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Stability conditions of magnetized plasma flows are obtained by exploiting the Hamiltonian

structure of the magnetohydrodynamics (MHD) equations and, in particular, by using three kinds

of energy principles. First, the Lagrangian variable energy principle is described and sufficient

stability conditions are presented. Next, plasma flows are described in terms of Eulerian variables

and the noncanonical Hamiltonian formulation of MHD is exploited. For symmetric equilibria, the

energy-Casimir principle is expanded to second order and sufficient conditions for stability to

symmetric perturbation are obtained. Then, dynamically accessible variations, i.e., variations that

explicitly preserve invariants of the system, are introduced and the respective energy principle is

considered. General criteria for stability are obtained, along with comparisons between the three

different approaches. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4819779]

I. INTRODUCTION

In this paper, a companion to Ref. 2 and its predecessor

Ref. 1, we explore further ramifications of the Hamiltonian

nature of ideal magnetohydrodynamics (MHD). Whereas in

Refs. 1 and 2, the subject matter concerned the construction

and origin of variational principles for equilibria, here we

present the comprehensive approach to stability of MHD

equilibria that is a direct consequence of the Hamiltonian

nature of this system. The presentation organizes scattered

approaches into the cohesive Hamiltonian framework, which

will be seen to be useful for obtaining, interpreting, and com-

paring stability results.

Ultimately, the stability results we consider, which are a

consequence of the Hamiltonian form, have their origin in

two energy theorems of mechanics: Lagrange’s theorem and

Dirichlet’s theorem (see Ref. 3 for review). The former is the

root of the necessary and sufficient hydromagnetic energy

principle of Refs. 4–6 for static equilibria, while the latter is

the root of various Eulerian sufficient conditions for stability

(see, e.g., Ref. 7). Since MHD, being a set of partial differen-

tial equations, is an infinite-dimensional Hamiltonian system,

there are technical aspects not present in the theorems of

mechanics. For example, MHD can be expressed in terms

of the Lagrangian or Eulerian variable descriptions, each of

which enforces constraints in particular but nonequivalent

ways. A main goal of this paper is to explore the consequen-

ces for stability for such different ways of enforcing con-

straints. The results of Refs. 1 and 2 will be used in Secs. II,

III, and IV to construct three kinds of energy principles for

stability of both static and stationary MHD equilibria. In

these sections, results of a more general nature are obtained,

while more specific examples and comparisons will be made

in a companion paper.8

More specifically, in Sec. II, energy stability in the

purely Lagrangian variable framework, as considered in

Ref. 9, will be treated. This form extends the classical

hydromagnetic energy principle of Ref. 4, obtained for static

configurations, to stationary flows. En route to our results

we briefly do the following: (i) review the Hamiltonian

description in terms of Lagrangian variables and describe a

time-dependent relabeling transformation, which to our

knowledge has not heretofore been given, a transformation

that will be needed for later development, (ii) review the

map from Lagrangian to Eulerian variables, so as to under-

stand how the time dependence of stationary equilibria in the

Lagrangian picture relates to time-independent Eulerian

equilibria and how such time dependence can be removed,

and (iii) expand Lagrangian particle trajectories to obtain

energy expressions for perturbations of general equilibria

and use these expressions for obtaining sufficient conditions

for stability of equilibria with stationary flow.

In Sec. III, the second kind of energy principle is

described, one that has purely Eulerian form in terms of the

usual MHD variables. This form has been called the energy-

Casimir method (see, e.g., Refs. 3, 7, 10, and 11), although

the method predates the name and, in fact, it appeared in the

early plasma literature in several contexts, the earliest of

which appears to be Ref. 12. This energy principle gives suf-

ficient conditions for stability by expanding a functional F
composed of the sum of the Eulerian energy plus Casimir

invariants, an example being the cross helicity
Ð

d3x v � B, to

second order. If this second variation is sign definite, then F
serves as a Lyapunov functional for stability. With this

energy principle, we can assess the stability of equilibria

within the assumed symmetry class. In this context, very

general and new stability conditions are obtained.

Next, in Sec. IV, the third kind of energy principle, one

that uses dynamically accessible variations, terminology for

a concept introduced in Ref. 13 for a general class of varia-

tions generated from the noncanonical Poisson bracket and

consequently explicitly preserves invariants of the system, is
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described. (See Ref. 3 for review.) Dynamically accessible

variations do not rely on any symmetry and thus give general

criteria for stability. Therefore, they provide information

about the generality of our second class of energy principles.

Finally, in Sec. V we summarize and conclude. Here,

we discuss our results, state implications about nonlinear

stability, and make comparisons between the various kinds

of stability. Comparisons are made on a general level, which

is somewhat complicated, but this will pave the way for

the companion paper of Ref. 8, where a collection of more

specific examples will be treated and explicit comparisons

made.

II. LAGRANGIAN STABILITY

A. General Hamiltonian form, relabeling, and
conservation laws

Consider a general Hamiltonian field description in terms

of a configuration field qða; tÞ 2 R3 for each fixed a 2 R3.

This field q will be the Lagrangian variable that determines

the position of a fluid element labeled by a. The usual three-

dimensional spatial domain is assumed, but the treatment of

this subsection applies to any number of dimensions. Suppose

q has a canonical conjugate p and both are labeled by the con-

tinuum variable a 2 R3, i.e., the dynamical variables of the

Hamiltonian description are the pair of vector valued func-

tions ðqða; tÞ; pða; tÞÞ. It is common to assume that the fluid

element described by q is labeled by its initial condition,

qð0; tÞ ¼ a, but as will soon become evident this is not neces-

sary. The phase space of this setup is sometimes interpreted

as an infinite-dimensional symplectic manifold, or for

“natural” Hamiltonians by T�Q, where Q is the set of smooth

invertible mappings of the spatial domain, indicated here by

q, and T�Q denotes the space (cotangent bundle) with base

coordinate q together with fiber coordinate p. Because the

infinite-dimensional geometry of this description is backed by

meager mathematical rigor, the language of Lagrange14 and

Newcomb15 will be used here, except because general curvi-

linear coordinates may be employed indices will be placed as

in Refs. 3, 16, and 17 indicating their tensorial character, viz.

q! qi and p! pi, where i¼ 1, 2, 3.

In terms of the canonical coordinates, qi, and momentum

densities, pi, the dynamics can be written as

_pi ¼ fpi;Hg ¼ �
dH

dqi
and _qi ¼ fqi;Hg ¼ dH

dpi
; (1)

where ‘ � ’ means derivative with respect to t at fixed label a

and the Poisson bracket f�; �g is canonical and given by

fF;Gg ¼
ð

d3a
dF

dqi

dG

dpi
� dG

dqi

dF

dpi

� �
: (2)

In Eq. (2), F and G are functionals, repeated indices are to be

summed, and dF=dqi denotes the functional derivative of F
with respect to qi (see, e.g., Ref. 3). Given a Hamiltonian

functional of the form

H½q; p� ¼
ð

d3aHðq; p;raq;rap;…; a; tÞ; (3)

where ra :¼ @=@a, Eqs. (1) and (2) imply a set of partial

differential equations.

Consider general transformations of such Hamiltonian sys-

tems under an arbitrary time-dependent, invertible relabeling

a ¼ Aðb; tÞ $ b ¼ Bða; tÞ; (4)

i.e., A ¼ B
�1. It should be emphasized that the transforma-

tion of B and its inverse is not connected at this point to the

dynamics in any way, nor is it related to symmetry as in

Refs. 16–18. This kind of label change does not usually

appear in traditional finite-dimensional Hamiltonian theory,

since it would amount to a time-dependent change of the

label i of, e.g., a canonical coordinate qiðtÞ. However, this

relabeling transformation is in fact a time-dependent canoni-

cal transformation induced by Qðb; tÞ ¼ qðAðb; tÞ; tÞ, the

transformation to the new coordinate. To understand how

the associated momentum transforms, the following type-2

time-dependent generating functional is used:

F2½q;P; t� ¼
ð

d3a

ð
d3b qða; tÞ �Pðb; tÞ dða�Aðb; tÞÞ; (5)

where d is the Dirac delta function. (In tensorial form, q �P
¼ qi Pi.) The direct transformation from the Hamiltonian

theory in terms of ðqða; tÞ; pða; tÞÞ to that in terms of ðQðb; tÞ;
Pðb; tÞÞ is given by

p ¼ dF2

dq
; Q ¼ dF2

dP
; and ~H ¼ H þ @F2

@t
: (6)

From Eq. (5), it follows that

pða; tÞ ¼ Pðb; tÞ
J

; Qðb; tÞ ¼ qða; tÞ; (7)

where dða�AÞ ¼ dðb�A
�1Þ=J has been used, and

@F2

@t
¼ �

ð
d3b P � ðV � rbQÞ ¼ �

ð
d3b PiV

j @Qi

@bj
; (8)

where the determinant J :¼ j@ai=@bjj, which means d3a
¼ J d3b, and

Vðb; tÞ :¼ _B � B
�1 ¼ _BðAðb; tÞ; tÞ: (9)

Equation (8) follows from ð@Ai=@bkÞð@Bk=@ajÞ ¼ di
j and

d

dt
B

kðAðb; tÞ; tÞ ¼ _B
k þ @B

k

@aj
@tA

j ¼ dbk

dt
¼ 0: (10)

Recall ‘ � ’ always means time differentiation at fixed a,

while @t will mean at fixed b. The formulas of (7) and (8) are

valid with substitution of either a or b, using Eq. (4).

