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Stability analyses for equilibria of the compressible reduced magnetohydrodynamics (CRMHD)

model are carried out by means of the Energy-Casimir (EC) method. Stability results are compared

with those obtained for ideal magnetohydrodynamics (MHD) from the classical dW criterion. An

identification of the terms in the second variation of the free energy functional for CRMHD with

those of dW is made: two destabilizing effects present for CRMHD turn out to correspond to the

kink and interchange instabilities in usual MHD, while the stabilizing roles of field line bending

and compressibility are also identified in the reduced model. Also, using the EC method, stability

conditions in the presence of toroidal flow are obtained. A formal analogy between CRMHD and a

reduced incompressible model for magnetized rotating disks, due to Julien and Knobloch [EAS

Pub. Series, 21, 81 (2006)], is discovered. In light of this analogy, energy stability analysis shows

that the condition for magnetorotational instability (MRI) for the latter model corresponds to the

condition for interchange instability in CRMHD, with the Coriolis term and shear velocity playing

the roles of the curvature term and pressure gradient, respectively. Using the EC method, stability

conditions for the rotating disk model, for a large class of equilibria with possible non-uniform

magnetic fields, are obtained. In particular, this shows it is possible for the MRI system to undergo,

in addition to the MRI, another instability that is analogous to the kink instability. For vanishing

magnetic field, the Rayleigh hydrodynamical stability condition is recovered. VC 2013 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4801027]

I. INTRODUCTION

The investigation of instabilities is of paramount impor-

tance for fusion and astrophysical plasmas. For fusion plas-

mas, detecting the main instabilities is necessary to learn

how plasma characteristics such as current, density, and tem-

perature should be optimized in order to improve plasma

confinement. For astrophysical plasmas, the identification of

instability mechanisms is essential for understanding phe-

nomena such as solar flares, coronal mass ejections, transport

of angular momentum in accretion disks, and several other

major observable phenomena. In the framework of the fluid

description of plasmas, the use of the energy principle is one

of the possible ways to investigate linear stability in the limit

where dissipative processes are negligible.

In their early work, Bernstein et al.1 provided the energy

principle for the investigation of stability in ideal MHD.

According to such principle, an ideal MHD equilibrium is

stable if and only if the quadratic form dW (more aptly called

d2W, but we follow tradition), representing the second varia-

tion of the potential energy, induced by variations of the

field variables, is positive or zero, for all the allowable

Lagrangian displacements of the fluid. Further extensions of

the energy principle, and application of it to particular geo-

metries have been developed in the subsequent years (see,

e.g., Ref. 2), and methods based on the energy principle are

now standard for investigating plasma stability.

Alternatively, the EC method, an Eulerian stability

method with an early antecedent in plasma physics,3 evolved

into a formalized and systematic procedure because of the

discovery of the noncanonical (Eulerian) Hamiltonian

description of ideal MHD in Ref. 4. Of particular relevance

to the present paper are a large number of works that fol-

lowed4 detailing the noncanonical Hamiltonian formulation

of reduced models, viz., reduced MHD,5,6 the Charney-

Hasegawa-Mima equation,7 the four-field model for tokamak

dynamics,8 models for collisionless reconnection,9,10 hybrid

fluid-kinetic models,11 and models for many other systems.

(See Refs. 12–14 for review.)

Hamiltonian structure provides a natural means of

obtaining sufficient conditions for stability, and this is gener-

alized for the Hamiltonian structure of fluid models for plas-

mas that are defined on an infinite-dimensional phase-space

and are noncanonical. The latter property gives rise to the

existence of a special class of invariants for the model: the

Casimirs. These are functionals of the observables, that com-

mute, through the Poisson bracket of the system, with any

other functional of the observables. The identification of the
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Casimirs for a system provides the basis for the EC method

(see, e.g., Refs. 13, and 15–17 for a review).

According to the EC method, stability is attained if the

second variation d2F, where F is a free energy functional

obtained as a linear combination of the Hamiltonian and the

Casimirs, has a definite sign, when evaluated at the equilib-

rium of interest. This method can be applied to the huge class

of plasma models possessing noncanonical Hamiltonian

structure. It provides sufficient conditions for energy stabil-

ity, a strong form of stability that implies linear stability

(while the converse is in general not true) and almost nonlin-

ear stability.

Given the above considerations, the question naturally

arises of whether there is a connection between the stability

results obtained from the EC method and those of the dW
energy principle. One goal of this paper is to explicitly trace

a connection between the two methods in the context of two

reduced fluid models: the CRMHD model and the accretion

disk model introduced in Ref. 18, in their dissipationless

limits.

CRMHD,19 was conceived to investigate tokamak

dynamics in a simplified geometry, using a large aspect-ratio

ordering. It generalizes reduced MHD by taking into account

finite compressibility, which involves a coupling between

parallel flow and pressure evolution. It accounts also for

effects due to magnetic field curvature. Its Hamiltonian

structure was derived in Ref. 8.

The accretion disk model, on the other hand, describes

locally an incompressible rotating plasma in the presence of

an imposed azimuthal sheared flow and a poloidal field. It

has been derived, via an asymptotic expansion, in order

to investigate, in a simplified setting, the MRI,20–23 which

is believed to play a key role in the transport of angular

momentum in accretion disks.24 The Hamiltonian structure

for this model, obtained here, was not previously known.

In this paper, we carry out an analysis in the case of

CRMHD, first. For a wide class of equilibria, we are able to

trace the connection between the two methods. In particular,

the terms that can lead to indefiniteness in the sign of d2F,

actually correspond to the terms associated with the kink and

interchange instabilities in dW. We identify also a correspon-

dence between the stabilizing terms that appear in the

expressions obtained from the two methods.

