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Techniques for coordinate changes that depend on both dependent and independent variables

are developed and applied to the Maxwell-Vlasov Hamiltonian theory. Particle coordinate

changes with a new velocity variable dependent on the magnetic field, with spatial coordinates

unchanged, are lifted to the field theoretic level, by transforming the noncanonical Poisson

bracket and Hamiltonian structure of the Vlasov-Maxwell dynamics. Several examples are

given including magnetic coordinates, where the velocity is decomposed into components

parallel and perpendicular to the local magnetic field, and the case of spherical velocity

coordinates. An example of the lifting procedure is performed to obtain a simplified version of

gyrokinetics, where the magnetic moment is used as a coordinate and the dynamics is reduced

by elimination of the electric field energy in the Hamiltonian. VC 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4794828]

I. INTRODUCTION

Perturbation theory in the context of Hamiltonian dynam-

ics has proven to be unquestionably useful in many contexts,

ranging from celestial mechanics (e.g., Ref. 1) to atomic

physics (e.g., Ref. 2) and plasma physics (e.g., Ref. 3). The

superconvergent expansions of the Kolmogorov-Arnold-

Moser theorem (e.g., Ref. 4) and the techniques of adiabatic

invariance (e.g., Ref. 5) all are aspects of perturbation theory

in the Hamiltonian context. Although such techniques are

well-developed and well-known for finite-dimensional sys-

tems, this is not the case for such perturbation theories for par-

tial differential equations. This is particularly true for

Hamiltonian systems with noncanonical Poisson brackets of

the form of those given in Refs. 6–8 for plasma systems. A

main goal of the present paper is to provide tools for such per-

turbation theory using the Poisson bracket for Vlasov-

Maxwell equations7,9–12 in situations with a short time scale

introduced by the presence of a strong magnetic field.

Derivations of gyrokinetic theories have proceeded

directly from the Vlasov-Maxwell equations of motion as in

the nonlinear development of Ref. 13, they have been based on

Hamiltonian particle orbit perturbation theory that is lifted up

to the kinetic level as in the linear development of Ref. 14, or

they have incorporated both particle orbit and kinetic perturba-

tions to arrive at a nonlinear theory.15 (See Refs. 16 and 17 for

review.) None of these procedures parallels that for finite-

dimensional Hamiltonian systems that has historically achieved

such great success. Consequently, none of these theories obtain

an infinite-dimensional Hamiltonian form as a consequence of

their method of derivation. In fact, at present, it is not known if

nonlinear gyrokinetics has Hamiltonian form, the form pos-

sessed by all of the important systems of plasma physics when

dissipative terms are neglected. (For review of Hamiltonian

structure and techniques, see Refs. 7, 8, and 18.) An alternative

approach was recently introduced in Ref. 19, one that uses a

kind of kinetic action principle (see, e.g., Ref. 20), rather than

the Hamiltonian structure of the Vlasov-Maxwell dynamics,

and one that incorporates an approximately self-consistent elec-

tromagnetic field.

To effect an infinite-dimensional Hamiltonian, gyrokinetic-

like perturbation theory requires changes of particle coordi-

nates, motivated by the near constancy of the magnetic

moment, which induce changes in the field Hamiltonian dy-

namics. Thus, this perturbation theory involves a sequence of

particle coordinate changes that depends on the dependent

(field) variables and their arguments, which are independent

variables from the point of view of the Hamiltonian structure.

This complicates matters significantly and care must be taken

when performing transformations, most notably with the chain

rule. Because the Vlasov-Maxwell theory has fields of mixed

type, the electromagnetic fields depending on a space variable

and the distribution function depending on a phase space vari-

able, and because these fields are not a usual canonical set, the

situation is further complicated. In the present paper, the intrica-

cies of this kind of transformation and associated chain rule are

described, which enables the Hamiltonian perturbation theory.

The techniques are then applied to obtain a simplified version

of gyrokinetics (guiding center kinetics), which considers the

presence of a conserved magnetic moment, as a first step for

more general gyrokinetic reduction, e.g., by using the intrinsic

coordinates developed in Ref. 21, which will be considered

elsewhere.

We refer to the process of determining the form of field

dynamics, induced by particle orbit dynamics, as lifting.

Lifting in the present context is a natural relative of that
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treated in Ref. 12, a companion paper that treats the lifting of

microscopic particle dynamics up to the field level. Actually,

the purpose of the present paper is distinct from that of Ref.

12, but the framework is closely related. Reference 12 is

about a general prescription for the Hamiltonian structure of

Vlasov-Maxwell theories with polarization and magnetiza-

tion, but often such effects come from a transformation of

the particle phase-space. On the other hand, here, we study

how to lift a change of particle coordinates to the

Hamiltonian structure of Vlasov-Maxwell dynamics. As a

side effect, this can generate polarization and magnetization

and fits in with the purpose of Ref. 12. Thus, the two papers

study complementary aspects of one and the same question.

