
Local thermodynamics of a magnetized, anisotropic plasma
R. D. Hazeltine, S. M. Mahajan, and P. J. Morrison 
 
Citation: Phys. Plasmas 20, 022506 (2013); doi: 10.1063/1.4793735 
View online: http://dx.doi.org/10.1063/1.4793735 
View Table of Contents: http://pop.aip.org/resource/1/PHPAEN/v20/i2 
Published by the American Institute of Physics. 
 
Related Articles
Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method 
Phys. Plasmas 20, 023504 (2013) 
Equation of state of dense plasmas by ab initio simulations: Bridging the gap between quantum molecular
dynamics and orbital-free molecular dynamics at high temperature 
Phys. Plasmas 19, 122712 (2012) 
Reactive and internal contributions to the thermal conductivity of local thermodynamic equilibrium nitrogen
plasma: The effect of electronically excited states 
Phys. Plasmas 19, 122309 (2012) 
Heat capacity in weakly correlated liquids 
Phys. Plasmas 19, 123702 (2012) 
Arbitrary amplitude dust ion acoustic solitary waves in a magnetized suprathermal dusty plasma 
Phys. Plasmas 19, 123701 (2012) 
 
Additional information on Phys. Plasmas
Journal Homepage: http://pop.aip.org/ 
Journal Information: http://pop.aip.org/about/about_the_journal 
Top downloads: http://pop.aip.org/features/most_downloaded 
Information for Authors: http://pop.aip.org/authors 

Downloaded 26 Feb 2013 to 128.83.61.223. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions

http://pop.aip.org/?ver=pdfcov
http://aipadvances.aip.org/resource/1/aaidbi/v2/i1?&section=special-topic-physics-of-cancer&page=1
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=R. D. Hazeltine&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=S. M. Mahajan&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=P. J. Morrison&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4793735?ver=pdfcov
http://pop.aip.org/resource/1/PHPAEN/v20/i2?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4790661?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4773191?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4771689?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4771594?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.4769850?ver=pdfcov
http://pop.aip.org/?ver=pdfcov
http://pop.aip.org/about/about_the_journal?ver=pdfcov
http://pop.aip.org/features/most_downloaded?ver=pdfcov
http://pop.aip.org/authors?ver=pdfcov


Local thermodynamics of a magnetized, anisotropic plasma
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An expression for the internal energy of a fluid element in a weakly coupled, magnetized, anisotropic

plasma is derived from first principles. The result is a function of entropy, particle density and

magnetic field, and as such plays the role of a thermodynamic potential: it determines in principle all

thermodynamic properties of the fluid element. In particular it provides equations of state for the

magnetized plasma. The derivation uses familiar fluid equations, a few elements of kinetic theory,

the MHD version of Faraday’s law, and certain familiar stability and regularity conditions. VC 2013
American Institute of Physics. [http://dx.doi.org/10.1063/1.4793735]

I. INTRODUCTION

A. Objective

The equilibrium states of thermodynamics depend gen-

erally on a separation of time scales: they are equilibria only

if processes involving some longer time scale are ignored.

Thus one studies the vapor-pressure equilibrium of a glass of

water without concern for the fact that the glass itself will

eventually evaporate.

Separation of time scales commonly pertains to the

physics of magnetized plasmas, allowing thermodynamic

ideas to provide useful illumination. However, the full

panoply of thermodynamics, including the calculation of

thermodynamic potentials, is rarely employed. In fact it is

sometimes said that thermodynamics applies only to the fully

equilibrated plasma, where the confining field becomes irrel-

evant: the eventual equilibrium state of a plasma immersed

in a magnetic field is affected by that field only through

intrinsic spin of the charged particles.1 This stringent per-

spective misses the point that, at small collision frequency,

there can be sufficient time-scale separation to speak usefully

of magnetized plasma equilibria, in which the field plays an

important role.2

Here, we consider the example of a weakly coupled,

magnetized, anisotropic plasma—a plasma in which the

pressure tensor shows distinct parallel and perpendicular

components.3 We intentionally ignore the fact that, on some

longer time scale, Coulomb collisions will erode the anisot-

ropy. We consider a single fluid element in such a plasma,

which is allowed to interact with neighboring elements and

with the magnetic field B. These interactions allow the ele-

ment to perform work on its environment, and the first task

of our study will be to understand the work performed by an

anisotropic fluid element. For simplicity we consider a single

plasma species, and ultimately suppress the weak collisional

interaction between species.