The analysis in the case of the accretion disk model

follows essentially as a by-product of an identification rule

that permits us to map one model into the other. This pro-

vides us with a convenient framework for achieving another

objective of this article, which is the identification of analo-

gies between instabilities relevant for tokamaks and those for

accretion disks. By taking advantage of the mapping, we are

able to show that the MRI model possesses a Hamiltonian

structure. We apply then the EC method to this model and

derive energy stability conditions. In addition to recovering

the expected condition for MRI, we are able to see that such

instability in the accretion disk model, plays the role of the

interchange instability in CRMHD. Thanks to the unifying

framework provided by the EC method and to the connection

with the energy principle, we can establish further analogies,

from which emerge quite strong similarities between the two

physical systems, providing an example of universality

between instabilities in fusion and astrophysical plasmas.

The article is organized as follows. In Sec. II, we recall

the CRMHD model, briefly review the noncanonical

Hamiltonian description for continuous media and then

derive stability conditions for CRMHD using the EC

method. Next, stabilizing and destabilizing terms of the EC

method are compared to those of the dW energy principle by

mapping Lagrangian variations to Eulerian. In Sec. III, we

present the formal correspondence between CRMHD and

the MRI model. Section IV is devoted to the stability analy-

sis of the MRI model and to the identification of the similar-

ities with CRMHD. Finally, we conclude in Sec. V.

II. CRMHD

In a Cartesian coordinate system (x, y, z) as depicted in

Fig. 1, the equations for CRMHD are given by

@x
@t
þ ½/;x�y þ ½r2w;w�y � 2½p; h�y ¼ 0; (1)

@w
@t
þ ½/;w�y ¼ 0; (2)

@v

@t
þ ½/; v�y þ ½p;w�y ¼ 0; (3)

@p

@t
þ ½/; p�y þ b½v;w�y � 2b½h;/�y ¼ 0: (4)

Equations (1)–(4) describe the dynamics of a plasma in a

magnetic field B ¼ erw� ẑ þ ½ð1þ exÞ�1 þ e�b�ẑ þOðe2Þ,
with e ¼ a=R0 � 1 being the ratio of the characteristic

length scale of the poloidal plane, a, with the major radius of

the magnetic axis, R0, and �b accounting for diamagnetic cor-

rections. The fields v and p represent the parallel ion velocity

and the electron pressure, respectively, whereas x ¼ r2/
with / being the electrostatic potential. All the fields of

the model are independent of the coordinate z. The quantity

h � x accounts for the effects of magnetic field curvature,

while the parameter b is the ratio of the background electron

fluid pressure and the magnetic pressure. Finally, the quantity

½f ; g�y ¼ ẑ � rf �rg is the canonical bracket, with respect to

the variables x and y, between two functions f and g.

Equation (1) is the equation for the evolution of the z
component of the vorticity, x, associated with the E� B

flow, while Eq. (2) expresses the frozen-in condition for the

poloidal magnetic flux w. Equation (3) governs the parallel

ion dynamics and Eq. (4) determines the electron pressure

evolution.

A. CRMHD Hamiltonian structure

The CRMHD system of Eqs. (1)–(4) is known to possess

a noncanonical Hamiltonian structure,8,25 which we review

here. To this end, we first recall a few basic notions about

infinite-dimensional Hamiltonian systems (for further details

see, e.g., Ref. 13).

Given a field theory _viðxÞ ¼ Fiðv1; � � � ; vNÞ, for N fields

ðv1ðxÞ;…; vNðxÞÞ, evolving according to the vector fields Fi,

042109-2 Morrison, Tassi, and Tronko Phys. Plasmas 20, 042109 (2013)

Downloaded 12 Apr 2013 to 128.83.61.223. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



we say that such system is a Hamiltonian system if a

Hamiltonian functional Hðv1;…; vNÞ and a Poisson bracket

{,} exist, such that the field equations can be written in the

form

_vi ¼ fvi;Hg; i ¼ 1;…;N; (5)

where the Poisson bracket must be bilinear, antisymmetric,

and satisfy the Leibniz and Jacobi identities.

For continuous media, such as plasmas described in

terms of Eulerian variables, the case for CRMHD, Poisson

brackets typically possess a noncanonical structure. In these

cases, there exist Casimir functionals, that is, functionals

Cðv1;…; vNÞ that satisfy {C, F}¼ 0, for all functionals

Fðv1;…; vNÞ. Because, _C ¼ fC;Hg ¼ 0, for any

Hamiltonian, Casimirs are invariants of the dynamics.

For the CRMHD, the Hamiltonian functional is given by

H ¼ 1

2

ð
dxdyðjr/j2 þ v2 þ jrwj2 þ p2=bÞ: (6)

All the terms in the Hamiltonian are amenable to a physical

interpretation: the first two terms represent the kinetic energy

associated with the E� B flow and with the toroidal flow,

respectively. The third term is the poloidal magnetic energy,

whereas the last term accounts for the internal energy of the

electron fluid.

The noncanonical Poisson bracket for CRMHD, on the

other hand, is given by

fF;Gg ¼
ð

dxdyðx½Fx;Gx�y þ vð½Fx;Gv�y þ ½Fv;Gx�yÞ

þðpþ 2bhÞð½Fx;Gp�yþ ½Fp;Gx�yÞ

þwð½Fx;Gw�y þ ½Fw;Gx�y
�b½Fp;Gv�y � b½Fv;Gp�yÞÞ ; (7)

where subscripts of the functionals indicate functional deriv-

atives. The operation (7) can be shown to satisfy all the prop-

erties of a Poisson bracket, provided that surface terms

vanish when integrating by parts. This can be accomplished,

for instance, on a bounded domain, imposing that the fields

and the functional derivatives are periodic in the y direction

and satisfy vanishing Dirichlet boundary conditions along x.