Because the transformation is generated by F2, it is a ca-

nonical transformation, i.e., the Poisson bracket becomes

fF;Gg ¼
ð

d3b
dF

dQi

dG

dPi
� dG

dQi

dF

dPi

� �
; (11)

the Hamiltonian in the new variables becomes
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~H ½Q;P� ¼ H �
ð

d3b P � ðV � rbQÞ: (12)

The second term of Eq. (12), the one that comes from

@F2=@t, will be referred to as the fictitious term. The trans-

formed equations of motion are given by

@tPi ¼ fPi; ~Hg and @tQ
i ¼ fQi; ~Hg: (13)

The relabeling transformation of Eq. (4) can also be

interpreted as transformation to a moving noninertial frame

of reference. With this interpretation, q describes motion rel-

ative to states in the inertial frame with coordinates a, and

the relabeling transformation amounts to transformation to a

noninertial frame with Q describing motion relative to the

frame with coordinates b. This explains why relabeling gives

rise to the presence of the fictitious (noninertial) term in the

Hamiltonian. It is important to reiterate that q, Q B, and A

are all invertible maps (parameterized by time) defined on

the same configuration space.

In the case where H is time-independent, energy is

conserved, i.e., _H ¼ 0. If H has no explicit dependence on q,

but depends on raq and possibly higher derivatives, the

momentum P :¼
Ð

d3a p is conserved. This momentum

expression inserted into the Poisson bracket generates an

operator for space translations. Conservation of P follows

from

_P ¼ P;Hf g ¼ �
ð

d3a
dH

dq
¼
ð

d3arað…Þ ¼ 0; (14)

where the last equality is true for any functional that depends

on first and higher order derivatives of q. Similarly, for iso-

tropic Hamiltonians the angular momentum, L ¼
Ð

d3a q

�p, can be shown to be conserved, which is the case for the

MHD Hamiltonian. When L is inserted into the Poisson

bracket, an expression for the operator that generates rota-

tions is obtained. The Hamiltonian with these invariants and

another, the position of the center of mass that generates

Galilean boosts, together with the Poisson bracket, are a real-

ization of the algebra of the ten parameter Galilean group

(see Ref. 19).

In terms of the relabeled coordinates, the same tran-

spires. Although a time-independent H may obtain explicit

time dependence when written in terms of ðQ;PÞ and like-

wise ~H , constants of motion remain constants of motion. For

example, the momentum P written in terms of the relabeled

coordinates becomes P ¼
Ð

d3b P, and because d=dQ of the

fictitious term of Eq. (12) is still of the form rbð…Þ, it fol-

lows that fP; ~Hg ¼ 0. Similarly, the angular momentum

remains conserved. Thus, upon relabeling the set of invari-

ants, with the new Poisson bracket, remain a realization of

the algebra of the Galelian group. This is to be expected

since the Eulerian description does not see the labels and the

Eulerian constants of motion with the noncanonical Poisson

bracket are a realization of the Galelian group.

When systems have symmetry one can transform into a

new frame of reference. When doing so, the Hamiltonian

generally changes because the transformation is a time-

dependent canonical transformation. For example, using

momentum conservation the old Hamiltonian H becomes

Hk ¼ H þ k � P, where the parameter k determines the speed

of the translating frame. Extremals of Hk are equilibria in the

translating frame and, thus, correspond to uniformly translat-

ing states in the original frame. Similarly, equilibria in

rotating frames are extremals of Hf ¼ H þ f � L, where f

determines the magnitude and direction of the rotation. Such

Hamiltonian shifts can be used to obtain stability results for

a larger class of states.

B. MHD and the Lagrange-Euler map

The Hamiltonian for MHD lies in the class of so-called

“natural” Hamiltonians of the form

H½q; p� ¼
ð

d3a
jpj2

2q0

þ q0Wðq;raq;…; aÞ

" #
; (15)

whereW is some potential energy density and q0 ¼ q0ðaÞ is

a given function that denotes the mass density of a

Lagrangian fluid element. In a general coordinate system

jpj2 ¼ gijðqÞ pi pj ¼: pipi, while for Cartesian coordinates

the metric is gij ¼ gij ¼ dij, the usual Kronecker symbol.

The specific form of the Hamiltonian for MHD must sat-

isfy the Eulerian closure principle described in Ref. 20; that

is, it must be expressible in terms of the Eulerian variables of

the theory. Using the notation of Ref. 2, the set of Eulerian

variables for MHD is denoted by Z :¼ ðq; v; s;BÞ, or alterna-

tively Z :¼ ðq;M :¼ qv; r :¼ qs;BÞ, with the map from the

Lagrangian variables ðq; pÞ to Eulerian variables Z given by

qðx; tÞ ¼ q0ðaÞ
Jða; tÞ

����
a¼ q�1ðx;tÞ

; (16)

viðx; tÞ ¼
piða; tÞ
q0ðaÞ

����
a¼ q�1ðx;tÞ

; (17)

sðx; tÞ ¼ s0ðaÞja¼ q�1ðx;tÞ; (18)

Biðx; tÞ ¼ @qiða; tÞ
@aj

Bj
0ðaÞ

Jða; tÞ

����
a¼ q�1ðx;tÞ

; (19)

where on the right-hand side q0; s0, and Bi
0 are, respectively,

the plasma density, the entropy per unit mass, and the ith-

component of the magnetic field, and the subscript zero indi-

cates that these functions are attributes of the Lagrangian fluid

elements and thus depend on the label a. The left-hand side

gives the set of usual Eulerian variables with q the plasma

density, v the flow velocity, B the magnetic field, and s the

entropy per unit mass that are functions of the Eulerian obser-

vation position x. The Lagrange-Euler map is effected using

a ¼ q�1ðx; tÞ (the function q�1ðx; tÞ, the inverse of q(a, t),
indicates the label of the particle that, at time t, is located at

the observation point x). Here, the determinant J :¼ j@qi=@ajj
should not be confused with J ¼ j@ai=@bjj introduced in

Sec. II A. See Refs. 3, 15–17, and 21 for more details.

The Lagrange-Euler map can also be used to express the

variables Z in terms of the relabeled canonical coordinates
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ðQ;PÞ. For example, the entropy per unit mass that will be

observed at point x at time t will be that attached to the fluid

element there then; hence, it is gotten by solving x¼Q(b, t)
for b, giving b ¼ Q�1ðx; tÞ and

sðx; tÞ ¼ s0ða; tÞja¼q�1ðx;tÞ ¼ s0ðAðb; tÞ; tÞjb¼Q�1ðx;tÞ

¼: ~s0ðb; tÞjb¼Q�1ðx;tÞ : (20)

Similarly, the Eulerian velocity v(x, t), when repre-

sented in terms of the new variables, is still the velocity of

the fluid element that is at the observation point x at time t,
but now given in terms of @tQðb; tÞ,

vðx; tÞ ¼ _qða; tÞja¼ q�1ðx;tÞ

¼ ð@tQðb; tÞ þ _BðAðb; tÞ; tÞ � rbQðb; tÞÞjb¼Q�1ðx;tÞ

¼ ð@tQþ V � rbQÞjb¼Q�1ðx;tÞ :

Here, the second term comes from label advection.