The paper is organized as follows. In Sec. II, some pre-

liminary material needed for the subsequent development is

described. This is followed by four sections where several

specific transformations are considered, and it is shown how

to lift these coordinate transformations, which are tailored to

particle orbit dynamics, up to the level of fields, by detailing

how to transform the Vlasov-Maxwell Poisson bracket into

the new coordinates. In the process, four features associated

with steps of lifting must be considered; these are progres-

sively taken into account to reach the final complete transfor-

mation for the magnetic moment. The four features/steps are

Step A: A chain rule for functions in the particle bracket

½�; ��, because the transformation affects particle coordinates.

Step B: The presence of the Jacobian both in functionals

and in functional derivatives.

Step C: A chain rule for functionals in the field bracket

f�; �g, because the transformation depends of the magnetic

field, which is a dynamical field.

Step D: The possible presence of gradients of the magnetic

field in the transformation, which implies the presence of

differential operators in the chain rule.

Section III considers magnetic coordinates, where the

particle velocity coordinate is projected parallel and perpen-

dicular to a space-dependent dynamical magnetic field; this

introduces the features A and B mentioned above. Next, in

Sec. IV, spherical velocity coordinates are considered. Here,

the velocity coordinates are chosen as the unit vector of the

velocity (independent of the spatial coordinates) and a coor-

dinate in one-to-one correspondence with the norm of the ve-

locity. This transformation introduces a new feature in that

the Jacobian determinant of the transformation is no longer

unity, but the transformation does not depend of the mag-

netic field. This provides a simple example for the features A

and C. In Sec. V, we turn to a case that is both more com-

plete and closer to that needed for gyrokinetics with the mag-

netic moment coordinate: the change of coordinates depends

on the local value of the magnetic field, which implies the

presence of the features A, B, and C. Next, Sec. VI considers

the physically important situation, where the change of coor-

dinates involves spatial derivatives of the magnetic field to

arbitrary order, i.e., as given by Eq. (1) below; this involves

all of the four features A, B, C, and D. With the techniques

of the previous four sections in hand, in Sec. VII, we treat an

example where the reduced coordinate is indeed the mag-

netic moment and explicitly transform the Hamiltonian form

of the Vlasov-Maxwell equation into the new coordinates.

Finally, in Sec. VIII, we conclude.

Notice that the first example differs from the others in

that the last four Secs. IV–VII are about the same ultimate

transformation, with each section bringing us closer to the

magnetic moment transformation: the velocity coordinates

are first chosen as spherical coordinates; then the norm of the

velocity is taken as a general local function of the magnetic

field; next, it is taken as a general non-local function of the

magnetic field; last, it is chosen as the magnetic moment.

Also, for the sake of conciseness, the equations of motion of

the transformed Vlasov-Maxwell system will be studied only

in the example of Sec. VII, but it is clear that the conclusions

are general and hold for other examples of lifting.

II. PRELIMINARY MATERIAL

From a general point of view, a main purpose of this pa-

per is to transform the Vlasov-Maxwell Hamiltonian struc-

ture when the phase space variables ðq; vÞ are changed to the

following new coordinates that depend on the magnetic field

and all of its derivatives:

�q ¼ q ; �v ¼ �vðq; v; B;rB;…Þ : (1)

For the noncanonical Hamiltonian structure of Vlasov-

Maxwell dynamics, the observables are the set of all func-

tionals of the magnetic field BðqÞ, the electric field EðqÞ,
and the phase space density f ðq; vÞ, where the time variable

has been suppressed. The Poisson bracket is7,9–11

fF;Gg ¼
ð

d3qd3v f ½Ff ;Gf �

þ e

ð
d3qd3v f ðGE � @vFf � FE � @vGf Þ

þ
ð

d3q ðFE � r � GB � GE � r � FBÞ; (2)

where subscripts are used for functional derivatives,

Ff :¼ dF=df ;FE :¼ dF=dE, etc., and the particle bracket is

½g; h� ¼ rg � @vh�rh � @vgþ eB � @vg� @vh, with rg ¼
@g=@q and @vh ¼ @h=@v, for any functions of the phase-

space gðq; vÞ and hðq; vÞ. For the sake of simplicity, physical

constants have been scaled away as usual, but a dimension-

less charge variable e that indicates the coupling term has

been retained (see Ref. 12 for a dimensional form of this

bracket). The variable e becomes the charge ratios when Eq.

(2) is generalized by summing over multiple species.

The Hamiltonian functional is

H½E;B; f � ¼ 1

2

ð
d3qd3v jjvjj2f þ 1

2

ð
d3q ðjjEjj2 þ jBjj2Þ;

(3)

which is the sum of the kinetic energy of the plasma and the

energy of the electromagnetic field. The relativistic model is

obtained by replacing jjvjj2 in the kinetic energy term withffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jjvjj2

q
, where in the latter case, v is the scaled relativis-

tic momentum. The coupling between the plasma and elec-

tromagnetic field is included in the noncanonical Poisson
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bracket (2). The Hamiltonian (3) together with the Poisson

bracket generates the motion through Hamilton’s equations

expressed as

_F ¼ fF;Hg ;

for any observable F. In particular, if F denotes the field var-

iables, the bracket induces Maxwell-Vlasov equations as

follows:

_B ¼ fB;Hg ¼ �r� E ;

_E ¼ fE;Hg ¼ r � B� e

ð
d3v f v;

_f ¼ ff ;Hg ¼ �v � rf � e ðEþ v� BÞ � @vf :

As noted in Sec. I, in order to transform the Hamiltonian

structure to facilitate the separation or removal of fast time

scales (as in oscillating-center, guiding-center, and gyroki-

netic theories), care must be taken because such a change of

coordinates involves both the dependent and independent

variables, i.e., the spatial observation points of the field. A

simple case of this is treated in Sec. III.