The Hamiltonian (6) and the bracket (7), combined accord-

ing to Eq. (5), yield, namely, the CRMHD system (1)-(4).

Casimir functionals of the bracket (7), on the other hand, are

given by

C1 ¼
ð

dxdyFðwÞ;

C2 ¼
ð

dxdy vNðwÞ;

C3 ¼
ð

dxdyLðwÞðp=bþ 2hÞ;

C4 ¼
ð

dxdy xGðwÞ � vG0ðwÞ ðp=bþ 2hÞð Þ;

(8)

where F ; N ; L and G are arbitrary functions, and the prime

denotes derivative with respect to the argument of the func-

tion. This set of Casimirs is close to but not equivalent to

that for unreduced MHD with various symmetries.26,27

Because of the infinite number of invariants of Eqs. (8) the

dynamics of CRMHD is constrained. In particular, the exis-

tence of the family of Casimirs C1 reflects the constraint of

the frozen-in condition for the poloidal magnetic flux. The

families C2 and C4, on the other hand, are remnants of the

cross-helicity
Ð

d3x v � B, which is a Casimir for isentropic

ideal MHD (see Ref. 28), whereas C3 derives from the con-

servation of magnetic helicity of ideal MHD.25 Such rela-

tionships with the Casimirs of full ideal MHD make use of

the proportionality between p and �b, which is imposed when

deriving CRMHD from the fluid plasma description (see,

e.g., Ref. 29).

B. CRMHD equilibria and energy stability

One of the advantages provided by the Hamiltonian

structure of a model is the possibility of using specific, well-

developed methods for Hamiltonian systems; in particular,

methods that have been developed for determining stability

conditions. For noncanonical systems, such as CRMHD, the

EC method is particularly convenient, because it can take

advantage of the infinite number of Casimirs possessed by

the model. The EC method applies to equilibria that are

extremals of a free energy functional F, which is a linear

combination of the Hamiltonian and the Casimirs. For such

equilibria, the method can provide sufficient conditions for

energy stability — stability that arises from the existence of

a constant of motion for the system, whose second variation

has a definite sign, when evaluated at the equilibrium of

interest. Because, the Hamiltonian and the Casimirs are

FIG. 1. Sketches of the geometry and local

coordinate system for the accretion disk model

(left) and for CRMHD for a tokamak (right).
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constants of motion, then clearly F is also a constant of

motion. Therefore, for noncanonical Hamiltonian systems,

the free energy functional provides a natural constant of

motion from which one can determine energy stability. We

remark that this type of stability implies linear stability, but

the converse is not true in general. Also, we remark that this

kind of stability almost assures nonlinear stability, but in

general nonlinear stability does not imply linear stability.

The EC method evolved out of early plasma work3 and

there is now considerable prior application to plasma physics

problems as can be found in Refs. 15–17, and 30–32.

In order to apply the EC method to CRMHD, we define

first the free energy functional, which for CRMHD, in its

most general form, reads

F ¼ H þ C1 þ C2 þ C3 þ C4: (9)

Equilibria to which the EC method can be applied are

extremals of Eq. (9), i.e., those at which the first variation

dF ¼
ð

dxdy½ð�r�2xþ GðwÞÞdx

þð�r2wþ F0ðwÞ þ vN 0ðwÞ þ ðp=bþ 2hÞL0ðwÞ
þxG0ðwÞ � vG00ðwÞðp=bþ 2hÞÞdw

þðv þNðwÞ � G0ðwÞðp=bþ 2hÞÞdv

þðpþ LðwÞ � vG0ðwÞÞdp=b� (10)

vanishes. Because of the arbitrariness of the variations

dx; dw; dp, and dv, such equilibria must be the solutions for

/, w, p and v, of the system

/ ¼ GðwÞ; (11)

r2w ¼F0ðwÞ þ vN 0ðwÞ þ ðp=bþ 2hÞL0ðwÞ
þxG0ðwÞ � vG00ðwÞðp=bþ 2hÞ; (12)

v ¼ �NðwÞ þ G0ðwÞðp=bþ 2hÞ; (13)

p ¼ �LðwÞ þ vG0ðwÞ; (14)

for choices of G; F ; N , and L.

We remark first that the equilibrium equation (11)

expresses the condition that, at equilibrium, the poloidal

flow is a poloidal magnetic flux function. In the following,

however, we will consider only the case G � 0, correspond-

ing to the absence of poloidal flow, which is a standard

case treated in linear stability analyses of ideal MHD.

However, with the following transformation to a dynaflux
function v:

v ¼
ðw

d�w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G02ð�wÞ

q
; (15)

which is valid for sub-Alfv�enic flows (G02 < 1), equilibria

with poloidal flow can be mapped into ones without. This

transformation was first noted in Ref. 33 and generalized

in Ref. 34. We will not pursue this further here, but empha-

size that for every equilibrium without poloidal flow there

exist a family of equilibria determined by G with poloidal

flow.

If G � 0, then Eqs. (13) and (14) imply that toroidal

flow and pressure are constant on poloidal magnetic surfaces.

Inserting Eqs. (13) and (14) into Eq. (12) yields

r2w ¼ F0ðwÞ � v0ðwÞvðwÞ � p0ðwÞðpðwÞ=bþ 2hÞ; (16)

which can be seen as a generalized Grad-Shafranov equation

for the magnetic flux function w. Once this partial differen-

tial equation is solved for w, the corresponding solutions for

the fields p and v can be readily obtained from the specific

choices of the free functions L and N .