Mass conservation implies q0d3a ¼ ~q0d3b, and thus ~q0

¼ J q0. Evidently, ~J :¼ j@Qi=@bjj ¼ JJ and ~q0=~J ¼ q0=J.

In terms of the relabeled coordinate, the Eulerian density is

qðx; tÞ ¼ q0

J

���
a¼ q�1ðx;tÞ

¼ ~q0

~J

���
b¼Q�1ðx;tÞ

; (21)

where composition of arguments is as in Eq. (20).

Finally, the magnetic field is similarly expressed as

Biðx; tÞ ¼ @Qi

@bj

~B
j

0

~J

���
b¼Q�1ðx;tÞ

: (22)

The usual equations of motion for Z follow from either

of the expressions in terms of q or Q (see Ref. 2). The nota-

tion @=@t will be used to denote differentiation of Eulerian

quantities at fixed x.

The Hamiltonian for MHD is

H½q;p�¼
ð

d3a
pipi

2q0

þq0Uðs0;q0=JÞþ @qi

@ak

@qi

@a‘
Bk

0B‘0
8pJ

" #
: (23)

The function U of Eq. (23) is the internal energy per unit

mass of the plasma. As it is written, it can be expressed as a

function of q and s, i.e., U ¼ Uðs; qÞ; this is necessary for

this Hamiltonian to satisfy the Eulerian closure principle,20

which in this case means that upon substitution of Eq. (19)

Eq. (23) becomes

H ¼
ð

d3x
q
2
jvj2 þ q Uðs; qÞ þ jBj

2

8p

� �
; (24)

an expression entirely in terms of the variables Z. With

the usual thermodynamic relations, the pressure is given

p ¼ q2@U=@q and the temperature by T ¼ @U=@s. For poly-

tropic equations of state, p ¼ jðsÞqc; U ¼ jðsÞqc�1=ðc� 1Þ
and with this choice the internal energy integrand of

Eq. (24) is qU ¼ p=ðc� 1Þ. Isothermal processes (c ¼ 1)

have U ¼ j lnðqÞ.
The MHD model can be generalized by altering the

Hamiltonian in many physically meaningful ways: for

example, an anisotropic pressure tensor can be treated as in

Refs. 19 and 22 by assuming U depends on B ¼ jBj with

pjj ¼ q2 @U

@q
and p? ¼ q2 @U

@q
þ qB

@U

@B
; (25)

which gives the CGL equations,23 and the effects of a gravi-

tational force can be modeled by adding to the integrand of

Eq. (23) a term q0u, where u is an external potential.

Now consider explicitly the effect of the relabeling

transformation of Eq. (4) on the MHD Hamiltonian, which

we write out in tensorial form

~H½Q;P� ¼
ð

d3b
Pi P

i

2~q0

�PiV
j @Qi

@bj

"

þ ~q0 Uð~s0; ~q0=~JÞ þ @Qi

@bk

@Qi

@b‘

~B
k

0
~B
‘

0

8p~J

#
;

¼K þ Hf þW ; (26)

where K is the kinetic energy, Hf is the fictitious term of Eq.

(8), and W represents the sum of the internal and magnetic

field energies. The Hamiltonians of Eqs. (23) and (26) and

the brackets of Eqs. (2) and (11) are the starting point for the

equilibrium and stability analysis of Sec. II C.

C. Lagrangian description of equilibrium and stability

Since the theory as thus far described is canonical,

Lagrangian variable equilibria are given by dH=dq ¼ 0 and

dH=dp ¼ 0. The second of these conditions clearly implies

p ¼ 0, which means Lagrangian equilibria correspond to

static configurations in which fluid particles do not move.

Thus, Eulerian stationary equilibria, i.e., equilibria with

time-independent flows, are not Lagrangian equilibria. To

accommodate stationary equilibria, the description devel-

oped in Sec. II A in terms of the relabeled Lagrangian varia-

bles Q and P is convenient.

Consider what happens to the Hamiltonian formalism in

terms of ðQ;PÞ when an expansion about a given time-

dependent reference trajectory is effected as follows:

Q ¼ Qrðb; tÞ þ gðb; tÞ ; P ¼ Prðb; tÞ þ pgðb; tÞ; (27)

where g and pg will eventually be seen to be related to the

displacements in the linear energy principles. But, for now,

Qrðb; tÞ and Prðb; tÞ are completely arbitrary. Expanding

@tQ ¼
d ~H

dP
and @tP ¼ �

d ~H

dQ
(28)

about the reference trajectory gives the leading order equations

@tQr ¼
Pr

~q
� V � rbQr ;

@tPr ¼ �rb � ðV�PrÞ þ Fr ;

(29)

where Fr comes from the W part of the Hamiltonian. Now, it

is supposed that ðQr;PrÞ is an equilibrium state, meaning

@tQr ¼ @tPr ¼ 0, whence from Eq. (29) it follows that
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rb � ð~q VV � rbQeÞ ¼ Fe; (30)

where the subscript r has been replaced by e to indicate an

equilibrium state. Note, that in this expression V and ~q could

depend on time and we could add explicit time dependence

to W to produce a moving state with the balance of Eq. (30).

However, only static Lagrangian equilibria where V(b),

~qðbÞ; QeðbÞ, and PeðbÞ are considered. And, most impor-

tantly, it is assumed that QeðbÞ ¼ b. With this choice, static

equilibria in the present context correspond to a moving state

in the original ðq; pÞ context, which in turn will be seen to

correspond to stationary equilibria in the Eulerian context.

At this point, the relabeling is connected to the dynamics:

up to now it has been arbitrary. To see this, return to what

this all means in terms of the variable q: b ¼ QeðbÞ
¼ qeðAeðb; tÞ; tÞ ¼ Beða; tÞ. From the definition of V of Eq.

(9) Vðb; tÞ ¼ _BeðAeðb; tÞ; tÞ ¼ veðbÞ, where veðbÞ denotes

an Eulerian equilibrium state. Upon setting b¼ x, i.e., identi-

fying the Eulerian observation point with the moving label,

Eq. (30) becomes the usual stationary equilibrium equation,

r � ðqeveveÞ ¼ Fe; (31)

and ~q becomes the usual equilibrium qeðxÞ. It can be shown

that ve � rse ¼ 0; r � ðqeveÞ ¼ 0, and ve � rBe � Be � rve

þBer � ve ¼ 0 follow from Eqs. (20), (21), and (22),

respectively.

Next, an expansion about a stationary Eulerian equilib-

rium, which in this context is a static Lagrangian equilib-

rium, can be effected to obtain a quadratic energy functional

that has no explicit time dependence. The identification of

b¼ x leads to a usual procedure of measuring perturbed

quantities relative to the unperturbed trajectories of a station-

ary equilibrium, as in Refs. 3 and 9 for fluid models (and

Refs. 13, 24, and 25 for kinetic theories). However, here, evi-

dently for the first time, this idea has been incorporated on

the nonlinear level before expansion and treated in the purely

Hamiltonian framework.

Before considering stationary equilibria, the usual “dW”

energy principle for static equilibrium of Refs. 4–6 will be

treated. This principle is an infinite-dimensional version of

Lagrange’s necessary and sufficient stability theorem of

mechanics (see, e.g., Ref. 26), which is applicable to natural

Hamiltonians of the separable form, kinetic plus potential.

For static MHD configurations, the relabeling of Sec. II A is

not necessary and the variables ðq; pÞ are sufficient; in fact,

Q¼ q, P ¼ p; V � 0; thus, the equilibrium is described by

b ¼ QeðbÞ ¼ qeðaÞ ¼ a ¼ x: (32)

Since static equilibria are given by time-independent qe, this

point can be taken to be the Eulerian observation position,

i.e., qe ¼ a ¼ x as given in Eq. (32). Since the Hamiltonian

(23) is of separable form, Lagrange’s theorem would imply

that the equilibrium is stable if and only if qe is a local mini-

mum of the potential energy,

W½q� ¼
ð

d3a q0Uðs0; q0=JÞ þ @qi

@aj

@qi

@ak

Bj
0Bk

0

8pJ

� �
: (33)

There are mathematical subtleties to this theorem, even in

the finite-dimensional case, but as is common in plasma

physics this formal statement of Lagrange’s theorem will be

assumed. Following convention, the infinitesimal displace-

ment from static equilibria qe will be denoted by n, a

displacement relative to an inertial frame, instead of g, i.e.,

q ¼ qe þ n. The second variation of the potential energy

(33) (see Refs. 3 and 15 for details) gives

d2W½Ze; n� ¼
1

2

ð
d3x qe

@pe

@qe

þ B2
e

4p

 !
ð@in

iÞ2
"

þ pe þ
B2

e

8p

� �
ðð@in

jÞð@jn
iÞ � ð@in

iÞ2Þ

þ ð@jniÞð@kn
iÞ � 2ð@in

iÞð@knjÞ
h iBj

eBk
e

4p

�
; (34)

where @in
j :¼ @nj=@qi

e ¼ @nj=@xi and where the Eulerian

static equilibrium quantities, denoted by e, are consistent

with the Grad-Shafranov equation (see Ref. 2). Particular

care should be paid to the treatment of boundary terms as

pointed out in Ref. 15 but, as noted above, an in-depth treat-

ment of boundary conditions, including the plasma vacuum

interface will be considered elsewhere.