III. LIFTING WITH MAGNETIC COORDINATES

As a first case of lifting, consider velocity coordinates

based on a decomposition of the velocity using the magnetic

field. This transformation of the spatial coordinate is

unchanged, but the velocity v is transformed as follows:

v ¼ vð�v; BÞ ¼ vðvjj; v?; BÞ ¼ b̂vjj þ v? ;

where b̂ ¼ B=jjBjj is the unit vector the direction of the

magnetic field,

vjj ¼ b̂ � v

is the (scalar) component of the velocity parallel to the mag-

netic field, and

v? ¼ v� b̂b̂ � v ¼ ��I? � v

is the (vectorial) component of the velocity perpendicular to

the magnetic field, with

��I? :¼ ��I � b̂b̂ (4)

being the orthogonal projector onto the plane perpendicular

to the magnetic field.

There are two chain rules to consider: that for functions,

considered next, and that for functionals, such as the energy

expression of Eq. (3), which will follow.

A. Function chain rule

The transformation of the field Poisson bracket of Eq.

(2) requires the transformation of the particle bracket,

½g; h� ¼ @g

@q
� @h

@v
� @h

@q
� @g

@v
þ eB � @g

@v
� @h

@v

� �
; (5)

into the new coordinates, ðq; vÞ ! ðq; vjj; v?Þ. The following

abbreviations are convenient:

r :¼ @

@q
; @i :¼ @

@qi
; @jj :¼ @

@vjj
; @? :¼ @

@v?
:

Note the last operator acts only in the plane perpendicular to

B, which implies the following properties:

@?�g � ��I? ¼ @?�g and b̂ � @?�g ¼ 0 :

Here and everywhere in the paper, the overbar over a func-

tion will indicate a function of the phase-space expressed in

new coordinates �gðq; �vÞ.
Total variations of gðq; vÞ ¼ �gðq; vjj; v?Þ are given by

dg ¼ @g

@q
� dqþ @g

@v
� dv ¼ r�g � dqþ @jj�g:dvjj þ @?�g � dv? ;

(6)

while variations of the initial and final coordinates are

related by

dvjj ¼ b̂ � dvþ ðdq � rb̂Þ � v;
dv? ¼ ��I? � dvþ d��I? � v
¼ ��I? � dv� ðdq � rb̂Þ ðb̂ � vÞ
� b̂ ðdq � rb̂Þ � v : (7)

For the function chain rule, the field B is assumed to be

a fixed function with the coordinates ðq; vÞ changing.

Inserting Eq. (7) into Eq. (6) implies the chain rule

relations

@g

@v
¼ b̂ @jj�g þ @?�g � ��I? ¼ b̂ @jj�g þ @?�g ; (8)

@g

@qi
¼ @i �g þ ðv � @ib̂Þ @jj�g � ðb̂ � vÞ @?�g � @ib̂ ; (9)

and using Eqs. (8) and (9) in Eq. (5) gives the particle

bracket in the magnetic coordinates

½�g; �h� ¼ b̂ � ðr�g @jj �h �r�h @jj�gÞ
þ ðr�g � @? �h �r�h � @?�gÞ
þ a � ð@? �h @jj�g � @?�g @jj �hÞ
þ @?�g � ��b � @? �h þ eB � ð@?�g � @? �hÞ ; (10)

with

ai ¼ v � @ib̂ þ ðb̂ � vÞ b̂ � rb̂i and

��bij ¼ ðb̂ � vÞð@ib̂j � @jb̂iÞ :

In all these relations, recall that @?�g ¼ @?�g � ��I?. This is im-

portant because, for instance, the component of r�g; a or ��b
parallel to b̂ are non-zero, but vanish when contracted with

@?�g.
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B. Jacobian

In general, care must be taken with the Jacobian deter-

minant J when defining functional derivatives, but here

Step B is trivial, since the Jacobian is unity

J :¼
@ðq; vjj; v?Þ
@ðq; vÞ ¼ 1 :

This follows because rotations have unit Jacobians, and at

any time, there exists a rotation to a cartesian coordinate sys-

tem with one of the v axes aligned with b̂. Thus,

dz :¼ d3qd3v ¼ d3qdvjjd
2v? ¼: dqdv :

Because the volume integral is ultimately independent

of how it is calculated, dz can be assumed to be independent

of B, e.g., when calculating functional derivatives with

respect to B, the topic considered next.

C. Functional chain rule

For the functional chain rule, the transformation of the

fields must be made definite. Here,

EðqÞ ¼ �EðqÞ ; BðqÞ ¼ �BðqÞ ;
f ðq; vÞ ¼ �f ðq; vjj; v?Þ ¼ �f ðq; b̂ � v; ��I? � vÞ

¼ f ðq; b̂vjj þ v?Þ ;

where now the coordinates ðq; vÞ are fixed and the field b̂

varies.