When investigating stability for a reduced model, such

as CRMHD, it is natural to ask how the stability properties

of the reduced model square with those of the complete

MHD equations. This can help in interpreting the stability

conditions for the reduced model and in seeing what features

have possibly been lost because of the reduction. In the fol-

lowing, we compare the stability analysis for CRMHD car-

ried out by means of the EC method, with the classical

energy principle analysis,1 based on the dW criterion, for the

complete ideal MHD system with no equilibrium flow.

In order to facilitate this comparison, we consider first

the special case where N � 0. Together with G � 0, this

assumption implies static equilibrium for CRMHD, i.e.,

equilibria with neither poloidal nor toroidal flow. For this

case, the second variation of the free energy functional reads

d2F ¼
ð

dxdy½jrd/j2 þ jrdwj2 þ jdvj2 þ jdpj2=b

þ F00ðwÞ þ ðp=bþ 2hÞL00ðwÞð Þjdwj2

þ 2L0ðwÞ dp dw=b�: (17)

Using the relation pðwÞ ¼ �LðwÞ and rearranging the terms,

one can rewrite d2F as follows:

d2F ¼
ð

dxdy

"
jrd/j2 þ jdvj2 þ jrdwj2

þ 1

b
dp� ẑ � Bp � rp

B2
p

dw

 !2

� ẑ � Bp

B2
p

� rjk jdwj2

þ 2
ðẑ � Bp � rpÞ

B2
p

ðẑ � Bp � rhÞ
B2

p

jdwj2
#
; (18)

where Bp ¼ rw� ẑ denotes the poloidal equilibrium mag-

netic field and jk ¼ �r2w the equilibrium parallel current

density (apart from the rescaling factor e).
According to the EC method, equilibria for which d2F

has a definite sign, are energy stable. Analyzing the expres-

sion (18), one sees that the first four terms are positive defi-

nite, whereas the last two terms can be positive or negative

and, consequently, could give rise to instability. The first of

these two terms depends on the current density gradient. In

the absence of magnetic field curvature effects (h � 0),

this term can be written as �
Ð

dxdyjdwj2djk=dw. Therefore, a

current profile that is monotonically decreasing in w has a

stabilizing effect. This effect had already been identified by

means of the EC method in the context of incompressible

042109-4 Morrison, Tassi, and Tronko Phys. Plasmas 20, 042109 (2013)

Downloaded 12 Apr 2013 to 128.83.61.223. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions



reduced MHD.15 For CRMHD, the parallel current density is

no longer a magnetic flux function, because of the presence

of curvature, which will then play a role in determining the

stability condition. The second term of indefinite sign, on the

other hand, is stabilizing if the gradients of the equilibrium

pressure and of the magnetic curvature terms point in the

same direction.

We show in the following, that the two terms of indefi-

nite sign in Eq. (18) are related to the kink and interchange

instabilities for ideal MHD.

For comparison, consider the usual energy principle

analysis for MHD. Recall, the expression for dW in the form

presented in Ref. 35:

dW ¼ 1

2

ð
dxdy

"
Q� n � rp

B2
B

� �2

�
jk
B
ðn� BÞ �Q

þ p ðr � nÞ2 þ 2ðn � rpÞðn � rhÞ
#
: (19)

In Eq. (19), n ¼ nðx; tÞ indicates the displacement of a fluid

element from the equilibrium position x at the time t,
whereas the vector Q ¼ r� ðn� BÞ is the magnetic field

perturbation. In writing Eq. (19), use has been made of the

fact that the magnetic field curvature, points in the direction

opposite to that of rh.

According to the energy principle (see, e.g., Refs. 35

and 36), a static MHD equilibrium, is stable if and only if

dW � 0 for all the allowable displacements nðx; tÞ. It is then

clear from Eq. (19), that only two of its terms, the second

and the fourth can have a destabilizing effect. The second

term is associated with kink instabilities and represents the

interaction of the parallel current with the magnetic perturba-

tion. The fourth term, on the other hand, accounts for the

interchange instability and is destabilizing in the presence of

unfavorable curvature, that is, when rp and rh are antipar-

allel. A stabilizing effect, on the other hand, is due to the

work needed to bend field lines, which is represented by the

first term of Eq. (19), the energy in the field perpendicular to

the equilibrium magnetic field. The parallel component of

the first term of Eq. (19), as explained in Ref. 35, also con-

tains a stabilizing contribution due to plasma compressibil-

ity. Finally, a stabilizing contribution due to compressibility

of sound waves comes from the third term in Eq. (19).

In order to compare Eqs. (18) and (19), we must of

course relate the expression (19), which is valid for general

compressible ideal MHD, to the specific geometry and

ordering of CRMHD. Using the relation Qk ¼ Q � B=B
¼ Bð2n � rhÞ þ ð1=BÞn � rp, obtained from Ref. 35, in the

limit r � n ¼ 0 (compressibility effects will be treated sepa-

rately), we obtain

Q� n � rp

B2
B

� �2

¼ ðQ? þ 2 n � rh BÞ2

’ Q2
? þ 4ðn � rhÞ2; (20)

where Q? ¼ Q� QkB=B is the perturbation perpendicular

to the equilibrium magnetic field and, in the last step, we

assumed that to leading order B ¼ ẑ. The perpendicular

magnetic perturbation, on the other hand, can be related to a

perturbation of the magnetic flux function dw in the follow-

ing way:

Q? ¼ r� ðn� BÞ ¼ r � ðdwẑÞ: (21)

Thus, expression (20) can be rewritten as

Q� n � rp

B2
B

� �2

’ jrdwj2 þ 4ðn � rhÞ2: (22)

Neglecting toroidal displacement, so that n � ẑ ¼ 0, from

Eq. (21) one gets also the relation

dw ẑ þr! ¼ �n � rw ẑ þ n� ẑ; (23)

where ! is a scalar function and where, again, we considered

the toroidal field to be constant at leading order. The z com-

ponent of Eq. (23) then leads to

dw ¼ �n � rw; (24)

which relates an arbitrary displacement n to a magnetic flux

perturbation dw, in the presence of a given equilibrium flux

function w.

