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1. Introduction

Ideal magnetohydrodynamics (MHD), which arose in the early 
20th century, ranks amongst the great breakthroughs in plasma 
physics. The simplicity of MHD has led to its extensive usage in 
the arenas of fusion, space and astrophysical plasmas; see e.g. 
[1–3] and references therein. In addition, MHD is an attractive the-
ory as it is endowed with several geometric properties such as 
flux freezing and the conservation of magnetic and cross helici-
ties, amongst others. The latter duo, in particular, have attracted 
much attention owing to their topological properties [4,5] and in-
timate connections with self-organization and relaxation [6–8]. As 
the advantages of ideal MHD are far too numerous to elaborate, 
we refer the reader to the aforementioned references.

However, in the latter half of the 20th century, an increasing 
awareness arose amongst the plasma community that MHD could 
serve as an effective theory only in certain regimes. To counteract 
these limitations, several fluid and kinetic models were developed, 
of which we shall only focus on the former. Amongst them, the 
most famous are the two-fluid model [1,2], Hall MHD [9], electron 
MHD [10] and extended MHD [11,12]. Extended versions of ideal 
MHD often incorporate additional terms into Ohm’s law, but they 
(mostly) suffer from a common deficiency – a failure to conserve 
the energy, in the absence of dissipative effects. This fact was first 
pointed out in [13], that also presented an analysis of the different 
terms in the extended Ohm’s law and their role in energy con-
servation; see also [14] for a related analysis. Even amongst MHD 
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models, most versions tend to neglect the electron inertia, which 
can be of considerable interest when their characteristic velocity 
is much faster than their ionic counterparts. In order to retain 
electron inertia while simplifying other features, several reduced 
MHD (RMHD) models have been proposed [15,16]. Such models 
are of considerable interest, as they represent alternative methods 
of driving reconnection, which in turn is expected to play a crucial 
role in terrestrial and astrophysical plasmas [17].

The energy-conserving property of MHD and its invariants are 
closely linked to its Hamiltonian structure, i.e. it can be shown 
that such theories can be described via a noncanonical bracket and 
an appropriate Hamiltonian. The existence of such a Hamiltonian 
structure for MHD was first recognized in the seminal paper of 
Morrison and Greene [18], and was consequently employed in a 
wide range of contexts in the 1980s [19–22]. We refer the reader 
to [23–26], and references therein, for comprehensive reviews of 
the same. The Hamiltonian formalism has advantages that extend 
far beyond the mere ability to reproduce the equations of motion; 
it can be used to obtain invariants, equilibria and conduct stability 
analyses [25,27–29].

Associated with Hamiltonian structure is the action principle 
formalism, and this can serve as a starting point for obtaining 
the noncanonical Poisson bracket. Such an action principle dates 
back to Lagrange’s pioneering work in the 18th century [30], 
but only relatively recently was such employed in the context of 
MHD [31] and, subsequently, for incompressible gyroscopic sys-
tems [32,33].

Here, we construct an action by employing a method for build-
ing actions that was described in [34]. An important feature of 
this method is the Eulerian closure principle (ECP) that ensures the 
resulting theory can be written in terms of an Eulerian set of 
variables. The method has proven to be successful for deriving
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compressible gyroviscous MHD [35], extended MHD [36] and gen-
eralized gyroviscous fluids [37]. The method begins with an ac-
tion in terms of a set of Lagrangian variables, treating the particle 
trajectory as the sole variable, together with the ECP. The ECP 
provides a generalization of, and indeed a justification of, con-
strained variations that were called Euler–Poincaré variations in 
[38–40], because of its antecedents in the work of Poincaré [41], 
although the idea was previously elucidated for ideal fluids and 
MHD plasmas in, e.g., [31,42]. More recently, Euler–Poincaré varia-
tions were employed for gyrokinetic theory in [43] and gyro fluids 
in [44].