Variation of a transformed functional, F½f ;B;E�
¼ �F½�f ; �B; �E�, gives

dF ¼
ð

dz Ff df þ
ð

q ðFB � dBþ FE � dEÞ

¼
ð

dz �F �f d�f þ
ð

dq ð �F �B � d�B þ �F �E � d�EÞ:
(11)

With the variations of the initial and final fields related

by

dE ¼ d�E ; dB ¼ d�B ; and

df ¼ d�f þ @jj�f ðv � db̂Þ þ @?�f � d��I? � v ; (12)

expressions relating functional derivatives of new and old

variables can be obtained. Using

d��I? ¼ �
1

jjBjj ðb̂
��I? � dBþ ��I? � dB b̂Þ ;

and, after some work, the last equation of (12) becomes

df ¼ d�f þ ðv? � dBÞ
jjBjj @jj�f �

vjj
jjBjj dB � @?�f :

Inserting this and the other two equations of (12) into Eq.

(11), and then equating coefficients, gives the functional

chain rule relations

dF

df
¼ d �F

d�f
;

dF

dE
¼ d �F

d�E
;

dF

dB
¼ d �F

d�B
þ 1

jjBjj

ð
dv

dF

d�f
@�v

�f ;

(13)

where

@�v :¼ v?@jj � vjj@?: (14)

Finally, the Maxwell-Vlasov bracket expressed in these mag-

netic coordinates is

fF;Gg ¼
ð

dz f ½Ff ;Gf �

þ e

ð
dz f ðGE � @vFf � FE � @vGf Þ

þ
ð

d3q FE � r � GB þ
1

jjBjj

ð
dv Gf @

�
v f

� ��

�GE � r � FB þ
1

jjBjj

ð
dv Ff @

�
v f

� ��
;

(15)

where the "bars" have been dropped, ½ ; � means the bracket

of Eq. (5) rewritten in the new coordinates as eq. (10), and

@v ¼ b̂ @jj þ @? is a shorthand as in eq. (8). Note @�vv
2 ¼ 0.

IV. LIFTING SPHERICAL VELOCITY COORDINATES
v5V v̂

Now turn to the new coordinates considered for intrinsic

gyrokinetics (used in Ref. 21), which changes only one of

the velocity coordinates to get the magnetic moment. The

two other velocity coordinates are usually chosen as the unit

vector of the velocity. So, a preliminary change of coordi-

nates consists in adopting spherical coordinates for the ve-

locity space: v ¼ Vv̂ where V :¼ jjvjj 2 Rþ is the norm of

the velocity and v̂ :¼ v=jjvjj 2 S2 is the unit vector of the ve-

locity. This transformation is considered in this section, but

later the change V ! l will be considered.

Step A: The transformation v$ ðv̂;VÞ is clearly inverti-

ble. For the chain rule, the following are needed:

dV ¼ v̂ � dv and dv̂ ¼ ��I? �
dv

V
;

where

��I? ¼ ��I � v̂v̂

is the orthogonal projector onto the plane perpendicular to

the velocity. Note ��I? is different from the magnetic projec-

tor ��I? of Eq. (4) used in Sec. III.

As in Sec. III, the above are used to calculate the func-

tion chain rule, giving

@g

@v
¼ 1

V

@�g

@v̂
� ��I? þ

@�g

@V
v̂ ; (16)

rg ¼ @g

@q
¼ @�g

@q
¼ r�g : (17)
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Inserting Eqs. (16) and (17) into Eq. (5) and, after some

manipulations, the particle bracket expressed in spherical

coordinates is obtained

½g; h� ¼ 1

V
ðrg � ��I? � @v̂h�rh � ��I? � @v̂gÞ

þ v̂ � ðrg @Vh�rh @VgÞ

þ eB

V2
� ð@v̂g � ��I?Þ � ð@v̂h � ��I?Þ

þ eB� v̂

V
� ð@Vg @v̂h� @v̂g @VhÞ ; (18)

where, for convenience, the "bars" have been dropped and

the abbreviations

@g

@v̂
¼: @v̂g and

@g

@V
¼: @Vg ;

have been employed.

Step B: This step is not trivial here, since the Jacobian

for this special case is not unity

dz¼ V2dVdXd3q¼ J dVdXd3q¼: J dgd3q¼: J dw ; (19)

because the integration measures are changed from d3v and

dz to dg and dw, which are defined by relation (19).

Step C: Turning to the functional chain rule, notice that

the change of coordinates does not depend on the fields, and

step C is simplified here, but it is not completely trivial,

because the Jacobian has to be taken into account

dF ¼
ð

dz Ff df þ
ð

d3q ðFB � dBþ FE � dEÞ

¼
ð

dw �F �f d�f þ
ð

d3q ð �F �B � d�B þ �F �E � d�EÞ :
(20)

Inserting Eq. (19) into Eq. (20) gives

Ff ¼ J�1 �F �f ; FB ¼ �F �B ; and FE ¼ �F �E : (21)

Note, in Eq. (21), the new functional derivative is defined

with respect to the bare measure dw.