Using the same approximations, the second term of

Eq. (19) can be written as

�
ð

dxdy
jk
B
ðn� BÞ �Q ’ �

ð
dxdy jkðn� BÞ �Q

¼ �
ð

dxdy jkðn� BÞ �Q?

¼ �
ð

dxdy jkðn� BÞ � ðrdw� ẑÞ

¼
ð

dxdy dw n � rjk; (25)

where, for the last step, we integrated by parts assuming

r � n ¼ 0.

From Eq. (16), restricted to the case vðwÞ � 0, we

obtain

jk ¼ �F0ðwÞ þ p0ðwÞðpðwÞ=bþ 2hÞ; (26)

which, when inserted into Eq. (25) using Eq. (24), yields

�
ð

dxdy
jk
B
ðn� BÞ �Q

’
ð

dxdy ½jdwj2ðF 00 � p00p=b� p0
2
=b� 2p00hÞ

� 2n � rp n � rh�: (27)

From Eq. (26), on the other hand, one can derive the relation

F00ðwÞ � p00ðwÞpðwÞ=b� p0
2ðwÞ=b� 2p00ðwÞh

¼ � ẑ � Bp

B2
p

� rjk þ 2
ðẑ � Bp � rpÞ

B2
p

ðẑ � Bp � rhÞ
B2

p

;

which, when combined with Eq. (27), yields
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�
ð

dxdy
jk
B
ðn�BÞ �Q

’
ð

dxdy

�
jdwj2

�
� ẑ�Bp

B2
p

� rjk

þ2
ðẑ�Bp � rpÞ

B2
p

ðẑ�Bp � rhÞ
B2

p

�
� 2n � rpn � rh

�
: (28)

Finally, by combining Eqs. (19), (22), and (28), assuming

r � n ¼ 0, we obtain

dW ’
ð

dxdy

�
jrdwj2þ 4ðn �rhÞ2� ẑ�Bp

B2
p

�rjkjdwj2

þ2
ðẑ�Bp �rpÞ

B2
p

ðẑ�Bp �rhÞ
B2

p

jdwj2
�
: (29)

By comparing Eq. (29) with Eq. (18), we observe that the

expression for dW contains the same destabilizing terms

obtained from the EC method. Stability conditions obtained

from the energy principle are then intimately related to those

obtained from the general EC method. This similarity con-

firms then that, for the equilibria under consideration, an

indefiniteness in the sign of d2F for CRMHD, can be attrib-

uted to the presence of kink or interchange instabilities.

Of course, CRMHD does not coincide exactly with the

ideal MHD system to which the energy principle was applied,

so that an exact one-to-one correspondence between dW for

ideal MHD and d2F for CRMHD should not be expected.

However, further correspondence can be found. First, we

observe that the stabilizing field line bending term jrdwj2
appears in both expression. The expression for dW contains

the additional term proportional to ðn � rhÞ2, which is how-

ever, always positive, and therefore, not a possible source for

instabilities. Second, we remark that for ideal MHD, pressure

perturbations are related to the displacement by

dp ¼ �n � rp� pr � n: (30)

Using Eq. (24) and the fact that p is a flux function, we

obtain

�pr � n ¼ dp� p0ðwÞdw

¼ dp� ẑ � Bp � rp

B2
p

dw: (31)

Consequently, the fourth term under the integral in Eq. (18)

can be written as

1

b
dp� ẑ � Bp � rp

B2
p

dw

 !2

¼ p2

b
ðr � nÞ2: (32)

This term is clearly reminiscent of the third term in Eq. (19)

(recall that b in the denominator of d2F is proportional to the

background plasma pressure). This analogy then indicates

that the stabilizing role of the fourth term in d2F for

CRMHD is due to the plasma compressibility.

Finally, we observe that the terms jrd/j2 and jdvj2 in

d2F obviously have no counterpart in dW. Indeed, such terms

refer to variation of the kinetic energy and are not part of the

potential energy dW.

Now, we extend the EC stability analysis for CRMHD

to the more general case in which the equilibrium possesses

also a toroidal flow. Therefore, we impose G � 0, but N 6�0,

so that at equilibrium, vðwÞ ¼ �NðwÞ.
The second variation then reads

d2F¼
ð

dxdy½jrd/j2þjrdwj2þjdvj2þjdpj2=b

þ F00ðwÞþðp=bþ2hÞL00ðwÞþ vN 00ðwÞð Þjdwj2

þ2L0ðwÞdpdw=bþ2N 0ðwÞdvdw�: (33)

Using the equilibrium relations of Eqs. (11)–(14) with

G � 0, the expression (33) can be rewritten as

d2F ¼
ð

dxdy

"
jrd/j2 þ jrdwj2

þ 1

b
dp� ẑ � Bp � rp

B2
p

dw

 !2

þ dv� ẑ � Bp � rv

B2
p

dw

 !2

� ẑ � Bp

B2
p

� rjkjdwj2

þ 2
ðẑ � Bp � rpÞ

B2
p

ðẑ �Bp � rhÞ
B2

p

jdwj2
#
: (34)

Comparing Eq. (34) with Eq. (18), we observe that, after the

inclusion of toroidal flow, the only terms with indefinite sign

are still those associated with kink and interchange instabil-

ities. Therefore, we conclude that, according to CRMHD, the

possible instabilities for equilibria with toroidal flow

obtained by extremizing the free energy functional can still

only be of kink or interchange type.