Our final result is an expression for the internal energy

of a weakly coupled, magnetized, anisotropic plasma in

terms of its natural variables: the entropy, the particle den-

sity and the magnetic field. Expressed in this way the inter-

nal energy becomes a true thermodynamic potential, from

which other potentials, such as the Helmholtz free energy,

are easily found. These potentials provide all the available

thermodynamic information about the plasma system.4 In

particular, the thermodynamic potentials readily provide

equations of state.

By confining attention to a single fluid element, we

restrict the analysis to local thermodynamics. Thus ques-

tions concerning the global equilibrium, such as the stabil-

ity of fluid profiles, or the configuration of the confining

magnetic field, are outside the purview of this work. We

find however, that even within the local framework inter-

esting and non-trivial thermodynamic conditions are

revealed.

An early application of thermodynamics to magnetized

plasma is due to Fowler5 (see also Ref. 6), who used esti-

mates of plasma free energy to derive approximate bounds

on instability growth rates and fluctuation levels. More

recent thermodynamic analyses of plasma fluctuations7,8

have depended upon kinetic calculations of the perturbed

entropy. Thermodynamic calculations have proven similarly

useful in the study of dusty plasmas; see, for example, the

work of Avinash.9

B. Organization

The first four sections of this paper derive from fluid

equations an expression for the reversible work performed

by a fluid element in a magnetized, anisotropic plasma.

Elementary thermodynamics and kinetic theory provide,

from the expression for the reversible work, a set of partial

differential equations for the internal energy as a function

of entropy, density, and magnetic field: Eqs. (30), (31), and

(32). In Sec. V, we find the general solution to these differ-

ential equations and obtain a general expression for the

form of the internal energy, Eq. (35) or Eq. (52).

Conditions of regularity and stability are discussed, and this

form is specialized to give the Chew, Goldberger, and Low

(CGL) result of Eq. (45) and the regular polynomial form

of Eq. (57). These equations present the internal energy as a

thermodynamic potential in its natural variables. We

explore some consequences, including the corresponding

equations of state, which are expressed in terms of two dif-

ferent sets of variables.
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II. FLUID CONSERVATION LAWS

Thermodynamic aspects of fluids have been treated in

many works, notably.10,11 Our presentation of this section dif-

fers from these classical works in two ways: we emphasize

the notion of fluid element and we leave the pure thermody-

namic setting by appealing to general constraints that arise by

assuming an underlying single particle species plasma with no

internal degrees of freedom. The results of this section set the

stage for the results of Sec. III, where we further generalize by

considering the role of the magnetic field.

A. Energy

Within a purely thermodynamic/fluid mechanical setting

one has the following general energy equation10–12

@u

@t
þr � ðuV þ qÞ þ p : rV ¼ _W ; (1)

where u is an internal energy density that is assumed to

govern the thermodynamics of the fluid, p is a stress tensor,

p ¼ traceðpÞ=3 is a pressure, V is the Eulerian fluid velocity,

q is a heat flux density, and _W is the external power (rate of

doing work), including energy exchange with other energy

sources that might be present, which for our application

could come about by interaction with another plasma spe-

cies. We will leave _W unspecified.

Assuming a microscopic theory consisting of any single

particle-species plasma the following equation can be

obtained for a large class of kinetic theories:13

3

2

dp

dt
þ 3

2
pr � V þ p : rV þr � q ¼ _W ; (2)

where

d

dt
:¼ @

@t
þ V � r;

is the usual convective (material) derivative.