Given an equilibrium solution, the functional d2W is

typically viewed as a quadratic form in n, viz. a functional

that, upon variation, defines the linear dynamics of perturba-

tions with respect to the equilibrium. By carrying out some

manipulations, the functional (34) can be transformed in the

more familiar expression of Ref. 4,

d2W½Ze; n� ¼
1

2

ð
d3x qe

@pe

@qe

ðr � nÞ2 þ ðr � nÞðrpe � nÞ
�

þ jdBj2

4p
þ je � n � dB

#
; (35)

where 4pje ¼ r� Be is the equilibrium current and

dB :¼ r� ðn� BeÞ. The linear Hamiltonian is given by

Hstc½n; pn� ¼ d2H ¼
ð

d3x
jpnj2

2qe

þ d2W; (36)

which with the linear Poisson bracket

fF;Ggðn;pnÞ :¼
ð

d3x
dF

dn
� dG

@pn
� dG

dn
� dF

@pn

� �
; (37)

produces the linear Hamiltonian system, obtained by expan-

sion about static equilibria, as

_n ¼ fn;Hstcgðn;pnÞ ¼
dHstc

dpn

_pn ¼ fp;Hstcgðn;pnÞ ¼ �
dHstc

dn
:

(38)

Thus, this Hamiltonian system is considered to be stable by

Lagrange’s theorem if and only if d2W is positive for any

perturbation n, i.e., if and only if the quadratic form is posi-

tive definite.
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Now consider Eulerian stationary equilibria in the

Lagrangian variable framework, using the relabeling trans-

formation discussed above and in Sec. II A. For such equili-

bria, Lagrange’s theorem in general does not apply: because

of the presence of the fictitious term, the Hamiltonian is no

longer of separable form and instead one only has Dirichlet’s

sufficient condition for stability. For stationary equilibria,

the analog of Eq. (32) is b ¼ QeðbÞ ¼ qeðAðb; tÞ; tÞ ¼ x,

the displacement relative to the relabeled fluid elements is

given by gðx; tÞ ¼ nða; tÞja¼q�1
e ðx;tÞ, and stationary equilib-

rium quantities are represented in terms of unrelabeled fluid

elements by

qeðxÞ ¼
q0ðaÞ
Jða; tÞ

����
a¼ q�1

e ðx;tÞ
; (39)

veiðxÞ ¼
piða; tÞ
q0ðaÞ

����
a¼ q�1

e ðx;tÞ
; (40)

seðxÞ ¼ s0ðaÞja¼ q�1
e ðx;tÞ; (41)

Bi
eðxÞ ¼

@qiða; tÞ
@aj

Bj
0ðaÞ

Jða; tÞ

����
a¼ q�1

e ðx;tÞ
: (42)

Following Ref. 3, the second variation of the Hamiltonian in

terms of the canonically conjugate variables ðg; pgÞ results

d2Hla½Ze; g; pg� ¼
1

2

ð
d3x

1

qe

jpg � qeve � rgj2 þ g �Ve � g
� �

;

(43)

where qe; ve, and the operator Ve has no explicit time

dependence. The functional

d2Wla½g� :¼
1

2

ð
d3x g �Ve � g

¼ 1

2

ð
d3x ½qeðve � rveÞ � ðg � rgÞ

� qejve � rgj2� þ d2W½g� ; (44)

which is that obtained by Frieman and Rotenberg in Ref. 9

represents a generalization to stationary equilibria of the

potential energy of Eq. (35). The linear Hamiltonian about

stationary equilibria is Hstr ¼ d2Hla with Eq. (43), and the

linear equations of motion are

@g

@t
¼ fg;Hstrgðg;pgÞ ¼

1

qe

ðpg � qeve � rgÞ; (45)

@pg

@t
¼ pg;Hstrf gðg; pgÞ ¼ �qeve � r

pg

qe

þr � ðqegve � rveÞ þ r qe

@pe

@qe

r � gþ g � rpe

� �

þ 1

4p
½Be � rdBþ dB � rBe �rðBe � dBÞ�; (46)

where the equilibrium equations have been used to simplify

the functional derivative of Hstr with respect to g. By exploit-

ing the relation

@pg

@t
þ qev � r pg

qe

¼ qe

@2g

@t2
þ 2qeve � r

@g

@t

þr � ðqeveve � rgÞ: (47)

Equations (45) and (46) can be put into the form of Ref. 9,

i.e., as

qe

@2g

@t2
þ 2qeve � r

@g

@t
� Fv

e ¼ 0; (48)

where the force operator with velocity terms is

Fv
eðgÞ :¼r � ðqegve � rve � qeveve � rgÞ

þ r qe

@pe

@qe

r � gþ g � rpe

� �

þ 1

4p
½Be � rdBþ dB � rBe �rðBe � dBÞ� :

In this case, it is clear from expression (43) that the

Hamiltonian is not of separable form and in general

Lagrange’s theorem does not apply. However, due to the

arbitrariness of pg, which does not contribute to d2Wla, the

quadratic term in the integrand of Eq. (43) can be put equal

to zero and a sufficient condition for stability is given by

d2Wla > 0 for any perturbation g. This is an infinite-

dimensional version of Dirichlet’s theorem.

For completeness, we record the first order Eulerian

perturbations that are induced by the Lagrangian variation n,

written in terms of the “Eulerianized” displacement g. They

are given as follows:

dqla ¼ �r � ðqegÞ; (49)

dMla ¼ pg � qeg � rve � ver � ðqegÞ; (50)

drla ¼ �r � ðregÞ; (51)

dBla ¼ �r� ðBe � gÞ; (52)

where the momentum and entropy perturbations dMla and

drla can be replaced by the following velocity and pressure

perturbations:

dpla ¼ �cper � g� g � rpe; (53)

dvla ¼
@g

@t
þ ve � rg� g � rve; (54)

as were used in Ref. 9.

III. EULERIAN STABILITY—THE ENERGY-CASIMIR
METHOD

Before proceeding, we briefly list results of Ref. 2 for

readability and containedness.

The Hamilton form of the MHD equations in the

Eulerian variables Z ¼ ðq; v; s;BÞ is

@Z

@t
¼ fZ;Hg; (55)
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where H[Z], the Hamiltonian is the energy expressing of

Eq. (24), and f�; �g represents the noncanonical Poisson

bracket of Refs. 27 and 28, which is not of canonical form

because the Eulerian variables Z are not canonical

variables.

Because Eulerian variables are not canonical variables,

the noncanonical Poisson bracket has degeneracy that gives

rise to Casimir invariants, special invariants C that satisfy

{C, F}¼ 0 for all functionals F, and these give rise to the

variational principles of Ref. 2 that we can use further for

determining stability. This follows from the general form for

noncanonical Poisson brackets given by

fF;Gg ¼
ð

d3x
dF

dZ
� J � dG

dZ
; (56)

which is defined on two functionals F and G. Here J, the

cosymplectic operator, is formally anti-self-adjoint and must

satisfy a strenuous condition for the Jacobi identity.3,19 In

terms of Eq. (56), the equilibrium variational principles of

Ref. 2 amount to dF=dZ ¼ 0) _Z ¼ 0, where F :¼ H þ C.