III. ANALOGY WITH THE MRI MODEL

Now, we consider the model for MRI in the shearing

sheet approximation derived in Ref. 18. This model consid-

ers the local behavior of a conducting incompressible fluid in

a reference frame located at a distance R0 from a central

object and rotating around it with local angular velocity

XðR0Þ. In the local frame, we consider a Cartesian coordinate

system (x, y, z) with x and y indicating the radial and azi-

muthal directions, respectively, and with z parallel to the

rotation axis. The system is also supposed to be translation-

ally invariant along the azimuthal coordinate, so that all

fields depend on x and z only. A linear shearflow, U0 ¼ rxŷ
along the azimuthal direction, is assumed to be maintained

and accounts for the radial variation of the angular velocity.

The geometry of the system is depicted in the left panel of

Fig. 1.

Neglecting dissipative terms, the model equations in a

dimensionless form, are given by

@x
@t
þ 2X½x; v�z þ ½/;x�z � v2

A½x;r2w�z
þ v2

A½r2w;w�z ¼ 0; (35)
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@w
@t
þ ½/;w�z � ½x;/�z ¼ 0; (36)

@b

@t
þ ½/; b�z þ ½v;w�z � ½x; v�z þ r½x;w�z ¼ 0; (37)

@v

@t
þ ½/; v�z þ v2

A½b;w�z � ð2Xþ rÞ½x;/�z � v2
A ½x; b�z ¼ 0:

(38)

In this system, wðx; zÞ and /ðx; zÞ denote a magnetic flux

function and a stream function, respectively, with x ¼ r2/.

So, the radial and vertical components of the magnetic and

velocity fields are given by Bx ¼ �@w=@z; Bz ¼ @w=@x and

vx ¼ �@/=@z; vz ¼ @/=@x, respectively. (Note, in order to

facilitate comparison with CRMHD, we interchanged the

meaning of w and / adopted in Ref. 18.) The fields b(x, z)

and v(x, z), on the other hand, represent the inhomogeneous

azimuthal components of the magnetic and velocity fields,

respectively. The constant parameters X, r, and vA denote

the angular velocity, the amplitude of the shearflow and the

Alfv�en speed based on a constant background magnetic field

directed along ẑ. We let ½f ; g�z ¼ �ŷ � rf �rg, which is the

canonical bracket with respect to the variables x and z
between two functions f and g.

We transform to the following new variables:

~/ ¼ /; ~w ¼ vAðwþ xÞ; ~b ¼ vAb; ~v ¼ vþ rx; (39)

where ~w is a flux function that includes a constant back-

ground z-component of the magnetic field and ~v is the

y-component of a velocity field that includes a linear

shearflow.

In terms of the variables ð~/; ~w; ~b;~vÞ, the system of

Eqs. (35)–(38) becomes

@ ~x
@t
þ ½~/; ~x�z þ ½r2 ~w; ~w�z � 2X½~v; x�z ¼ 0; (40)

@~w
@t
þ ½~/; ~w�z ¼ 0; (41)

@ ~b

@t
þ ½~/; ~b�z þ ½~v; ~w�z ¼ 0; (42)

@~v
@t
þ ½~/;~v�z þ ½~b; ~w�z � 2X½x; ~/�z ¼ 0; (43)

where ~x ¼ r2 ~/. Comparing Eqs. (40)–(43) with the

CRMHD model of Eqs. (1)–(4), it is evident that the two

models are identical provided one sets b ¼ 1 and makes the

following identifications:

~/ $ /; ~w $ w; ~b $ v; ~v $ p; (44)

y$ z; Xx$ h; ½ ; �z $ ½ ; �y: (45)

It emerges then, from this comparison, that there is an

analogy between the role played by the angular rotation in

the MRI system with that of magnetic curvature in CRMHD.

Indeed, the last terms in Eqs. (40) and (43), which are due to

the Coriolis force acting on the fluid, match the last terms of

Eqs. (1) and (4), which come from the toroidal component of

the Lorentz force (together with the assumption that the pres-

sure and the diamagnetic correction of the toroidal magnetic

field are proportional) and the compressibility of the E� B

flow in the presence of a curved magnetic field, respectively.

The third term in the pressure equation (4), which also

accounts for compressibility effects, matches the magnetic

tension term in the azimuthal velocity equation (43). As

pointed out in Ref. 29, the inclusion of compressibility terms

(i.e., those proportional to b) in CRMHD is not strictly con-

sistent with the ordering adopted to derive the model.

However, such terms were retained in the model due to their

“special qualitative importance.”29 It is worth noticing that,

without such terms, the analogy between the pressure equa-

tion of CRMHD and the azimuthal velocity equation of the

(incompressible) MRI model (which does strictly follows an

imposed ordering) would not exist. We remark also that the

toroidal velocity of CRMHD plays a role analogous to that

of the azimuthal magnetic field, and in particular, the last

term of Eq. (3), expressing the parallel pressure gradient,

mirrors the last term of Eq. (42), which represents the paral-

lel gradient of the azimuthal velocity. The analogy between

the vorticity equation (1) and the Ohm’s law Eq. (2) of

CRMHD and their counterparts in the MRI model is more

natural, apart from the already discussed curvature/Coriolis

terms.

In spite of this formal analogy between the models,

however, we remark that, under the transformation Eq. (39),

the new variables do not satisfy the same radial boundary

conditions as the old.

IV. MRI MODEL HAMILTONIAN STRUCTURE AND
STABILITY

For the Hamiltonian structure of the MRI model

(35)–(38), the boundary conditions imposed on the fields are

analogous to those imposed for CRMHD; that is, vanishing

Dirichlet boundary conditions along x and periodic along z.