Consistency of Eq. (1) with Eq. (2) gives

u ¼ 3

2
p : (3)

If we couple above equation with the assumption that our

fluid is in local thermodynamic equilibrium as described by

the energy representation, and assume u is only a function

the entropy and volume, then pressure is given by differen-

tiation with respect to volume (see e.g., Refs. 4 and 11)

p ¼ n2 @U
@n

; (4)

where U :¼ u=n and n is the particle density. Equations (3)

and (4) immediately imply

u ¼ An5=3 ; (5)

where A depends only on entropy; i.e., we obtain the thermody-

namic internal energy function for an adiabatic monatomic gas.

Our development of Sec. III, where we treat anisotropic

magnetized plasma, is a generalization of this basic idea,

where the thermodynamics is generalized to include the ani-

sotropic effect of the magnetic field (cf. Eqs. (30), (31), and

(32) below that are analogous to Eqs. (4) and (3)). In the re-

mainder of this section, we develop several notions that will

elucidate our approach and be useful for later analysis.

The term p : rV in the above equations represents work

done by the fluid stress. It is helpful to express this work in

terms of two traceless tensors: the rate of strain tensor

Uab �
1

2
ð@aVb þ @bVaÞ �

1

3
dabr � V ;

and the viscosity tensor

pab � pab � dab p :

The result is

du

dt
þ 5

3
ur � V þ p : U þr � q ¼ _W : (6)

B. Entropy

We denote the entropy density by s(x, t), the entropy

flux density by s(x, t), and the local rate of entropy produc-

tion by Hðx; tÞ. Thus, we have

@s

@t
þr � s ¼ H :

Thermodynamics prescribes the flux

s ¼ sV þ q

T
; (7)

where T is the temperature. It follows that

ds

dt
þ sr � V þ 1

T
r � q ¼ Hþ q

T
� rT

T
: (8)

The use of the thermodynamic relation (7) becomes question-

able if the distribution function does not resemble, in some

approximation, a moving Maxwellian. Thus at this point we im-

plicitly assume that resemblance. A more detailed discussion of

the distribution and of Eq. (7) is presented in subsection III A.

After solving Eq. (8) for r � q and substituting the result

into Eq. (6), we find that

du

dt
� T

ds

dt
þ 5

3
u� Ts

� �
r � V þ p : U

þ q � rlogT þ TH ¼ _W : (9)

The leading terms in this equation have a simple thermody-

namic interpretation, which we consider next.

C. First law for a fluid element

We consider the physical system consisting of a fluid ele-

ment, small on the scale of plasma gradients but containing
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many particles. The environment for the system is the sur-

rounding plasma. The element is defined by the particles it

contains, and moves with those particles; therefore its popu-

lation N is fixed and the chemical potential will not appear in

our development. However, the fluid element volume

V ¼ N=n;

changes according to

dV ¼ �Vd log n :

Here n is the plasma density. Since the energy of the fluid

element is U ¼ uV, we see that an energy change dU is given

by

dU ¼ dðuVÞ ¼ Vðdu� u d log nÞ :

Similarly, the entropy change dS of the fluid element is given

by

dS ¼ Vðds� s d log nÞ :

We use these formulae to compute

dU � TdS ¼ V dt
du

dt
� T

ds

dt
� ðu� TsÞ d log n

dt

� �
:

The first law of thermodynamics states that the left-hand side

of this relation is the reversible work dWr performed on the

elemental system

dU � TdS ¼ dWr ¼ Vdt _wr ; (10)

where _wr is the rate of change of work-density. Thus, the

thermodynamic law is expressed as

du

dt
� T

ds

dt
� ðu� TsÞ d log n

dt
¼ _wr : (11)

After noting that

d log n

dt
¼ �r � V ; (12)

we substitute Eq. (11) into Eq. (9) and find that

THþ _wr ¼ _W � q � r log T � 2

3
ur � V � p : U : (13)

Evidently every term on the right-hand side of this relation

must describe either reversible work ( _wr) or irreversible dis-

sipation (TH). In some cases the categorization is obvious;

for example

� 2

3
ur � V ¼ p

dðlog nÞ
dt

¼ �ðVdtÞ�1pdV; (14)

reproduces the reversible work done on an ideal fluid. Similarly

collisional heat-conduction

qc ¼ �jr log T ;

contributes to �q � rlogT a positive-definite term

�qc � r log T ¼ ðjr log TÞ � r log T;

that obviously belongs to TH. But for other terms the identi-

fication is not obvious. The most interesting term is that

involving the plasma viscosity.