So, the first term of the Maxwell-Vlasov bracket trans-

forms as

fF;Gg1 :¼
ð

dzf ½Ff ;Gf �¼
ð

dwJ �f ½J �1 �F �f ;J�1 �G �f �¼f �F; �Gg1 ;

(22)

with the bracket of the second equality above given by Eq.

(18).

In practical computations with Vlasov-like Poisson

brackets (especially when computing the equations of

motion), a very useful property is the usual "f-g-h" identity,

viz.
Ð

dz f ½g; h� ¼ �
Ð

dz g½f ; h�, for canonical brackets. Here,

because of the Jacobian, this identity is changed and replaced

by

ð
dw J f ½J �1g; h� ¼ �

ð
dw g½f ; h� ; (23)

and in terms of the bare measure,

df ðwÞ
df ðw0 Þ ¼ dðw� w0Þ : (24)

With this identity (23), it is straightforward to verify that the

bracket of Eq. (22) produces the correct equations of motion

for the Vlasov-Poisson system.

Now consider the coupling terms of the bracket

fF;Gg2 : ¼ e

ð
dz f ðGE � @vFf � FE � @vGf Þ

¼ e

ð
dw J �f ðG�E � @vJ�1 �F �f � F�E � @vJ�1 �G �f Þ ;

where @v is a shorthand for the expression of Eq. (16). When

generating Maxwell’s equations, the Hamiltonian gives

�H �f ¼ J jjvjj2=2 ;

which gives the correct expression for the current density

J ¼
Ð

dgJ f v.

Finally, the pure field terms of the Maxwell-Vlasov

bracket are unchanged and, thus, the Maxwell-Vlasov

bracket in these spherical coordinates becomes

fF;Gg ¼
ð

dw J f ½J �1Ff ;J�1Gf �

þ e

ð
dw J f ðGE � @vJ�1Ff � FE � @vJ�1Gf Þ

þ
ð

d3q ðFE � r � GB � GE � r � FBÞ ;

where the "bars" have been dropped, and ½ ; � means the

bracket of Eq. (5) rewritten in the new coordinates as Eq.

(18).

V. LIFTING WITH LOCAL DEPENDENCE ON B

To include the magnetic moment in the coordinates, the

next step is to investigate the coordinate transformation

V $ A, where A is a coordinate in one-to-one correspon-

dence with the coordinate V of Sec. IV, but in this section, it

is assumed to have local dependence on the magnetic field,

i.e., it depends on B but not its derivatives. Explicitly, the

transformation is ðq;V; v̂Þ $ ð�q;A; ŵÞ where

q ¼ �q ; v̂ ¼ ŵ ; and V ¼ VðA; ŵ;BÞ :

For an example of an allowable function V, see Sec. VII.

Clearly, invertibility requires VA :¼ @V=@A 6¼ 0, which is

the only assumption on this function, beside the absence of

gradients of the magnetic field B. Since the first two equa-

tions above are identities, eventually v̂ will be used for ŵ

and q for �q.

Step A: Now the chain rule is effected on functions anal-

ogous to Eqs. (8) and (9) and Eqs. (16) and (17) and on func-

tionals analogous to Eqs. (13) and (21). Varying

gðq;V; v̂Þ ¼ �gð�q;A; ŵÞ in the label (coordinates) depend-

ence, and then equating as above, gives
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@g

@q
¼ @�g

@�q
� VBi

VA

@Bi

@q

@�g

@A
; (25)

@g

@V
¼ 1

VA

@�g

@A
; (26)

@g

@v̂
¼ @�g

@ŵ
� 1

VA

@V

@v̂

@�g

@A
: (27)

Inserting Eqs. (26) and (27) into Eq. (16) gives the chain rule

on functions

D��g ¼
@g

@v
¼ 1

V

@�g

@ŵ
� 1

VA

@�g

@A

@V

@ŵ

� �
� ��I? þ

ŵ

VA

@�g

@A

¼ 1

V
@ŵ �g � ��I? þ

@A �g

VA
ŵ � @A �g

VVA
@ŵV � ��I? ;

(28)

while Eq. (25) gives

r��g ¼
@g

@q
¼ @�g

@�q
� VBi

VA

@Bi

@�q

@�g

@A
¼ �r�g � VBi

VA

�rBi @A �g :

(29)

Then, inserting Eqs. (28) and (29) into Eq. (18) gives the fol-

lowing complicated expression for the particle bracket ½ ; � in
the new coordinates

½�g; �h� ¼r��g �D� �h�r� �h �D��gþ eB � ðD��g�D� �hÞ

¼ 1

V
ð �r�g � ��I? �@ŵ

�h� �r �h � ��I? �@ŵ �gÞ

þ ŵ

VA
� ð �r�g @A

�h� �r �h @A �gÞ

þ@ŵV �
��I?