With these assumptions, the Hamiltonian of the system is

given by the functional

H ¼ 1

2

ð
dxdzðjr/j2 þ ðvþ rxÞ2 þ v2

Ajrwj2 þ v2
Ab2Þ; (46)

where each term has a clear interpretation: the first two terms

account for the kinetic energy (including that of the shear-

flow) and last two terms represent the magnetic energy.

Unlike CRMHD, no internal energy term is present, as is

typical of incompressible models where the pressure is not

an independent dynamical variable.

The Poisson bracket is given by

fF;Gg ¼
ð

dxdz½x½Fx;Gx�zþ bð½Fx;Gb�zþ½Fb;Gx�zÞ

þðvþð2XþrÞxÞð½Fx;Gv�zþ ½Fv;Gx�zÞ
þðwþ xÞð½Fx;Gw�z
þ ½Fw;Gx�z� ½Fb;Gv�z� ½Fv;Gb�zÞÞ�; (47)

which satisfies all the requisite Poisson bracket properties.

Together with the Hamiltonian (46), this bracket yields the
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MRI model (35)–(38). Moreover, it possesses the same struc-

ture as the CRMHD bracket of Eq. (7). Consequently, the

Casimirs of Eq. (47), which are given by the following four

infinite families:

C1 ¼
ð

dxdzFðwþ xÞ;

C2 ¼
ð

dxdz bNðwþ xÞ;

C3 ¼
ð

dxdzLðwþ xÞðvþ ð2Xþ rÞxÞ;

C4 ¼
ð

dxdzðxGðwþ xÞ � bG0ðwþ xÞðvþ ð2Xþ rÞxÞÞ;

are analogous to those of Eqs. (8). We find here, again the

conservation of magnetic flux, expressed by the family C1,

remnants of magnetic helicity, C2, and cross-helicity conser-

vation, C3 and C4.

The EC stability analysis proceeds as for CRMHD.

Extremizing the free energy functional leads to the following

equilibrium equations:

/ ¼ Gðwþ xÞ; (48)

v2
Ar2w ¼F0ðwþ xÞ þ bN 0ðwþ xÞ

þ ðvþ ð2Xþ rÞxÞL0ðwþ xÞ þ xG0ðwþ xÞ
� bG00ðwþ xÞððvþ ð2Xþ rÞxÞ; (49)

v2
Ab ¼ �Nðwþ xÞþG0ðwþ xÞðvþ ð2Xþ rÞxÞ; (50)

vþ rx ¼ �Lðwþ xÞ þ bG0ðwþ xÞ: (51)

From which a plethora of equilibrium states are possible.

However, as a first case for this model, we consider the triv-

ial equilibrium state

/ � 0; w � 0; b � 0; v � 0; (52)

i.e., only the background constant magnetic fields and the

linear shearflow are present at equilibrium.

The state (52) corresponds to the following choice for

the free functions of the Casimirs (48):

F ¼ r
2Xþ r

2
ðwþ xÞ2; N � 0;

L ¼ �rðwþ xÞ; G � 0:

The second variation of the corresponding free energy func-

tional is then given by

d2F ¼
ð

dxdz½jrd/j2 þ jdvj2 þ v2
Ajrdwj2

þ v2
Ajdbj2 þ ðr2 þ 2XrÞjdwj2 � 2r dwdv�;

which can be rearranged as

d2F ¼
ð

dxdz½ jrd/j2 þ v2
Ajrdwj2

þ v2
Ajdbj2 þ jrdw� dvj2 þ 2Xrjdwj2�: (53)

It is clear from Eq. (53) that the only possible nonpositive-

definite term, that is the only possible source for instability,

comes from the last term of Eq. (53). Indeed, the second var-

iation is not manifestly positive definite if Xr < 0, which

corresponds (assuming X > 0) to an angular velocity radially

decreasing outward. This is, in fact, the condition for MRI in

the shearing sheet approximation derived in Ref. 18. (Note,

application of the Poincar�e inequality for suitable dw gives

another stability condition that depends effectively on the

system size.)

We remark that in CRMHD the trivial state / � w
� v � p � 0, analogous to Eq. (52), corresponds to

F0 � G � N � L � 0. From Eq. (17), one concludes imme-

diately that such an equilibrium is always stable. Notice,

however, whereas the MRI model embodies the ingredients

for the MRI (identified by the parameters X and r, in addi-

tion, of course, to the imposed background magnetic field) in

its equations of motion, this is not the case for CRMHD,

which accounts for the field curvature but not necessarily for

the pressure gradient, which is required for the interchange

instability. In order to allow for this instability to take place,

it is therefore necessary to have a nontrivial solution for the

pressure in the equilibrium equations (11)–(14). However,

apart from the trivial states, the analogy between the MRI

and the interchange instability, already suggested in Sec. III,

becomes evident if one considers more general equilibrium

states. Indeed, by taking advantage of the analogies between

the Hamiltonian and the Casimirs in the two models, we can

readily write the second variation for the free energy func-

tional F ¼ H þ C1 þC2 þ C3 for the case of the MRI model.

The resulting expression is

d2F ¼
ð

dxdz

"
jrd/j2 þ v2

Ajrdwj2

þ dv� ŷ � ~Bp � rðvþ rxÞ
~B

2

p

dw

0
@

1
A

2

þ v2
A db� ŷ � ~Bp � rb

~B
2

p

dw

0
@

1
A

2

� ŷ � ~Bp

~B
2

p

� r~jkjdwj2

þ 2
ðŷ � ~Bp � rðvþ rxÞÞ

~B
2

p

ðŷ � ~Bp � rð2XxÞÞ
~B

2

p

jdwj2
#
;

(54)

where ~Bp ¼ rðwþ xÞ � ŷ and ~jk ¼�ð@2w=@x2þ @2w=@z2Þ.
It is evident upon comparing (54) with (34), that the term

responsible for the interchange instability in CRMHD is

analogous to the last term of Eq. (54), which is responsi-

ble for the MRI. If the equilibrium azimuthal flow is

reduced only to the imposed shearflow (i.e., v� 0), then

the latter term yields the above mentioned instability con-

dition Xr< 0. However, Eq. (54) offers now a stability

condition that applies to more general equilibrium flows.