The action formalism also has several other advantages in ad-
dition to its ability to reproduce energy conserving models. A sec-
ond advantage of this approach is that one can obtain reduced or 
simplified fluid models by performing suitable orderings directly 
within the action. These modifications still preserve energy conser-
vation, which is not guaranteed when an ordering is undertaken at 
the level of the equations of motion. Thirdly, one can recover the 
noncanonical bracket and the Hamiltonian described previously; 
the former via a systematic reduction of the canonical bracket, and 
the latter via a Legendre transform. As the action principle formu-
lation is intimately linked with the Hamiltonian approach, we refer 
to them collectively as the Hamiltonian and Action Principle (HAP) 
formalism, and illustrate its use in the current paper. Lest we lose 
sight of our goal, we summarize it before proceeding further. In 
this paper, we shall use the HAP formalism to construct a MHD 
model with electron inertia.

The organization of the paper is as follows. In Section 2, we 
introduce the requisite mathematical preliminaries. In Section 3, 
we introduce a new dynamical variable, construct the action and 
obtain the equations of motion. In Section 4, we obtain the 
noncanonical Hamiltonian formalism via reduction, and demon-
strate how it constitutes a generalization of the widely employed 
Ottaviani–Porcelli model [15]. We also briefly comment on possible 
extensions of this model, and finally conclude in Section 5.

2. The action principle and the Lagrangian coordinates

We commence with a very brief synopsis of the Lagrangian ap-
proach and the Lagrangian coordinate. For finite dimensional sys-
tems, the action is

S[q] =
t1ˆ

t0

dt L(q, q̇, t), (1)

where L = T − V represents the Lagrangian, with the kinetic and 
potential energies denoted by T and V respectively. Here, q repre-
sents the generalized coordinate(s). One can obtain the equations 
of motion by extremizing the action via δS[q]/δqk = 0. The func-
tional derivative is defined via

δS[q; δq] = dS[q + εδq]
dε

∣∣∣∣
ε=0

=:
〈
δS[q]
δqi

, δqi
〉
. (2)

The continuum version of the action principle is equally straight-
forward. We introduce a label a that tracks a given fluid element; 
q is now a function of a and t . We introduce the deformation ma-
trix, ∂qi/∂a j =: qi

, j and the Jacobian, J := det(qi
, j). The volume 

element for the fluid obeys

d3q = J d3a, (3)

and an area element is regulated via

(
d2q

) = J a j (
d2a

)
, (4)
i ,i j
where J a j
,i is defined to be the transpose of the cofactor matrix 

of q j
,i . There are many identities that can be constructed involving 

qi
, j and J , but we desist from doing so; a detailed discussion is 

present in [25].

2.1. Attributes, observables and the Lagrange–Euler maps

Our discussion has solely revolved around q, but a fluid ele-
ment can also possess a certain density, entropy, etc. We refer to 
these quantities as attributes, since they are inherent to the fluid 
element. These quantities are dependent on a alone and are La-
grangian constants of motion. The subscript 0 is used to denote 
the attributes, to distinguish them from their Eulerian versions.

The Eulerian version is commonly employed since it describes 
fields in terms of r := (x1, x2, x3) and t , each of which can be 
tracked through experiments. Hence, we refer these fields as ob-
servables. However, a connection between the attributes and the 
observables, between the Lagrangian and Eulerian pictures is un-
clear. In order to transition back and forth, we must introduce 
maps that permit such an activity. We refer to these as the 
Euler–Lagrange or Lagrange–Euler maps, depending on the con-
text.

Before proceeding further, we remark that the model developed 
in this paper is 2D in nature, i.e. it has one ignorable coordinate. 
Hence, we shall treat our system as 3D in nature, but we note the 
existence of an implicit constraint z = qz(a, t) = az , indicating that 
the z-component of the trajectory remains fixed.

A natural starting point is the velocity field v(r, t). In the Eu-
lerian picture, we detect this velocity at a given instance in space 
and time. Intuitively, we expect the same result to hold true in 
the Lagrangian picture, i.e. the relation q̇(a, t) = v(r, t) must hold 
true. The LHS is the Lagrangian velocity, and the overdot indicates 
the derivative at fixed a. By the same logic, we expect the Eule-
rian and Lagrangian positions to coincide at this moment, ensuring 
that r = q(a, t). We assume that this map is invertible, permitting 
us to obtain a = q−1(r, t) =: a(r, t). From the two conditions, we 
find that

v(r, t) = q̇(a, t)|a=a(r,t). (5)

The above map constitutes a Lagrange to Euler map, as it Eulerian-
izes the Lagrangian version.