This follows from _Z ¼ J � dH
dZ ¼ J � dFdZ ¼ 0 since J �

dC=dZ ¼ 0 by definition. In finite-dimensional Hamiltonian

systems, Dirichlet14 showed that the Hamiltonian provides a

sufficient condition for nonlinear stability of an equilibrium

point if energy surfaces in the vicinity of the equilibrium are

ellipsoidal, which is equivalent to definiteness of the second

variation of the Hamiltonian. Carrying this idea over to the

present infinite-dimensional noncanonical setting, this

amounts to definiteness of the second variation of F. This is

sufficient for linear stability and points toward nonlinear sta-

bility, but a rigorous mathematical proof requires informa-

tion about the existence of solutions for MHD, which is a

famous open problem. It should be noted that by nonlinear

stability we mean stability to infinitesimal perturbations

under the full nonlinear dynamics of the system. A nonli-

nearly unstable system is unstable to infinitesimal perturba-

tions as opposed to finite amplitude instability, which

requires a sufficiently large perturbation for instability as

with a dimpled potential well.

In this section, we consider MHD with symmetry, as

described in Ref. 2. All geometric symmetries can be

described as a combination of axial symmetry and transla-

tional symmetry or, in other terms, as a helical symmetry.

Given a cylindrical coordinate system ðr;/; zÞ, we define a

helical coordinate u ¼ /½l�sin aþ z cos a, where [l] is a

scale length and a defines the helical angle. The unit vector

in the direction of the coordinate u can be written as u

¼ krru¼ ðk½l�sinaÞ/þðkr cosaÞz, where k2¼1=ð½l�2sin2a
þr2 cos2aÞ represents a metric factor. Thus, the second hel-

ical direction results, h¼krrr�ru¼�ðkrcosaÞ/
þðk½l�sinaÞz, and the helical symmetry is expressed by the

fact that h �rf ¼0; where f is a generic scalar function. The

direction h, which is called the symmetry direction, can be

chosen to obtain axial (a¼0), translational (a¼p=2), or

true helical (0<a<p=2) symmetry and the metric factor k
changes accordingly. In the following, we use the

identities

r � h ¼ 0; r� ðkhÞ ¼ �ðk3½l�sin 2aÞh; (57)

which also show that, for sin 2a ¼ 0, we can define a coordi-

nate in the symmetry direction as rh ¼ kh.

Using the notation described before, the magnetic field

can be rewritten as

Bðr; uÞ ¼ Bhðr; uÞhþrw� kh; (58)

where w ¼ wðr; uÞ is the magnetic flux function, while the

velocity becomes

vðr; uÞ ¼ vhðr; uÞhþ v?ðr; uÞ: (59)

In terms of the variables ZS ¼ ðq; v?; vh;w;BhÞ, where

we assume the entropy is a flux function, i.e., s ¼ SðwÞ, the

energy-Casimir functional is given by

F ¼
ð

d3x

�
qjv?j2

2
þ qv2

h

2
þ qU þ k2jrwj2

8p
þ B2

h

8p

� qJ � kBhH� ðk4½l�sin 2aÞH�

�q
k

vhG � v � BF
�
; (60)

where F ; G; H, and J are four arbitrary functions of w and

H�ðwÞ :¼
Ð wHðw0Þ dw0.

As discussed in Ref. 2, the first variation of Eq. (60)

gives the equilibrium equations

0 ¼ qv� FB � 1

k
qGh; (61)

0 ¼ jvj
2

2
þ U þ p

q
� J � 1

k
vhG; (62)

0 ¼ Bh

4p
� kH� vhF ; (63)

0 ¼�r � k2

4p
rw

� �
þ qTS0 � qJ 0 � kBhH0

� k4½l�sin 2aH� 1

k
qvhG0 � v � BF0

þ r � ðFkh� v?Þ; (64)

where in the last equation primes indicate derivatives with

respect to w. We assume the equilibrium is known and

proceed to the second variation.

The second variation of the energy-Casimir principle

results

d2
F ¼

ð
d3x ðd ~ZS �K � d ~Z

t

SÞ; (65)

where we rearranged the terms in the vectorial form

d ~ZS ¼ ðdvr; dvu; dvh; k@rdw; k@udw; dBh; dq; dwÞ

and the matrix quadratic form
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K ¼

q 0 0 0 �F 0
1

q
FBr �F0Br

00 q 0 F 0 0
1

q
FBu �F0Bu

00 q 0 0 �F 1

q
FBh �F0Bh �

1

k
qG0

00 1

4p
0 0 0

1

q
FF0Bu

00 1

4p
0 0 � 1

q
FF0Br

00 1

4p
0 � 1

q
FF0Bh � kH0 � 1

k
GF0

00 1

q
c2

s � 1

kq
Bh F þ

1

k
qG

� �
G0 � J 0

00 �!

2
66666666666666666666666666664

3
77777777777777777777777777775

: (66)

Since K is symmetric, we only showed the terms above and

on the diagonal. The notation d ~ZS is used to emphasize that in

the rearranged vectorial form we have included, as separated

elements, not only the perturbations of the variables ZS but

also the spatial derivatives of the perturbation dw. Moreover,

in the quadratic form (66), the notation c2
s ¼ @p=@q repre-

sents the square of the plasma sound speed, while ! indicates

the expression

! ¼� qTS00 � qð@T=@sÞS02 þ qJ 00 þ kBhH00

þðk4½l�sin 2aÞH0 þ 1

k
BhFG00 þ

1

k2
qGG00

þB2

q
FF00 þ Bh

1

k
GF00 : (67)

Next, we consider Eq. (61) and we define

S :¼ qv� FB� 1

k
qGh: (68)

At the equilibrium S¼ 0 and we use this equation to obtain v

as a function of the other variables. Next, we define

Q :¼ B2

2q2
F 2 þ U þ p

q
� J � 1

2k2
G2; (69)

which follows from Eq. (62) after substitution of Eq. (61).

Again, Q¼ 0 at the equilibrium and we can use this equation

to obtain q ¼ qðw;BÞ. Last, we define

R :¼ ð1�M2Þ
4p

B� kHþ 1

k
FG

� �
h; (70)

where substituting the previous results, the poloidal Alfv�en

Mach number

M2 ¼ 4pqjv?j2

B2
?

¼ 4pF 2

qðw;BÞ (71)

is considered as a function of w and B. The component of R

in the symmetry direction is related to Eq. (63) (after

substituting of vh and q) and at the equilibrium Rh ¼ 0,

whereas R? is related to the derivatives of w and in general

is not zero.

By introducing in Eq. (65), the variations

dS ¼ qdvþ vdq� FdB� F0Bdw� h

k
ðGdqþ qG0dwÞ;

dQ ¼ 1

q
ðc2

s �M2c2
aÞdq�M dwþM2

4p
B

q
dB;

dR ¼ ðc
2
s þ c2

aÞðM2
c �M2Þ

4pðc2
s �M2c2

aÞ
dB

� 2FF0
q

BþN hþ M2M
ðc2

s �M2c2
aÞ

B

4p

" #
dw; (72)

where

M :¼GG0=k2 þ J 0 � ðT þ q@T=@qÞS0 � B2FF0=q2 ;

N :¼ kH0 þ F0G=k þ FG0=k ; (73)

c2
a ¼ B2=ð4pqÞ is the square of the Alfv�en velocity and

M2
c ¼ c2

s=ðc2
s þ c2

aÞ represents the square Alfv�en Mach num-

ber corresponding to the “cusp velocity,” the second varia-

tion of the energy-Casimir principle can be rewritten in a

form for which the matrix K becomes diagonal, i.e.,

d2
F¼

ð
d3x ½a1jdSj2þ a2ðdQÞ2þ a3jdRj2þ a4ðdwÞ2�; (74)

where

a1 ¼
1

q
; a2 ¼

q

ðc2
s �M2c2

aÞ
;

a3 ¼
4pðc2

s �M2c2
aÞ

ðc2
s þ c2

aÞðM2
c �M2Þ

;

a4 ¼ �!� a1

dS

dw

����
����
2

~ZS

�a2

dQ

dw

����
2

~ZS

� a3

dR

dw

����
����
2

~ZS

: (75)
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From Eq. (74) it follows that, if ai > 0 for i¼ 1.4, the

equilibrium is a local minimum (i.e., d2
F > 0) and stability is

thus proved. In particular, the coefficient a1 is always positive

while the positiveness of the coefficients a2 and a3 can be

reduced to the condition M < Mc. However, the coefficient a4

involves in a very complicated way the second derivatives of

the flux functions F ; G; H; J , and S and considerations on

its positiveness require, for each specific problem, specific

investigations. Notice that stability is assured for generic

Eulerian perturbations, which in general do not satisfy any of

the dynamic constraints of the equilibrium (e.g., Casimir invar-

iants can be modified by the perturbations).