Also, the next to last term in Eq. (54) indicates the possi-

bility for a kink-type instability that the rotating magne-

tized disk can undergo in the presence of an equilibrium

current density.
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Finally, note that if the presence of the magnetic field is

removed from the MRI model, then the system of Eqs.

(35)–(38) reduces the ideal fluid model

@x
@t
þ 2X½x; v�z þ ½/;x�z ¼ 0; (55)

@v

@t
þ ½/; v�z � ð2Xþ rÞ½x;/�z ¼ 0: (56)

This model is characterized by the Hamiltonian

H ¼ 1

2

ð
dxdzðjr/j2 þ ðvþ rxÞ2Þ; (57)

and the bracket

fF;Gg ¼
ð

dxdz½x½Fx;Gx�z

þðvþ ð2Xþ rÞxÞð½Fx;Gv�z þ ½Fv;Gx�zÞ�;

which possesses the two families of Casimirs

C1 ¼
ð

dxdzFðvþ ð2Xþ rÞxÞ;

C2 ¼
ð

dxdz xGðvþ ð2Xþ rÞxÞ;

for arbitrary F and G. The second variation of the free

energy functional, for this model, evaluated at the trivial

equilibrium / � v � 0 (corresponding to Fðvþ ð2Xþ rÞxÞ
¼ �ðr=ð4Xþ 2rÞÞðvþ ð2Xþ rÞxÞ2 and G � 0), reads

d2F ¼
ð

dxdz jrd/j2 þ 2X
2Xþ r

jdvj2
� �

: (58)

One can then easily see that, if one assumes, as before,

X > 0, energy stability is achieved if

2Xþ r > 0; (59)

which is, namely, the Rayleigh hydrodynamic stability con-

dition for the rotating fluid that one recovers from Ref. 37.

The regime of relevance for MRI is of course that for which

the equilibrium is hydrodynamically stable (i.e.,

2Xþ r > 0), but the presence of the imposed vertical mag-

netic field makes it energy unstable, which occurs when

r < 0, as shown above.

V. CONCLUSIONS

We have presented analytical results concerning the

Hamiltonian structure and the stability properties of two

reduced models, one of interest for tokamak dynamics and

the other for accretion disks dynamics. Our analysis revealed

analogies between the two models and, in particular, analo-

gous instability processes that they can describe. We also

demonstrated a connection between the standard MHD

energy principle and the EC stability method.

More specifically, after reviewing the Hamiltonian

structure of the CRMHD model, we derived energy stability

conditions for a wide class of equilibria obtained from a var-

iational principle. Two terms of d2F that can lead to instabil-

ity were identified. The physical meaning of these terms was

exposed by tracing their meaning back to the ideal MHD dW
analysis, traditionally adopted in plasma physics. Thus, these

terms were seen to corresponding to the kink and interchange

instabilities. Similarly, in the expression for d2F, the stabiliz-

ing roles of compressibility and magnetic field line bending

were noted. By comparing the cases of equilibria with and

without toroidal flow, we concluded that instabilities (such

as, e.g., Kelvin-Helmholtz instabilities) introduced by the

addition of sheared toroidal flow can be associated with the

terms responsible for the kink and interchange mechanisms.

Thus, instabilities instigated by toroidal flow can then still be

detected by considering the direction of current and density

gradients, with respect to magnetic flux gradients and mag-

netic curvature, respectively.

Next, we described the reduced model of Ref. 18, intro-

duced for investigating MRI in the shearing sheet approxi-

mation. We provided a formal mapping between CRMHD

and this MRI model. The roles played in the latter by the

azimuthal magnetic and velocity components, turn out to

correspond to those played by toroidal velocity and pressure,

respectively, in CRMHD. We remarked that, curiously, the

analogy between these two models is only possible because

the compressibility term has been kept ad hoc in CRMHD,

although this term is negligible according to the imposed

ordering.

By taking advantage of the formal analogy between the

models, we obtained the Hamiltonian structure for the MRI

model and identified four infinite families of Casimir invari-

ants expressing conservation laws.

We then applied the EC method to the MRI model,

first for a trivial equilibrium state usually adopted for MRI

studies. For this equilibrium, we recovered the instability

condition Xr < 0, derived in Ref. 18, that corresponds to

the usual condition of angular velocity decreasing radially

outward. We then extended the analysis to much more gen-

eral equilibria. From the analogy d2F was immediate;

whence we concluded that the destabilizing (nonpositive-

definite) term responsible for MRI is analogous to the term

responsible for interchange instability in CRMHD. Thus,

the role played by the magnetic curvature in tokamaks is

analogous to that played by the gradient of the angular

velocity in accretion disks. This term was seen to give rise

to interchange or magnetorotational instability, respec-

tively, when orientation is in an unfavorable direction,

with respect to the pressure or azimuthal velocity field gra-

dients. The analogy was extended further, indicating that

accretion disk equilibria can undergo instability analogous

of the kink instability, when the gradient of the parallel

current density points toward an unfavorable direction with

respect to rw.

More generally, the analogy permits the transference of

knowledge about CRMHD stability results to the accretion

disk model, and vice versa. Thus, the Hamiltonian structure

of the models provides a convenient and unifying framework

for investigating properties such as conservation laws and

stability conditions for both models.
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