Amongst the attributes transported by a fluid element, one of 
them is the entropy s0(a). The entropy is advected in an ideal 
fluid, implying that it is constant along a fluid trajectory. In other 
words, the Eulerian entropy s(r, t) must equal the Lagrangian en-
tropy s0(a). Thus, we conclude that s behaves as a zero form, or as 
a scalar. Next, we consider the density whose attribute–observable 
pair are denoted by ρ0(a) and ρ(r, t). Our fluids must (typically) 
obey mass conservation, which is expressible as ρ(r, t)d3r = ρ0d3a
in an infinitesimal volume. One can geometrically interpret this 
as ρ behaving as a three form or as a scalar density. By using 
(3) we obtain ρ0 = ρJ .

Hitherto, our attributes (and observables) have been purely 
thermodynamic. Let us consider the magnetic field and denote the 
attribute–observable pair by B0(a) and B(r, t). At this point, we 
make an important observation regarding ideal MHD: it has the 
very special property that the flux is frozen. The frozen flux con-
straint is expressible as B · d2r = B0 · d2a, and from (4) we obtain 
J Bi = qi

, j B j
0. In other words, the magnetic field B can be inter-

preted as a two-form or as a vector density, but only in the case 
of ideal MHD. In general, one cannot introduce two forms into 
extended MHD theories since the frozen flux condition is (appar-
ently) not obeyed. In the next section, we shall tackle the issue 
of frozen flux, and present a new dynamical variable that, by con-
struction, satisfies the frozen flux constraint.
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In the preceding expressions, we evaluate the attributes at a =
q−1(r, t) =: a(r, t), thereby completing the Lagrange–Euler maps. 
We can also express the above relations in an integral form. This is 
done by demanding that the Eulerian and Lagrangian observation 
points coincide, which is accomplished via the judicious use of the 
delta function δ(r − q(a, t)). Before proceeding further, we remind 
the reader that our model is actually 2D in nature.

As an example, the relation for the density is shown

ρ(r, t) =
ˆ

D

d2a ρ0(a)δ
(
r − q(a, t)

) = ρ0

J

∣∣∣∣
a=a(r,t)

. (6)

Instead of the velocity, we introduce the canonical momentum 
Mc = (Mc

1, M
c
2), which is related to the Lagrangian canonical mo-

mentum as follows

Mc(r, t) =
ˆ

D

d2a Π(a, t)δ
(
r − q(a, t)

) = Π(a, t)

J

∣∣∣∣
a=a(r,t)

. (7)

In the case of ideal MHD, Π(a, t) = (Π1, Π2) = ρ0q̇. One can al-
ways determine Π(a, t) via Π(a, t) = δL/δq̇, and use it in the 
above expression. In the case of gyroviscous fluids, one finds that 
Π(a, t) �= ρ0q̇ as shown in [35,37].

2.2. The Eulerian closure principle and action-building

Thus far, much of our analysis has been predicated on the no-
tion that the Eulerian and Lagrangian pictures are related to one 
another, i.e., one can find a set of maps that allows us to go back 
and forth between the two descriptions. A natural consequence of 
this postulate is that our action must also obey such a property.

This property is the ECP, referred to in the Introduction. The 
ECP amounts to the following: given an action expressed in terms 
of the Lagrangian variables, it must be equally expressible fully in 
terms of the Eulerian variables. For instance, consider the kinetic 
energy functional

¨
1

2
ρ0q̇2 d2a dt, (8)

and let us invoke the Lagrange–Euler maps introduced in the pre-
vious subsection. Through suitable use of (6) and (7), one can show 
that (8) reduces to
¨

1

2
ρv2 d2r dt. (9)

As a result, we conclude that (8) satisfies the ECP since the ki-
netic energy functional in Lagrangian variables has been expressed 
in terms of Eulerian variables. The ECP dictates that all the other 
terms in the action also exhibit identical behavior as the kinetic 
energy functional.

In summary, we follow a two step procedure to construct the 
action. The first involves the choice of the domain and the observ-
ables. The second involves the construction of each term in the 
action from first principles (when possible) while ensuring that 
they obey the ECP.