III. MAGNETIZED PLASMA VISCOSITY

A. Small-gyroradius decomposition

Notice that the magnetic field has not entered the formal-

ism explicitly up to this point. It does so through the form of

the plasma viscosity, which we now consider. The viscosity is

computed using a small gyro-radius ordering, so at this point

we depart from general theory and specialize to a magnetized

plasma.

In typical contexts, the particle distribution function

f(x, v, t) for a magnetized plasma has the form13,14,18–20

f ¼ fM þ fD þ fg: (15)

Here the first term denotes a Maxwellian distribution, cen-

tered at the mean flow velocity V; the second term is a cor-

rection to the Maxwellian, independent of gyro-phase that

includes the stress anisotropy Dp � pk � p?; and the third

term, which depends on gyro-phase, describes gyration about

the magnetic field. Both correction terms are first-order in

the small gyro-radius parameter

d ¼ qT=L;

where qT is the thermal gyro-radius and L is a typical scale

length for system gradients. The distribution will in general

contain second- and higher-order terms, but they have no

effect on the present analysis.

Equation (15) has two well-known (see, for example

Ref. 14) consequences. First, it confirms the thermodynamic

form of the entropy flow, given by Eq. (7); straightforward

calculation from Eq. (15) shows that this form remains valid

through first order in d. The second consequence concerns

the form of the generalized viscosity p; one finds that the

viscosity of a magnetized plasma decomposes into three

parts

p ¼ pgt þ pc þ pg :

Here the first, gyrotropic term is that emphasized by CGL3

pgt � Dp bb� 1

3
I

� �
;

with b � B=B and Dp � pk � p?; the second term is conven-

tional collisional viscosity; and pgv represents gyroviscosity.

The detailed form of the gyroviscosity tensor is well-

known,13,14 and has been used in many works (e.g., Refs.

15–17) but it is not needed here. For in fact

pgv : U ¼ 0 : (16)

In other words gyroviscosity, while having important effects on

momentum evolution, does not enter plasma thermodynamics.
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Equation (16) pertains to the gyro-viscosity tensor as it

is given in most the literature; see, for example Refs. 13, 14,

and 18. Other contributions to gyroviscosity15 may contra-

dict (16); such contributions would yield an additional term,

not considered here, to the reversible work.

B. Viscous work

We combine the above formulae to compute the viscous

work (strictly, viscous power density) specific to a magne-

tized, anisotropic plasma

�p : U ¼ �pc : U � Dp b � U � b : (17)

The first term here describes viscous dissipation; it is known

to be positive definite14 and contributes only to H. But the

last term can have either sign; this is the gyrotropic work,

which we denote by

_wgt � �Dp b � U � b ¼ �Dp b � ðrkVÞ �
1

3
r � V

� �
: (18)

For a physical understanding of gyrotropic work, we

consider the case of uniform magnetic field and incompressi-

ble flow, in which

_wgt ¼ �DprkVk :

The factor rkVk corresponds to contraction (or expansion)

along the direction of the magnetic field, for which the rele-

vant force is pk. But to preserve the volume, this distortion

must be accompanied by an opposite change in the directions

transverse to the field. Since this second change acts against

the force p?, and since it enters with opposite sign, the work

done must be proportional to Dp ¼ pk � p?. It is clear that

this work, like the ideal version �pdV, can be reversible—

that is, it can have either sign, depending upon the pressures in

neighboring fluid elements. This property distinguishes it from

positive definite terms, such as viscous dissipation. (A process

involving this term, like one involving pdV, will not necessarily

be reversible; for example, very rapid processes typically are ir-

reversible. But the fluid element can perform reversible work

through this term, and that fact is sufficient for the present

argument.)