In the equations above, we have considered w and B? as

two independent variables and in the last of Eqs. (75) the

notation d=dwj ~ZS
indicates only the terms on the right hand

side of the first of Eqs. (72) that multiply dw. Given an equi-

librium, the terms dS=dwj ~ZS
; dQ=dwj ~ZS

; dR=dwj ~ZS
are com-

pletely known, since they depend only on equilibrium

quantities and not on the perturbations. However, the varia-

tion of the poloidal magnetic field is related to the variation

of w by the equation

dB? ¼ rdw� kh: (76)

The stability conditions deduced by considering the positive-

ness of the coefficients of Eqs. (75) are thus over-estimated

and represents only sufficient criteria.

In order to obtain, for a given equilibrium, a better sta-

bility condition, we exploit relation (76) between dB? and

dw and we consider d2
F as a function of dS; dQ; dRh, and

dw. Upon variation with respect to dS; dQ, and dRh, it is

straightforward to show that the minimum of d2
F corre-

sponds to

dS ¼ dQ ¼ dRh ¼ 0; (77)

provided that a2 and a3 are positive. Equations (77), which

yield S ¼ Q ¼ Rh ¼ const ¼ 0; correspond to the reduced

variational principle presented in Ref. 2, where the con-

straints arising from the equilibrium equations have been

used to obtain a variational principle for w alone.

We are reduced to the functional

d2
F½dw� ¼

ð
d3x ½a3jdR?j2 þ a4ðdwÞ2�; (78)

which now depends only on the perturbation dw and its

derivatives. By using the last expression of Eq. (72), which

can be rewritten as

dR? ¼
1

a3

dB? þ
dR?
dw

����
~ZS

dw; (79)

the second variation of the constrained energy functional

becomes

d2
F ¼

ð
d3x

1

a3

jdB?j2 þ 2
dR?
dw

����
~ZS

� dB?dw

"

� !þ a1

dS

dw

����
����
2

~ZS

þa2

dQ

dw

����
2

~ZS

þa3

dRh

dw

����
2

~ZS

 !
ðdwÞ2

#
:

Then, we consider the term

2
dR?
dw

����
~ZS

� dB?dw ¼ 2
dR?
dw

����
~ZS

� ðrdw� khÞdw

¼ �rðdwÞ2 � dR?
dw

����
~ZS

� kh

 !
;

and, by integrating by parts (neglecting the surface integral),

the second variation becomes

d2
F ¼

ð
d3x ½b1jrdwj2 þ b2ðdwÞ2�; (80)

where b1 ¼ k2=a3 and

b2 ¼� !� a1

dS

dw

����
����
2

~ZS

�a2

dQ

dw

����
2

~ZS

�a3

dRh

dw

����
2

~ZS

þr � dR?
dw

����
~ZS

� kh

 !
:

Thus, the Euler-Lagrange equation associated with the

extrema of Eq. (78) is

r � ðb1rdwÞ � b2dw ¼ 0; (81)

which represents a generalized form of the Newcomb equa-

tion29,30 for MHD symmetric equilibria with flow.

Although we have obtained an equation that effectively

minimizes the second variation of the energy-Casimir

functional, in most cases the solution of Eq. (81) requires

significative effort. However, a different way to estimate

the minimum of d2
F can be obtained by introducing into

Eq. (78) a Poincarè inequality jjrdwjjL2 	 KjjdwjjL2 , where

K is a constant that depends only on the domain and we have

assumed that the mean value of dw is zero. A sufficient con-

dition for the stability results

d2
F 	

ð
d3x ½ðb1minKþ b2ÞðdwÞ2� 	 0; (82)

where b1min represents the minimum value of b1 for the con-

sidered equilibrium. Condition (82) requires at each point

b1minKþ b2 	 0:

IV. DYNAMICALLY ACCESSIBLE STABILITY

Stability of MHD equilibria with flow for perturbations

that are confined to surfaces of constant Casimirs can be

assessed by means of the so-called dynamically accessible var-

iations, which are explicitly constructed in order to satisfy the

Casimir constraints. Dynamically accessible variations, which

are a restricted class of the Eulerian variations presented in

Sec. III, are generated by means of the noncanonical Poisson

bracket of the problem as dZda ¼ fG; Zg, where the functional

G ¼
Ð

d3x Zigi plays the role of a generic Hamiltonian and

where the generating functions gi embody the arbitrariness in

the variations. In particular, for the MHD model, in terms of

the density variables introduced in Ref. 2, where, as defined in

Sec. II, M ¼ qv, the momentum density, and r ¼ qs, the en-

tropy per unit volume, the functional that generates the dynami-

cally accessible variations can be written as
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G ¼
ð

d3x ðg1 �Mþ g2rþ g3qþ g4 � BÞ; (83)

and the Poisson bracket is of Lie-Poisson form27,28

fF;Gg ¼ �
ð

d3x ½qðFM � rGq � GM � rFqÞ

þM � ½ðFM � rÞGM � ðGM � rÞFM�
þ rðFM � rGr � GM � rFrÞ

þFM �
�

B� ðr � GBÞ
�
þ FB � r � ðB� GMÞ�;

i.e., linear with respect to each variable. (Note, for compact-

ness we have written the bracket of Ref. 27; for equilibria

with r � Be ¼ 0, results are identical to those with the more

general bracket of Ref. 28.)

Stability is thus given by the positiveness of the second

dynamically accessible variation of the Hamiltonian

H ¼
ð

d3x
M2

2q
þ qU þ B2

8p

 !
: (84)

The first order dynamically accessible variations result

dqda ¼ r � ðqg1Þ; (85)

dMda ¼ qrg3 þ ðr �MÞ � g1 þMr � g1

þrðM � g1Þ þ rrg2 þ B� ðr � g4Þ; (86)

drda ¼ r � ðrg1Þ; (87)

dBda ¼ r� ðB� g1Þ; (88)

and the first variation of the Hamiltonian can be written as

dHda ¼
ð

d3x
M

q
� dMda þ Tdrda þ

1

4p
B � dBda

�

þ � M2

2q2
þ U þ p

q
� r

q
T

 !
dqda

#
: (89)

By inserting into Eq. (89) the expressions obtained for the

dynamically accessible variations, Eqs. (85)–(88), we get the

set of MHD equilibrium equations.

The second variation of the Hamiltonian results

d2Hda¼
ð

d3x
1

q
jdMdaj2�2

M

q2
�dMdadqda

�

þ M2

q3
þq

@2U

@q2
þ2

@U

@q
�2

r
q
@2U

@q@s
þr2

q3

@2U

@s2

 !
ðdqdaÞ2

þ2
@2U

@q@s
� r

q2

@2U

@s2

 !
dqdadrdaþ

1

q
@2U

@s2
ðdrdaÞ2

þ 1

4p
jdBdaj2þ

2M

q
�d2Mdaþ2

@U

@s
d2rda

þ2 q
@U

@q
þU�r

q
@U

@s
�M2

2q2

 !
d2qdaþ

B

2p
�d2Bda

�
;

(90)

where d2Zda are the second order variations obtained as

d2Zda ¼ fGð2Þ; Zg þ
1

2
fGð1Þ; fGð1Þ; Zgg: (91)

Notice that Gð1Þ represents the first order generating func-

tional, i.e., functional (83), whereas Gð2Þ is a second order

functional. However, it is easy to show that altogether the

terms corresponding to this second functional become null at

the equilibrium points.

The second order variations result

d2qda ¼
1

2
r � ðdqdag1Þ;

d2Mda ¼
1

2
½dqdarg3 þ ðr � dMdaÞ � g1 þ dMdar � g1

þrðdMda � g1Þ þ drdarg2 þ dBda � ðr � g4Þ�;

d2rda ¼
1

2
r � ðdrdag1Þ;

d2Bda ¼
1

2
r� ðdBda � g1Þ:

In order to compare the results of dynamical accessible var-

iations with those of the Lagrangian approach (see Sec. II),

we introduce a “Lagrangian” velocity variation defined as

dvla ¼ @g=@t� g � rvþ v � rg. After some manipulations,

we obtain

d2Hda½g� ¼
ð

d3x qjdvda � g1 � rvþ v � rg1j
2

þ dWla½g1�; (92)

where g :¼ ðg1; g2; g3; g4Þ,

dvda ¼rðg3 þ g1 � vÞ � g1 � ðr � vÞ

þ r
q
rg2 þ

1

q
B� ðr � g4Þ;

and the quadratic form dWla is now expressed in terms of g1.