3. The inertial MHD action

In this section, we shall present a new dynamical variable, one 
that determines a frozen flux for our model. An action principle 
in terms of this new variable is developed, and the equations of 
motion are obtained and analyzed.
3.1. The inertial magnetic field: a new dynamical variable

In Section 2.1, we discussed the implications of magnetic flux 
freezing in ideal MHD. Extended MHD lacks this feature, which 
implies that the magnetic field can no longer be interpreted as 
a Lie-dragged two form. From a purely geometric point-of-view, 
it would be logical to look for a new dynamical variable, not B , 
which could play a similar role.

Hence, we introduce the variable Be and its corresponding at-
tribute Be0. The relation between the two is akin to that obeyed 
by the magnetic field in ideal MHD, viz. J Bi

e = qi
, j B j

e0. Since we 
claim that our new theory is still a magnetofluid model, it is nec-
essary for Be to be a function of the MHD variables v , B , n and s. 
We make the choice

Be = B + me

e2
∇ ×

(
J

n

)
= B + me

μ0e2
∇ ×

(
(∇ × B)

n

)
. (10)

In other words, this is also equivalent to stating that we replaced 
the vector potential A by Ae , the latter of which is given by

Ae = A + me

e2

(
J

n

)
= A + me

μ0e2

(∇ × B

n

)
. (11)

Although the expressions (10) and (11) may appear ad hoc, there 
are good reasons that justify these choices. The first stems from 
the inclusion of electron inertia, which is exemplified by the pres-
ence of an additional factor involving me and it also satisfies the 
consistency requirement, i.e. in the limit me/mi → 0, we recover 
the usual magnetic field and vector potential. Secondly, we note 
that Be serves as a natural dynamical variable in extended MHD 
theories; for instance, if one takes the curl of Eq. (20) in [13] and 
uses Faraday’s law, we recover a dynamical equation for Be . It is 
possible to carry out a similar procedure for the extended MHD 
models presented in [2,11] and arrive at the same conclusion.

Lastly, the statement of flux freezing in ideal MHD is equiva-
lent to stating that 

¸
A · dl is an invariant, which is altered in our 

model. To understand the alteration consider the canonical mo-
mentum for the electrons, which is proportional to A − (me ve/e). 
Assuming ve � vi permits the approximation J ≈ −enve; conse-
quently, the canonical momentum is (approximately) equal to Ae . 
If we let me/mi → 0, the canonical momentum reduces to A. As 
this is a 2D theory, with z serving as the ignorable coordinate, 
the corresponding canonical momentum in the z-direction is con-
served. This implies the conservation of 

¸
(Ae)zdz, which is akin to ¸

A · dl being conserved in ideal MHD. Later, we shall show that 
even better reasons can be advanced, albeit a posteriori, that fur-
ther justify the choice of Be .

Before we proceed to the next section, we introduce the 
nomenclature ‘inertial magnetic field’ to refer to Be . The choice 
is natural since Be plays the role of a magnetic field, and incorpo-
rates the effects of electron inertia. Hence, we refer to this theory 
as inertial MHD (IMHD).

3.2. The IMHD action

We introduce the action for IMHD below, and then comment 
on its significance and interpretation. Our variables are chosen to 
be the density (3-form) ρ , the inertial magnetic field (2-form) Be , 
the entropy (0-form) s and the velocity v .

S =
¨ [

ρv2

2
− ρU (ρ, s) − Be · B

2μ0

]
d3r dt. (12)

The first term in (12) is the kinetic energy, which was already 
shown to obey the ECP in Section 2.2. The second term in (12)
is the internal energy density, and is the product of density and 
the specific internal energy (per unit mass). This term generates 
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the temperature and the pressure, given by ∂U/∂s and ρ2∂U/∂ρ
respectively. The third term in the above expression is the unusual 
part, since it deviates from the usual ideal MHD action. In the limit 
where me/mi → 0 we have noted that Be → B , which in turn re-
duces the last term of (12) to the conventional magnetic energy 
density.