In summary, Eq. (13) has become

THþ _wr ¼ _W � q � rlogT ��pc : U � pr � V

�Dp b � ðrkVÞ �
1

3
r � V

� �
: (19)

We associate the first three terms on the right-hand side of

Eq. (19) with entropy production, and the remaining terms

with reversible work

_wr ¼ �pr � V � Dp b � ðrkVÞ �
1

3
r � V

� �
: (20)

An alternative version is

_wr ¼ �p?r � V � Dp b � ðrkVÞ : (21)

IV. MHD VERSION

A. Field evolution

We need only one characteristic of MHD, the relation

r� E ¼ �r� ðV � BÞ : (22)

This requirement is much weaker than the statement

B2V ¼ E� B; it allows in particular for diamagnetic flow,

provided rkp ¼ 0. Combined with the parallel component

of Faraday’s law, Eq. (22) yields

d log B

dt
¼ b � ðrkVÞ � r � V : (23)

We note parenthetically that Eqs. (12) and (23) together

require

d logðB=nÞ
dt

¼ b � ðrkVÞ :

B. First law for MHD

The MHD expression for gyrotropic work follows from

Eqs. (18) and (23):

_wgt ¼ �Dp
d log B

dt
þ 2

3
r � V

� �
: (24)

Finally, the full MHD work is found from Eq. (20) or

Eq. (21)

_wr ¼ �pkr � V � Dp
d log B

dt

¼ pk
d log n

dt
� Dp

d log B

dt

¼ �pk
d logV

dt
� Dp

d log B

dt
: (25)

We now return to Eq. (10), which becomes

dWr ¼ Vdt _wr ¼ �pkdV � Dp
V
B

dB;

or, since V ¼ N=n,

N�1dWr ¼
pk
n2

dn� Dp

nB
dB :

Finally, from the first law

dU ¼ TdSþ dWr; (26)

¼ TdSþ N
pk
n2

dn� Dp

nB
dB

� �
; (27)

we infer the relations

@U

@n
¼ N

pk
n2
; (28)

@U

@B
¼ �N

Dp

nB
; (29)
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as given by Morrison,21 who obtained them in a Hamiltonian

context22 that ensures energy conservation in CGL theory

for general thermodynamics, i.e., arbitrary U(n, s, B).

It is convenient to express these relations in terms of the

normalized energy U ¼ U=N—an equivalent potential since

N is fixed. We have

Un :¼ @U
@n
¼

pk
n2
; (30)

UB :¼ @U
@B
¼ �Dp

nB
: (31)

In addition to the thermodynamic expressions (31), we

have the relation

U ¼ n�1 3

2
pk � Dp

� �
; (32)

which was given in the original CGL paper,3 and emerged

from the single species anisotropic kinetic considerations

there. Note, Eq. (32) can be inferred directly by comparing

with the usual energy density expression u ¼ p=ðc� 1Þ,
where c ¼ ðd þ 2Þ=d with d the number of degrees of free-

dom. With anisotropy one would expect u ¼ pk=ðck � 1Þ
þ p?=ðc? � 1Þ, and upon choosing d¼ 1 for ck and d¼ 2 for

c?, one arrives directly at Eq. (32). We note, however, it would

be wrong to assume pk;? � n3;1, as we shall see in Sec. V.

The thermodynamic relations (30) and (31) together

with the kinetic result Eq. (32) constrain the form of the in-

ternal energy function—this we turn to next.

V. INTERNAL ENERGY EXPRESSIONS

A. General internal energy

Upon inserting Eqs. (30) and (31) into Eq. (32), we obtain

U ¼ 3

2
nUn þ BUB ; (33)

a linear first order partial differential equation that has the

following general solution obtained by integrating the char-

acteristic equations:23

U ¼ n2=3f ðS;B=n2=3Þ ; (34)

where f is an arbitrary function. Equation (34) implies the

following expression for the internal energy density:

u ¼ n5=3f ðS;B=n2=3Þ : (35)

From Eq. (34), we obtain the following pressure relations

pk ¼
2

3
n5=3f � 2

3
Bnf 0; (36)

p? ¼
2

3
n5=3f þ 1

3
Bnf 0 ; (37)

where prime means derivative with respect to B=n2=3.