VVA
� ð �r �h @A �g� �r�g @A

�hÞ

þ VBi

VVA

�rBi � ��I? � ð@ŵ �g @A
�h�@ŵ �h @A �gÞ

þeB

V2
� ð@ŵ �g � ��I?Þ�ð@ŵ

�h � ��I?Þ

þeB� ŵ

VVA
� ð@ŵ

�h @A �g�@ŵ �g @A
�hÞ

� eB

V2VA
�ð��I? �@ŵVÞ � ��I? � ð@ŵ

�h @A �g�@ŵ �g @A
�hÞ :

(30)

Step B: The Jacobian for this transformation is now

dz ¼ V2dVdXd3q ¼ V2VAdAdXd3q

¼ J dAdXd3q ¼: J dgd3q ¼: J dw ;

which define the Jacobian J and the integration measures dg
and dw. Note that these are not the same as those of Sec. IV,

even though the same symbols are used. Furthermore, J
now depends on B and, hence, q. Also, dX contains a portion

of the Jacobian from cartesian coordinates, but one that is in-

dependent of q.

Step C: Now consider the functional chain rule as above

dF ¼
ð

dz Ff df þ
ð

d3q ðFB � dBþ FE � dEÞ

¼
ð

dw �F �f d�f þ
ð

d3q ð �F �B � d�B þ �F �E � d�EÞ ; (31)

Functionally varying f ðq;V; v̂Þ ¼ �f ð�q;A; ŵÞ gives

df ¼ d�f þ @�f

@A

@A

@B
� dB ; (32)

while dB ¼ d�B and dE ¼ d�E. Whence, upon substitution of

Eq. (32) into Eq. (31), the chain rule on functionals is

obtained

dF

df
¼ 1

J
d �F

d�f
;

dF

dE
¼ d �F

d�E
;

dF

dB
¼ d �F

d�B
�
ð

dg
@A

@B

@�f

@A

d �F

d�f
;

(33)

where the last expression of Eq. (33) can be written in a

more convenient way as

dF

dB
¼ d �F

d�B
þ
ð

dg
V�B

VA

@�f

@A

d �F

d�f
:

This follows from

@A

@B
¼ �V�B

VA
;

which comes about because the change in A induced by a

change in B at fixed V and ŵ, satisfies 0 ¼ dV ¼ VAdA
þV �Bi

d �Bi.

Finally, the Maxwell-Vlasov bracket in the coordinates

ðq;A; v̂Þ is given by

fF;Gg ¼
ð

dgd3q J f ½J �1Ff ;J�1Gf �

þ e

ð
dgd3q J f ðGE � D�J �1Ff � FE � D�J �1Gf Þ

þ
ð

d3q FE � r � GB þ
ð

dg
VB

VA

@f

@A

dG

df

� ��

�GE � r � FB þ
ð

dg
VB

VA

@f

@A

dF

df

� ��
;

(34)

where the particle bracket ½ ; � is given by Eq. (30), D� is the

operator defined by Eq. (28), and the bars have been

dropped.

VI. LIFTING WITH NONLOCAL DEPENDENCE ON B

In order to include the physical coordinates where A is

the magnetic moment l, the last step is to consider the case

where the coordinate transformation involves derivatives of

the magnetic field. This is important because perturbative

reductions, such as those based on Lie-transforms21–23 or

mixed variable generating functions,24 often involve deriva-

tives to arbitrary high order in the fields.

So, a more general transformation to new coordinates

ðq;V; v̂Þ $ ð�q;A; ŵÞ is considered

q ¼ �q; v̂ ¼ ŵ ; and V ¼ V½A; ŵ;B� ; (35)

where now V½A; ŵ;B� means a transformation that depends

on B and, possibly, all its derivatives. For an example of an
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allowable function V, see Sec. VII. Clearly, invertibility

requires VA :¼ @V=@A 6¼ 0, which is the only assumption on

this function. Since the first two equations above are identi-

ties, as before eventually v̂ will be used for ŵ and q for �q.

Step B: The Jacobian for this transformation is again

dz ¼ V2VAdAdXd3q ¼ J dAdXd3q ¼: J dgd3q ¼: J dw

but now J depends on q through B and its derivatives.

Steps A and C: For the chain rule on functions or func-

tionals, gðq;V; v̂Þ ¼ �gð�q;A; ŵÞ is varied as in Sec. V, and all

terms are the same as before, except some slight changes in

the relations involving derivatives with respect to the mag-

netic field (step D), which we study in the next paragraph.

Step D: Indeed, the Fr�echet derivative with respect to B

is now a differential operator, and care must be taken with

the order of terms. For instance, relation (25) becomes

@g

@q
¼ @�g

@�q
� @�g

@A

1

VA
VBi

@Bi

@q
; (36)

where VBi
is now a differential operator acting on @Bi=@q.

Formulae (29) and (30) must be changed accordingly.

As for relations (32) and (33), variation is performed

slightly differently this time as follows:

d�f ¼ df þ fV V�B � d�B ;

where V�B is the Fr�echet derivative operating on d�B. Thus,

the chain rule for functional derivatives gives

dF

dB
¼ d �F

d�B
þ
ð

dg V
†

B

@f

@V

d �F

d�f

� �
¼ d �F

d�B
þ
ð

dg V
†

B

�F �f

VA

@�f

@A

� �
;

where the adjoint † is done with respect to dw.