Notice that the variation d2Hda is formally identical to the

variation d2H obtained in the Lagrangian description, where

g ¼ �g1 and dvda replaces dvla. As shown in Sec. II C in the

Lagrangian description, the integrand in the first term on the

r.h.s. of Eq. (92) can be re-expressed in terms of ðpg � qeve �
rgÞ ¼ @g=@t and an arbitrary variation pg can make this

term null. On the contrary, in the case of dynamically acces-

sible perturbations the arbitrariness of the variation dvda is

described by the functions g1, g2, g3, and g4 and the first

term of d2Hda can be written as

D ¼
ð

d3x qjdvda � g1 � rvþ v � rg1j
2

¼
ð

d3x qjrg3 þ v� ðr � g1Þ þ 2ðv � rÞg1

þ r
q
rg2 þ

1

q
B� ðr � g4Þj

2: (93)

The functions g2, g3, and g4 inside D, which is non-negative,

do not appear inside the last term in Eq. (92). Thus, one

might think that a suitable choice of these functions exists
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that yields D ¼ 0. However, such a choice can be made only

if specific solvability conditions (analogous to those of the

magnetic differential equations discussed by Newcomb in

Ref. 31) are satisfied. Thus, in general, we can only try to

minimize D with respect to the functions g2, g3, and g4. This

kind of minimization was first suggested in the dynamically

accessible context applied to Vlasov theory in Ref. 25, but a

similar procedure was adopted for MHD equilibrium config-

urations with nested flux surfaces in Ref. 32 and without flux

surfaces in Ref. 33. In the following, we are going to analyze

the symmetric case, which represents a good benchmark for

the procedure and permits a direct comparison with the

results obtained in Sec. III.

The first variation of D with respect to g2;3, and g4 yields

dD=dg2 ¼ r � ðrXÞ; dD=dg3 ¼ r � ðqXÞ, and dD=dg4

¼ r� ðX� BÞ, where we defined the vector field X as

X :¼rg3 þ v� ðr � g1Þ þ 2ðv � rÞg1

þ r
q
rg2 þ

1

q
B� ðr � g4Þ: (94)

The minimum of term (93) satisfies

r � ðqXÞ ¼ 0 () r � ðdMdaÞ ¼ 0; (95)

X � rr
q
¼ 0 () r � ðdðM r=qÞdaÞ ¼ 0; (96)

r� ðX� BÞ ¼ 0 () r� ðdEdaÞ ¼ 0; (97)

where E ¼ �v� B=c and the equivalencies above, which

are new and give insight, can be ascertained by a straight-

forward calculation. By considering symmetric configura-

tions, where B ¼ Bhhþ rw� kh and r
q ¼ sðwÞ, we obtain

X ¼Xhhþ 1
qrv�kh from Eq. (95), rv�rw �kh¼0!vðwÞ

from Eq. (96), and

r� k Xh �
v0

q
Bh

� �
rw

� �
¼ 0 !

Xh ¼ v0

q Bh þ 1
k GðwÞ from Eq. (97).

Thus, for symmetric configurations, the vector field X

that minimizes the term D can be written as

Xmin ¼
F

q
Bþ G

h

k
; (98)

where F ¼ v0 and G are two generic functions of w.

Then, we consider the symmetric version of Eq. (94),

which yields

X :¼r g3 þ
r
q

g2

� �
� kh � 1

q
r� g4 þ s0g2

� �
rw

þ kBh

q
r g4h

k
� kh

1

q
B? � r

g4h

k

� �
þ vh

k
rðkg1hÞ

þ vh

k
r� ðkhÞ � g1? � 2vhh g1 �

1

k
rk

� �

þ v? � ðr � g1Þ þ 2ðv? � rÞg1 (99)

and, by combining Eqs. (98) and (99), we obtain

F

q
Bh þ G

1

k
¼� kB? �

1

q
r g4h

k
� 2

vh

k
g1 � rk

þ v? �
1

k
rðkg1hÞ þ

1

k
r� ðkhÞ � g1?

� �

and

F

q
rw�kh¼r g3þ

r
q

g2

� �
þ kBh

q
rg4h

k
þ vh

k
rðkg1hÞ

� kh � 1
q
r�g4þ s0g2

� �
rwþ vh

k
r�ðkhÞ�g1?

þv?�ðr�g1?Þþ2ðv? �rÞg1? :

Now, in order to determine F and G, we multiply Eq. (99)

by qh=k and we integrate this expression in a domain W
bounded by two magnetic flux surfaces w and wþ dwð

W
d3x F

Bh

k
þ
ð

w
d3x

G

k2
¼
ð

W
d3x q

Xh

k
;

and we obtain

F
Bh

k

	 

þG

1

k2

	 


¼ �2
qvh

k2
g1 � rkþ qv?

k2
� ½rðkg1hÞ þr� ðkhÞ � g1?�

D E
;

(100)

where hf i ¼
Ð
w

d2x
jrwj f indicates the surface integral on a flux

surface. In order to obtain Eq. (100), we used the fact that

F ¼ FðwÞ and G ¼ GðwÞ and the equationð
W

d3x B? � r
g4h

k

� �
¼
ð

W
d3xr � B?

g4h

k

� �
¼ 0;

where the last equality follows from the fact that the bounda-

ries are flux surfaces.

Next, we multiply Eq. (99) by B and again we integrate

in W to obtain

F
jBj2

q

* +
þ G

Bh

k

	 

¼ h2B � ðv � rg1Þi; (101)

where we use the expressions B � rw ¼ 0,
Ð
Wd3x ½B � v�

ðr � g1Þ� ¼
Ð
Wd3xr � ½g1 � ðB� vÞ�; and

Ð
Wd3x B � rg

¼
Ð
Wd3xr � ðBgÞ for g ¼ g3 þ rg2=q.

Equations (100) and (101) can be rewritten as

A � N ¼ C, where N ¼ ðF;GÞt, the 2� 2 matrix A is

A ¼

jBj2

q

* +
Bh

k

	 


Bh

k

	 

1

k2

	 

2
66664

3
77775 (102)

and the vector C is
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C ¼
h2B � ðv � rg1Þi

q
k2

v? � Lk g1 �
2q
k2

vhg1 � rk

	 
2
4

3
5

t

; (103)

where Lk g1 :¼ rðkg1hÞ þ r � ðkhÞ � g1?: Moreover, we

notice that the coefficients of A depend only on the equilib-

rium fields, while the vector C depends also on g1. Finally,

we solve the linear system A � N ¼ C as N ¼ A
�1 � C, and

then substitute the solution Xmin ¼ N1B=qþ N2h=k; into

Eq. (93) to obtain

Dmin ¼
ð

d3x qjXminj2

¼
ð

d3x N2
1

jBj2

q
þ 2 N1N2

Bh

k
þ N2

2

1

k2

 !

¼
ð

w
dw Nt �A � N ¼

ð
w

dw Ct �A�1 � C : (104)

It can be shown that the solvability conditions of Eq. (93)

correspond to C ¼ 0. In this case, the condition d2Hda > 0

corresponds to d2Wla > 0, i.e., dynamically accessible stabil-

ity conditions are equivalent to those obtained in Ref. 9.

V. SUMMARY AND CONCLUSIONS

In this paper, we have described various forms of stabil-

ity for MHD within the Hamiltonian framework, which is an

efficacious stability framework because the Hamiltonian can

serve as a Lyapunov functional.

We first described the Hamiltonian structure in terms of

the Lagrangian variables, which being particle-like naturally

has the canonical Hamiltonian form. We then described how

time-dependent relabeling is a canonical transformation that

amounts to a local frame change that can be used to remove

the time dependence of fluid element trajectories that occur

on the Lagrangian variable level for stationary (time-inde-

pendent) Eulerian equilibria. For MHD in Ref. 9 and also in

other works in the kinetic theory context (e.g., Ref. 13), time

dependence was removed by measuring the displacement

relative to the equilibrium trajectory. This can be viewed as

a linear ramification of our fully nonlinear relabeling devel-

opment, which to our knowledge is new. We also discussed

the Hamiltonian in the relabeled frame and compared it to

that for global transformations such as that occur for the

frame shift corresponding to the total momentum. Then, the

interrelationship between relabeling and the Euler-Lagrange

map was described for equilibrium states. With these tools at

hand, we were able to arrive at an energy expression that

was compared to that of Ref. 9.