We note, that we cannot further specify U without add-

ing more physics. However, we note that f is not entirely

free; in Sec. V C, we discuss physical constraints on it. It is

worth noting that in the limit B! 0 one simply obtains form

(34) the adiabatic monatomic gas result.

B. Entropy dependence

Now we turn to constraints on the entropy dependence

of our general internal energy function of Eq. (34). We imag-

ine the situation where our fluid element has equilibrated to

a single temperature, even though the magnetic field can sus-

tain anisotropic pressure. We define temperature by appeal-

ing to kinetic theory, where it is defined, like all quantities of

moment equations, in terms of moments of the particle distri-

bution function. Temperature as usual measures mean kinetic

energy, and in terms of our fluid moments, it takes the form

T ¼ p

n
¼ 2u

3n
¼ 2

3
U ; (38)

where p ¼ ðpk þ 2p?Þ=3 is the total pressure. Equation (38)

essentially expresses classical equipartition. On the other

hand, thermodynamically temperature is determined by the

usual relation in the energy representation

T ¼ US : (39)

After equating Eqs. (38) and (39), then inserting Eq. (34), we

obtain

U ¼ n2=3e2S=3gðB=n2=3Þ ; (40)

where g is an arbitrary function.

C. CGL internal energy

In the original CGL paper,3 the following equations

were given:

d

dt

p?
nB

� �
¼ 0 and

d

dt

pkB
2

n3

� �
¼ 0 : (41)

Because entropy is advected, these can be used to further

restrict U, since expressions (41) will be true if

p?
nB
¼ c?ðSÞ and

pkB
2

n3
¼ ckðSÞ; (42)

for arbitrary functions c? and ck. Upon returning to Eq. (37),

assuming f ¼ hðSÞgðB=n2=3Þ, and setting x :¼ B=n2=3, we

obtain the equations

d? ¼
c?
h
¼ 2

3x
gðxÞ þ 1

3
g0ðxÞ; (43)

dk ¼
ck
h
¼ 2x2

3
gðxÞ � 2x3

3
g0ðxÞ; (44)

with d? and dk arbitrary constants. The solution of Eq. (44)

is g ¼ d?xþ dk=ð2x2Þ and, therefore, consistent with Eq.

(41), the internal energy function is
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U ¼ n2=3hðSÞ d?
B

n2=3
þ

dk
2

n4=3

B2

� �

¼ hðSÞ d? Bþ
dk
2

n2

B2

� �
; (45)

whence, we obtain the following expressions for the pressures:

pk ¼ dkhðSÞ
n3

B2
; (46)

p? ¼ d?hðSÞ nB : (47)

Alternatively, instead of Eq. (41) the following are

sometimes proposed:

d

dt

pkp
2
?

n5

� �
¼ 0 and

d

dt

pkB
2

n3

� �
¼ 0 : (48)

Performing the analogous calculation for these expressions,

will produce the same internal energy function of Eq. (45).

The authors of Ref. 24 use these relations and obtain

pk / n
ceff
k and p? / nceff

? ; (49)

where

ceff
? :¼ 1þ lnðB=B0Þ

lnðn=n0Þ
; ceff

k :¼ 3� 2
lnðB=B0Þ
lnðn=n0Þ

; (50)

with n0 and B0 being constant reference values. Note these

satisfy ceff
k þ 2ceff

? ¼ 5. The pressure relations of Eq. (49) are

equivalent to our Eqs. (46) and (47). This way of writing

them demonstrates that CGL theory does not have constant

polytropic indices for the two pressures, but ones that can be

interpreted as having spatial dependence through n and B;

evidently, it would in general be wrong to assume

pk;? � n3;1. Although our thermodynamic formalism has a

single temperature, one can define

T? :¼ p?=n / B Tk :¼ pk / ðn=BÞ2 ; (51)

which might aid intuition.

We conclude this subsection by noting that the proce-

dure of Sec. V B can be used to select the function h.