Finally, the Maxwell-Vlasov bracket (34) in these coor-

dinates becomes

fF;Gg ¼
ð

dgd3q J f ½J �1Ff ;J�1Gf �

þ e

ð
dgd3q J f ðGE � D�J �1Ff � FE � D�J �1Gf Þ

þ
ð

d3q FE � r � GB þ
ð

dg V
†

B

Gf

VA

@f

@A

� �� ��

�GE � r � FB þ
ð

dg V
†

B

Ff

VA

@f

@A

� �� ��
:

(37)

VII. AN EXAMPLE USING THE MAGNETIC MOMENT

With the transformed bracket (37), the first thing to be

checked is whether the dynamics agrees with the conservation

of the magnetic moment, when appropriate, since this is what

suggested the reduction in the first place. To this end, suppose

the coordinate A is the magnetic moment, A : ¼ lðq; vÞ,
which to lowest order is given by A ¼ jjv?jj2 =jjBjj. To get a

true conserved quantity, small corrections must be added to

all orders in the Larmor radius, including derivatives of all

orders in the magnetic field.16,21

This illustrates an example of an allowable function V.

For the case studied in Sec. V, one can choose the coordinate

V(A) to be the inverse of the zeroth-order magnetic moment

relation A ¼ jjv?jj2=jjBjj ¼ V2jjv̂ � b̂jj2=jjBjj

V0 :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
AjjBjj

p
jjv̂ � b̂jj

¼
ffiffiffi
A
p
ðB2Þ3=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv̂ � BÞ2

q ;

which implies for the function VB of formula (34)

ðV0ÞB ¼
3

4

V

B2
ðB2ÞB �

1

2

V

ðv̂ � BÞ2
ððv̂ � BÞ2ÞB

¼ V

2B
3b̂ � 2

��I? � b̂
ðv̂ � b̂Þ2

!
:

 

For the case studied in Sec. VI, one can choose the coor-

dinate V(A) to be the inverse of following expression for the

magnetic moment to first order:16,21

A ¼ jjv?jj
2

jjBjj � 2
jjv?jj3

jjBjj2

� a � rB

2B
þ /

3a � rb̂ � c� c � rb̂ � a
4

þ /2b̂ � rb̂ � a
" #

;

(38)

where / :¼ ðb̂ � v̂Þ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1�ðb̂ � v̂Þ2

q
�Þ, and the vectors

a :¼ ðb̂ � v̂Þ=v̂ � b̂ and c :¼ a� b̂ are the unit vectors of the

perpendicular velocity and of the Larmor radius, respectively. In

Eq. (38), the second term is assumed to be small compared to

the first. Then, the inverse function V(A) is given by

V1 :¼ 1

jjv?jj

( ffiffiffiffiffiffi
AB
p

þA

� a � rB

2B
þ/

3a � rb̂ � c� c � rb̂ � a
4

þ/2b̂ � rb̂ � a
" #)

:

(39)

Here, we are not interested in computing the complete quan-

tity VB, but only in showing how it can be an operator when

the coordinate V involves derivatives of the magnetic field.

As an example, consider the term A
jjv?jj

a�rB
2B in Eq. (39). When

computing VB, the contribution coming from B that is acted

upon by the gradient is given by the first variation in dB of

Aa � r
2Bjjv?jj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBþ dBÞ2

q
� Aa � r

2Bjjv?jj
ffiffiffiffiffiffi
B2

p
;

which is just

Aa � r
2Bjjv?jj

ðb̂ � dBÞ ¼ A

2Bjjv?jj
�

a � rb̂ � þb̂ � ða � rÞ
�
dB :

The corresponding contribution to VBi
is

A

2Bjjv?jj
ða � rb̂i þ b̂i a � rÞ :
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As expected, it is a first-order differential operator.

For a more precise expression of the magnetic moment,

higher order corrections could be added, and VB would be a

differential operator of higher order.

Let us now check the conservation of the magnetic

moment A ¼ jjv?jj2=jjBjj þ Oð�Þ, which is exactly defined

as solution of the following equation:

0 ¼ _l ¼ v � rlþ ev� B � @vl :

At the field level, the conservation of the magnetic

moment corresponds to the conservation of the functional

M :¼
ð

dz fl

for any particle distribution f. In the transformed coordinates,

this is

�M :¼
ð

dwJ �f l:

To investigate the conservation of �M, note that a static

magnetic field corresponds to elimination of the electric field

term in the Hamiltonian functional, since this eliminates the

r� E term in the Maxwell-Faraday equation. In this case,

_�M ¼ f �M; �Hg ¼
ð

dgd3qJ �f ½l;J�1 �H �f �

¼ 1

2

ð
dgd3q J �f ðr�l � D�V2 þ eB � D�l� D�V

2Þ

¼
ð

d3vd3q f ðv � rlþ v� eB � @vlÞ ¼ 0 ;

as was expected.

Accordingly, the transformed bracket (37) is expressed in

coordinates adapted to the conserved magnetic moment. As is

usual in gyrokinetics, the electromagnetic field dynamics spoils

the conservation of the magnetic moment. This is why the feed-

back of the plasma dynamics onto the electromagnetic field dy-

namics needs to be restored as a perturbation, i.e., a perturbed

magnetic moment must be defined that is conserved.17

Consider now the transformed Maxwell-Vlasov equations

of motion generated by the bracket (37). In this bracket, most

of the terms are actually identical to those of the initial bracket

(2), even though their formal expressions look different because

they are expressed in the reduced coordinates ð�q;A; ŵÞ, e.g.,

through formulae (28)–(30). The only new terms areð
d3q �F �E � r �

ð
dg V

†

�B

�Gf

VA

@�f

@A

� �
;

and one obtained by permuting �F and �G (and with a minus

sign for bracket antisymmetry).

