ε (x)) = dε

dt




− x

de
for 0 < x < de

−1 for de < x.

(C.1)

By solving the incompressibility condition ∂xvx + ∂yvy = 0
under appropriate boundary conditions, the y-component of
the velocity field is found to be

vy(x, y, ε) = dε

dt




y

de
for 0 < x < de

0 for de < x.

(C.2)

This vy dominantly contributes to the kinetic energy on D(i),
which is readily estimated by

K(i) =
∫ Ly

4 − l
2

0
dy

×
∫ d0−ε

0
dx

1

2
(v2

x + v2
y) 
 1

6de

(
Ly

4
− l

2

)3 (
dε

dt

)2

. (C.3)

Appendix C.2. Kinetic energy on D(iii)

We can go through the same procedures as for D(i), but the
analysis is somewhat complicated by the fact that the inverse
map x �→ x0 should be dealt with as an implicit function.
In terms of the unperturbed position x0, the velocity field is
expressed by

vx(x, y, ε) = dε

dt

∂x

∂ε
(x0)

= dε

dt




x̂0e
−ε̂ for 0 < x0 < de

ex̂0−ε̂−1 for de < x0 < de + ε

1 for de + ε < x0,

(C.4)

vy(x, y, ε) =
(

Ly

2
− y

)
dε

dt

1

de

×




e−ε̂

2 − e−ε̂
for 0 < x0 < de

ex̂0−ε̂−1

2 − ex̂0−ε̂−1
for de < x0 < de + ε

0 for de + ε < x0.

(C.5)

Using the change of variables from x to x0, the kinetic energy
on D(iii) is therefore estimated as

K(iii) =
∫ Ly

2

Ly

4 + l
2

dy

∫ d0

0
dx0

1

2
(v2

x + v2
y)

∂x

∂x0


 2 log 2 − 1

6de

(
Ly

4
− l

2

)3 (
dε

dt

)2

, (C.6)

where we have neglected e−ε̂ for large ε̂ � 1.

Appendix D. Comparison with the Ottaviani and
Porcelli approach

In [10], Ottaviani and Porcelli (hereafter, OP) integrated the
vorticity equation (1) over a convection cell, S = [0, Lx/2] ×
[0, Ly/2], and obtained
d

dt

∫
S

d2x ∇2φ = 2

τH

(δψX − δψO) − 1

d2
e

(δψ2
X − δψ2

O),

(D.1)

where δψX and δψO denote the values of δψ = ψ − ψ(0)

at the X and O points, respectively. By assuming the fixed
flow-pattern (25) with ξ̂ given by (15), one can estimate

δψX 
 − ε2

2τH

and δψO ∼ O

(
d2

e

τH

)
, (D.2)

for ε > de and, using Stokes’ theorem,∫
S

d2x ∇2φ =
∮

∂S

v · dl 
 4

k2

dε

dt
ξ̂ ′(0) = − 4

k2de

dε

dt
. (D.3)

Thus, OP derived the nonlinear equation, d2ε̂/dt̂2 
 ε̂4/16
(see also chapter 6.4.1 of [38] and further application in [39]).
Even if we employ our displacement map (19) in this OP
approach, the estimates (D.2) and (D.3) are almost invariable
(in view of vx of (C.1) and δψ of figure 6) and a similar
nonlinear equation is reproduced.

However, we note that the OP approach does not yield a
valid result. To demonstrate this fact, let us modify the test
function ξ̂ slightly as follows:

ξ̂ (x) =




− x

de
σ for 0 < x < dee

−ε̂

−1 − σe−ε̂

1 − e−ε̂

x

de
+

1 − σ

1 − e−ε̂
e−ε̂ for dee

−ε̂ < x < de

−1 for de < x,

(D.4)

and ξ̂ (−x) = −ξ̂ (x), in which a sublayer [0, dee
−ε̂] and

another free parameter σ are newly introduced; thus, the case
σ = 1 reduces to (15). For σ � eε̂ , this modification appears
to be very minor, but the estimate (D.3) drastically changes to∫

S

d2x ∇2φ 
 − 4σ

k2de

dε

dt
. (D.5)

Therefore, the result becomes d2ε̂/dt2 
 ε̂4/16σ and the
nonlinear growth rate is indeterminate since we can choose
σ = ε̂n with arbitrary n ∈ R. Thus, there is no way to
reasonably determine the correct value of σ with this approach.
Moreover, only the fluid motion along the boundary (∂S) of S

is actually used for evaluating the equation (D.1) and, hence,
the result derived from (D.1) is generally inconsistent with the
energy conservation law on S.

In the variational approach we have used, introduction of
such a thin sublayer [0, dee

−ε̂] into (19) does not affect the
overall estimates of kinetic and potential energies. Therefore,
our displacement map (19) is enough to predict the nonlinear
growth, even though it does not perfectly coincide with the
exact nonlinear solution.
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