D. General constraints: Nonnegativity, extensivity,
and stability

The function f of Eq. (34) is not entirely arbitrary and is

subject to usual constraints of thermodynamics. To address

these, we rewrite out internal energy function in terms of

standard thermodynamic variables appropriate to the energy

representation; i.e., entropy S ¼ SN, volume V ¼ N=n, and

internal energy U ¼ NU, where N is the fixed total number

of particles. Thus, Eq. (34) becomes

UðN; S;V;BÞ ¼ NðN=VÞ2=3 f
�

S=N;BðV=NÞ2=3
�
: (52)

The first comment to make is that any suitable internal

energy function should be nonnegative, and this is an

elementary requirement on the function f for the relevant

ranges of its thermodynamic independent variables.

Next, it is well-known that the energy representation is the

natural extensive one: the extensive internal energy is written in

terms of the extensive particle number (here constant), volume,

and entropy. The extensive property is obvious from Eq. (52)

since U is an Euler homogeneous function of degree one in

these variables: UðcN; cS; cV;BÞ ¼ cUðN; S;V;BÞ. Note that

B has not participated in this scaling. This is because B is an in-

tensive variable and we have opted to use it rather than the total

magnetic moment, which is the conventional extensive variable

for magnetic systems.

Lastly, we require thermodynamic stability. In the

energy representation, equilibrium lies at minimum energy.

Convexity of U assures us that unphysical behavior, such as

having the pressure drop upon compression, will be ruled

out. If U were to only depend on V and S, then the following

local stability conditions would be necessary:

UVV � 0 and USS � 0; (53)

as well as the Hessian condition

UVVUSS � ðUVSÞ2 � 0: (54)

These inequalities place constraints on the function f as well

as similar conditions involving the B as dependence. We will

consider a particular case below.

E. Polynomial form

For purposes of concreteness we now suppose that the

function g of Eq. (40) is a polynomial in x ¼ B=n2=3. We

choose a second-order polynomial to avoid certain unphysi-

cal singularities, and thus obtain

uðS; n;BÞ ¼ n5=3 a0 þ a1

B

n2=3
þ a2

B2

n4=3

� �
: (55)

where the coefficients ai depend on entropy alone.

Next, we express the internal energy of the fluid element

in terms of dimensionless measure of density and magnetic

field. To this end we consider the entire plasma macro-

system, of which the fluid element is a part. We suppose that

this system is characterized by a minimum density value, nm,

and a maximum value of the magnetic field, BM; the conven-

ient dimensionless variables are then

n̂ :¼ n=nm; B̂ :¼ B=BM;

and we find it convenient to introduce

kðn;BÞ :¼ B̂=n̂2=3 : (56)

With these variables and some scaling, we obtain

uðS; n;BÞ ¼ c0ðSÞn̂5=3½1þ c1ðSÞkþ c2ðSÞk2� :

Here c0 evidently has the dimensions of energy density, while

c1 and c2 are dimensionless. Including the entropy dependence
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as described in Sec. V B and selecting the overall constant

by taking the unmagnetized limit, gives the following:

uðS; n;BÞ ¼ u0e2S=3n̂5=3ð1þ a1k� a2k
2Þ ; (57)

where the constants a1;2 are fixed in each fluid element and

u0 ¼ 3pe1=3�h2n5=3
m M�1 ;

with M being the particle mass. Equation (57) can be viewed

as an analog to the virial expansion of the ideal gas law,

where here the correction is due to anisotropy.

Presently, we consider constraints on the constants a1;2

as well as the reason for minus sign in front of a2, but before

doing so we observe that the pressures corresponding to

Eq. (57) are given by Eqs. (30) and (31)

pk ¼
2

3
u0e2S=3n̂5=3ð1þ a2k

2Þ; (58)

Dp ¼ �u0e2S=3n̂5=3B̂ða1k� 2a2k
2Þ : (59)

Now we apply the constraints discussed in Sec. V C to

the weak field internal energy of Eq. (57). First, we show

that one can always choose the coefficients ai to guarantee

that the energy density is non-negative for every fluid ele-

ment in the plasma system. Our normalizations guarantee

that the quantity k of Eq. (56) satisfies

k 	 1; (60)

for every fluid element. It follows that the energy density

will be non-negative provided kc � 1, where kc is the param-

eter value at which u vanishes

1þ a1kc � a2k
2
c ¼ 0 :

It can be seen that kc ¼ 1 only at a2 ¼ 1þ a1 so the positiv-

ity requirement is simply

a1 � 0 ; 0 	 a2 	 1þ a1 : (61)

We observe from Eq. (59) that this constraint allows both

positive and negative values of the pressure anisotropy Dp.