Next, we described Hamiltonian stability on the

Eulerian variable level. This was done within the confines of

a formulation that represents general symmetry, which

affords a rich Casimir structure for ascertaining stability

within various symmetry classes. General sufficient condi-

tions for stability were obtained by incisive analysis of the

energy-Casimir functional.

Finally, the dynamically accessible variations, based on

the theory introduced in Refs. 13 and 25 and developed in

generality in Refs. 3 and 34, were employed. This allowed

the investigation of arbitrary equilibria without the imposi-

tion of symmetry. Extremization of the energy functional

was done as in Refs. 13, 25, and 33 and stability under this

kind of constraint was determined.

As pointed out in Ref. 3, differences in the various

stability conditions arise because different representations of

a theory can incorporate different constraints. In closing

we make a few comments on the comparisons between the

various stability results, leaving more in-depth comparisons

to the companion paper,8 where specific examples will be

treated in detail.

First consider the development of Sec. II in terms of

Lagrangian variables. Although our sufficient conditions for

stability are the same as those of Ref. 9, the manner of deri-

vation and meaning are different. In Ref. 9, the stability con-

ditions are obtained by manipulation of the linear equations

of motion and subsequent analysis based on the insertion of

exponential time dependence. However, our development is

purely Hamiltonian: it proceeds by expansion of the fully

nonlinear invariant energy, in the manner of Lagrange and

Dirichlet of usual Hamilton theory, and no assumption is

made about the temporal behavior of the solution. It is im-

portant to realize that linear equations of motion can have

more than one quadratic invariant, and such invariants need

not be the expansion of an invariant of the nonlinear system.

For finite-dimensional systems, definiteness of the expansion

of the Hamiltonian to second order actually implies nonlin-

ear stability, i.e., stability under the full nonlinear dynamics.

However, stability based on the definiteness of an invariant

obtained by manipulation of a linear equation of motion is

significantly weaker. In fact, it is possible that systems

shown to be stable by such a procedure can in fact be unsta-

ble to arbitrarily small perturbations. (See Sec. VI of Ref. 3

for discussion.) For infinite-dimensional systems, definite-

ness of d2H of Eq. (43) is a step toward a proof of nonlinear

stability. However, rigorous proofs of stability can be quite

subtle and difficult; since stability is norm dependent, func-

tional analysis is unavoidable (see, e.g., Refs. 35 and 36).

Direct comparison of the stability conditions of Secs. II,

III, and IV is complicated by the fact that not all apply to the

same equilibria. Although the Lagrangian and dynamically

accessible methods apply to general equilibria, the energy-

Casimir results as developed only apply to symmetric equili-

bria. Consequently, our comparisons below will implicitly

assume equivalent equilibria.

Let us denote by P :¼ fdq; dM; dr; dBg the set of first

order unconstrained perturbations of the Eulerian variables,

i.e., the perturbed variables dq; dv, etc., are arbitrary and

completely independent of each other. This is the largest set

of perturbations. The set Pec used in Sec. III is similarly

unconstrained, except within our symmetry class we have

built in r � dBec ¼ 0. The set Pec is the largest of this paper.

Upon comparing Eqs. (49)–(52) with Eqs. (85)–(88), we see

that with the identification g1 � �g, the sets Pla and Pda

have all equivalent elements except for the momentum

perturbations, where dMla is given by Eq. (50) and dMda is

given by Eq. (86). It is easy to see that dynamically accessi-

ble variations are less general than Lagrangian variations.
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Because of the freedom to choose pg in Eq. (50) at will,

dMla is completely arbitrary. However, to see that this is not

the case for dMda, consider the special case of static, uni-

form, hydrodynamic equilibria, where qe¼ constant;Me� 0;
re¼ constant, and Be� 0, in which case

dvda ¼ rg3 þ
re

qe

rg2 ¼ r g3 þ
re

qe

g2

� �
: (105)

Thus, because r� dvda � 0, this kind of perturbation is

incapable of introducing vorticity into such a static fluid, in

contrast to dvla. For more general equilibria, the constraints

implied by dynamical accessibility are more subtle and these

will be considered on a case by case basis in Ref. 8.

However, in general the following is true:

Pda 
 Pla 
 Pec:

As a side note, we observe that the expression dvda, with v � 0

and r ¼ constant, is identical to the Clebsch representation

introduced in Ref. 19. Thus, this Clebsch representation is not

capable of expressing all vector fields.

Given that dynamically accessible perturbations are

constrained, one must make a decision based on the physics

of the situation to determine which kinds of perturbations are

relevant, an idea that was emphasized in Ref. 13, where the

notion of dynamical accessible stability was introduced, and

also in subsequent work. For example, if one is interested in

ideal perturbations of a normal, fluid, i.e., the case where

viscosity is not important, and it is assumed that the walls

containing the fluid do not move normal to themselves, i.e.,

there is no stirring mechanism, then there is no physical

mechanism by which vorticity can be introduced into the

fluid, and we have a situation consistent with the case

described above. However, if nondynamically accessible

perturbations are important, then one might want to reassess

the completeness of the dynamical system governing the

phenomena. If nondynamically accessible perturbations are

allowed, then one might want a dynamical system that

reflects their evolution in time.

It is not enough to just consider the first order perturba-

tions: one must consider the energy expressions to which

they correspond. The perturbations Pla are to be introduced

into Eq. (43), while the perturbations Pda go into Eq. (92).

Since pg is arbitrary the first term of Eq. (43) was made to

vanish in Sec. II, leaving only d2Wla. While this was not the

case when we analyzed Eq. (92) in Sec. IV. If one replaces

pg in Eq. (43) by its dynamically accessible counterpart,

dpda ¼ �rg1 �Me � rerg2 � qerg3

(see Eq. (462) of Ref. 3), then one obtains Eq. (92). Thus, the

same energy expression applies to both, but in the dynami-

cally accessible case one is constrained away from the mini-

mum available in the Lagrangian case. Therefore, to the

extent that these expressions determine stability, Lagrangian

stability implies dynamically accessible stability.

A comparison between the energy expressions used for

Lagrangian and energy-Casimir stability is also possible, if

the former is restricted to symmetrical perturbations. If one

inserts for dZS in d2F the Lagrangian induced symmetric

variations of Eqs. (49)–(52), adapted for symmetry, then

d2F becomes identical to d2Hla. This calculation was done

for a reduced system (compressible reduced MHD of

Ref. 37) in Ref. 38, but the calculation here for general sym-

metry is more complicated. To effect this calculation, Eqs.

(52) and (58) are used to obtain dwla ¼ �g � rwe. Beginning

with the first term of Eq. (74), with dS given by the first of

Eqs. (72), and the perturbations dB; dw, etc., replaced by

their Lagrangian induced versions, we obtainð
d3x a1jdSj2 ¼

ð
d3x qjdvþ g � rve � ve � rgj2:

This calculation requires the removal of the functions F and

G in lieu of ve by making use of Eq. (68) and the use of met-

ric identities such as h � rh / r. The identity of the remain-

ing portions of these energies follows similarly. Given that

Lagrangian perturbations are a subset of energy-Casimir var-

iations, we conclude that energy-Casimir stability implies

Lagrangian stability, as implied by these energy expressions.

Similarly, it was shown in Sec. VI C 2 of Ref. 3 that insertion

of the perturbations Pda into Eq. (43) produces Eq. (92), i.e.,

d2
Fda � d2Hda when the former is evaluated on first order

dynamically accessible variations. Thus, we are led to two

conclusions

stabec ) stabla ) stabda;

to the extent that each of these quadratic forms implies sta-

bility, and that all the quadratic forms are in fact the identical

physical energy contained in a perturbation away from an

equilibrium state, but how much of that energy can be tapped

depends on the constraints embodied in the forms of the

perturbations dZ.

Postcript: We wish to point out two references that were

brought to our attention after the completion of this work. In

Ref. 39, the authors have used a form of Noether’s theorem

in an action principle setting of MHD to compare

Lagrangian and dynamically accessible perturbations, while

in Ref. 40 the author considers a case of energy-Casimir sta-

bility that is in the same vein as that of our Sec. III.
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