In the equations of motion, this new bracket term gener-

ates an additional term in Maxwell-Ampere equation, viz.

_�E ¼ r� �H �B � e

ð
dg J �f D�ðJ �1 �H �f Þ

þ r �
ð

dg V
†

�B

�Hf

VA

@�f

@A

� �
: (40)

At first glance, this additional term looks like a new magnet-

ization current. But, one must remember that the usual r� B

term has itself another additional contribution r� d �Hkin=d�B,

because in the reduced variables, the plasma kinetic energy

depends on the magnetic field �Hkin :¼
Ð

dwJ �f V2=2 that is not

constant in �B (both because of J and V). And, it turns out

that this last additional contribution exactly cancels the

“magnetization” term in Eq. (40)

d �Hkin

d�BðxÞ ¼
1

2

ð
dw �f ðJV2Þ�Bdðq� xÞ

¼ 1

2

ð
dw �f ð@AV � V4Þ�Bdðq� xÞ

¼ � 1

10

ð
dw @A

�f ðV5Þ�Bdðq� xÞ

¼ � 1

10

ð
dw @A

�f ðV5ÞVV�Bdðq� xÞ

¼ � 1

2

ð
dw @A

�f JV2VA V�Bdðq� xÞ

¼ �
ð

dw @A
�f �H �f VA V�Bdðq� xÞ

¼ �
ð

dg V
†

�B

�H �f

VA
@A

�f

� �
:

This cancellation was to be expected, since the electric

field E ¼ �E is not affected by the change of velocity coordi-

nates, and the current term has not been changed either, but

only expressed in the new variables

�e

ð
dg J �f D�ðJ �1 �H �f Þ ¼ �

e

2

ð
d3v f @vðJ �1J jjvjj2Þ

¼ �J :

Finally, the additional term in the transformed bracket

(37) generates another additional term in the equation of

motion: the dynamics of the Vlasov phase space density _f
has an additional force term

� 1

VA

@�f

@A
V�B � r � �E :

This term is not cancelled by any other term. It can be rewrit-

ten as

� @f

@V
VB � r � E ¼ @f

@V
VB � _B ;

which is exactly the expected contribution when applying

the chain rule for the time derivative of the transformed

fields. It comes about because the change of coordinates is

time-dependent when the magnetic field is not static.

VIII. CONCLUSION

In summary, in this paper, techniques for transforming

the Vlasov-Maxwell Poisson bracket to new coordinates,

when the transformation law mixes dependent and independ-

ent variables, have been developed. Four transformations

were considered, each of which considered a new feature
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needed for understanding the more general transformation of

Eq. (35). In Sec. III, a transformation that mixed the inde-

pendent velocity variable with the magnetic field was consid-

ered and the associated function and functional chain rules

were described. In Sec. IV, spherical velocity coordinates

were treated, and here it was seen how a nontrivial Jacobian

determinant influences a transformation. In Sec. V, a class of

transformations that mixes the dependent and independent

variables by having dependence on B and in addition pos-

sesses a nontrivial Jacobian was considered. Finally, in Sec.

VI, the nonlocal transformation of Eq. (35) was effected, the

most general transformation of this paper that results in the

transformed noncanonical Poisson bracket of Eq. (37). This

final form of the Poisson bracket was seen to contain addi-

tional terms that appear to be magnetization-like contribu-

tions. However, these bracket terms were shown to produce

no magnetization term in the equations of motion, since the

electromagnetic fields are not affected by the change of field

coordinates. Only the dynamics of the Vlasov density

obtained an additional term, a term that results from the

change of field coordinates being time-dependent through B.

The transformations of Secs. III–VI paved the way for

the simple example of Sec. VII. Here, the dynamics was

reduced by dropping the electric field energy from the

Hamiltonian, resulting in the magnetic moment being con-

served by a reduced dynamics that must have a static mag-

netic field. However, when restoring the feed-back of the

plasma dynamics onto the electromagnetic field dynamics,

the magnetic moment was seen to be no longer conserved

and must be perturbatively changed to be conserved.

In all the cases considered, the lifting was eased because

the change of coordinates only concerned a new particle ve-

locity that depends on the magnetic field, but no change was

made in the spatial coordinate. If Eq. (1) is generalized by

adding dependence on the electric field and all its deriva-

tives, then results similar to those presented are immediate.

However, if the new spatial variable has velocity and field

dependence, then the situation becomes considerably more

complex. Such transformations are of interest for some

oscillation-center, guiding-center, and gyrokinetic theory de-

velopment, and the same methods of function and functional

chain rule can be used, but some additional effects will show

up, e.g., non-zero polarization and magnetization terms like

those of Ref. 12. Details of the magnetic moment reduction

will be given in Ref. 21, and more general lifting will be con-

sidered in a future publication.
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