Next we consider stability. A system is thermodynami-

cally stable if its thermodynamic potentials are convex func-

tions of the intensive variables.4 Thus, we obtain the local

stability criteria

U n̂n̂ < 0 ; U B̂B̂ < 0:

Straightforward calculation shows that

nmU n̂n̂ ¼ �
2

9
u0e2S=3ð1þ 5a2n̂�4=3B̂

2Þ; (62)

U B̂B̂ ¼ �2u0e2S=3a2n̂�2=3: (63)

Hence thermodynamic stability introduces no additional con-

straints. Of course the thermodynamic stability of a single

fluid element does not by any means insure overall plasma

stability.

F. Helmholtz free energy

The Helmholtz free energy FðT; n;BÞ is related to U by

a Legendre transformation

F ¼ U � TS;

where S has been expressed in terms of the natural variables

(T, n, B). Straightforward manipulation of Eq. (40) yields

F ¼ 3

2
T 1þ log

2n2=3g

3T

� �� �
: (64)

Similarly, for the special case of Eq. (57), manipulation

yields

F ¼ 3

2
T 1þ log

2u0nðn;BÞn̂2=3

3nmT

 !" #
; (65)

where

nðn;BÞ � 1þ a1k� a2k
2 :

The B¼ 0 version of Eq. (65) is well-known.

We differentiate to compute the entropy

S ¼ �F T ¼
3

2
log

T

n

� �
;

and the pressures

pk ¼ n2F n ¼
nT

n
ð1þ a2k

2Þ; (66)

Dp ¼ �nBFB ¼ �
3nT

2n
ða1k� 2a2k

2Þ: (67)

These equations of state restate (58) and (59) in terms of the

variables (T, n, B).

VI. SUMMARY

The purpose of this paper was to find the functional

form of the internal energy U of a fluid element in a weakly

coupled, magnetized, anisotropic plasma, as a function of

its natural variables, the entropy S, the elemental volume V
and the local magnetic field B. This function, given by Eq.

(52) (or Eq. (35)), constitutes a thermodynamic potential,

containing all thermodynamic information about the ele-

ment. In order to derive it, we first used standard fluid

equations and the MHD version of Faraday’s law to find

how the fluid element performs reversible work. We then

combined that result with standard thermodynamic laws to

derive partial differential equations determining the de-

pendence of U on the density n (which takes the place of V)

and B. The general solution to those equations revealed that

the magnetic field enters thermodynamics only through the

combination B=n2=3—a quantity having the dimensions of

magnetic flux.

We next used the equipartition theorem to determine the

entropy dependence of the internal energy. The resulting form
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generalizes the well-known expression for the thermodynamic

potential of an ideal gas, and leads to new equations of state

in which the magnetic field and anisotropy make key contribu-

tions. Thus, we have found, in particular, how the adiabatic

law used in conventional MHD is modified by anisotropy.

We also a display a special case of the general result,

Eq. (57), having quadratic form. In this case, the thermody-

namic potential involves two undetermined constant parame-

ters. A simple constraint on these parameters simultaneously

guarantees positivity of the internal energy and thermody-

namic stability of the fluid element.

The thermodynamic potential has experimentally testa-

ble consequences, including equations of state. In particular

it predicts a change in sign of the anisotropy pk � p? as the

quantity B=n2=3 increases. Laboratory tests of such predic-

tions would require measurements of the plasma on time-

scales shorter than the time for collisions to relax the anisot-

ropy.25 It would also be interesting to see if an equation of

state built from Eq. (34) could provide a good fit to measure-

ments of naturally occurring plasmas (e.g., Ref. 26).
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