Although (12) is expressed in terms of the Eulerian variables, 
the ECP and the Euler–Lagrange maps allow us to express (12)
purely in terms of the Lagrangian coordinate q and the attributes. 
In order to do so, we express the magnetic field B in terms of the 
inertial magnetic field Be as follows

B(r, t) =
ˆ

K
(
r
∣∣r′)Be

(
r′, t

)
d2r′, (13)

where K is a complicated kernel. Using the kernel is quite com-
plex, but we note that the self-adjoint property is preserved. Al-
ternatively, one can use the Euler–Poincaré approach, described 
in Section 1, to obtain the same result. A short summary of this 
method is presented in Appendix A.

Before proceeding to the next section, a couple of remarks re-
garding (12) are in order. Firstly, the only term involving q̇ is the 
kinetic energy term. Hence, one can perform a Legendre trans-
formation, and recover the Hamiltonian (in Lagrangian variables). 
Upon Eulerianizing the Hamiltonian, we obtain

H =
ˆ [

ρv2

2
+ ρU (ρ, s) + Be · B

2μ0

]
d2r. (14)

We can use the definition of Be , as given in (10), and simplify the 
resultant expression. The result is

H =
ˆ [

ρv2

2
+ ρU (ρ, s) + B2

2μ0
+ me

ne2

J 2

2

]
d2r. (15)

The above expression is identical to Eq. (23) of [13]. Furthermore, 
we see that (15) is identical to MHD Hamiltonian, except for the 
last term. As a consistency check, we verify that the last term does 
vanish in the limit me/mi → 0. These facts lend further credence 
to our choice of Be and the action (12).

3.3. The IMHD equations of motion

The Lagrange–Euler maps outlined in Section 2.1 permit us to 
obtain the corresponding dynamical equations for the observables 
by applying ∂/∂t on both sides of the map. We obtain

∂s

∂t
+ v · ∇s = 0, (16)

∂ρ

∂t
+ ∇ · (ρv) = 0, (17)

∂ Be

∂t
+ Be(∇ · v) − (Be · ∇)v + (v · ∇)Be = 0. (18)

Eqs. (16), (17) and (18) correspond to the Lie-dragging of zero, 
three and two forms respectively. From the definition of (10), we 
see that ∇ · Be = 0, and this implies that one can rewrite (18) as 
follows

∂ Be

∂t
= ∇ × (v × Be)

= ∇ × (v × B) + me

e2
∇ ×

[
v ×

(
∇ ×

(∇ × B

n

))]
. (19)

The equation of motion is obtained by extremizing the action in 
Lagrangian variables, or by extremizing the Eulerian action via the 
Euler–Poincaré approach. It is found to be

ρ

(
∂v + (v · ∇)v

)
= −∇p + J × B − me

2
( J · ∇)

(
J
)

. (20)

∂t e n
Eqs. (19) and (20) constitute the heart of our model. Let us first 
consider the latter. We see that it is nearly identical to the usual 
ideal MHD momentum equation, except for the presence of the 
last term, which can be neglected in the limit me/mi → 0. How-
ever, this term represents more than a correction – in the extended 
MHD models with electron inertia, this term is absolutely crucial 
for energy conservation, as pointed out in [13]. Secondly, we note 
that our equation of motion is exactly identical to Eqs. (2) and (19) 
of [13], thereby lending further credence to our choice of the iner-
tial magnetic field and action.

We turn our attention to (19), which represents the extended 
Ohm’s law. It is instructive to compare this against the inertial 
Ohm’s law of [13], represented by their Eq. (20). We find that our 
expression is exactly identical to Eq. (20) of [13], when the 2D 
limit of their model is considered and Bz → const (constant guide 
field) is assumed. Under these assumptions, the two results are ex-
actly identical, irrespective of whether the fluid is compressible or 
incompressible. A few comments on the 3D generalization of this 
model are presented in Section 4.3.

To summarize thus far, we find that the momentum equations 
of our model and that of [13] are identical. The Ohm’s laws are 
also in perfect agreement with one another in the 2D, constant 
guide field limit. In addition, both of them yield the same (con-
served) energies and momenta. Collectively, it is self-evident that 
these represent ample grounds for justifying the form of the iner-
tial magnetic field Be and the IMHD action.

4. The Hamiltonian formulation of inertial MHD

In this section, we describe the methodology employed in re-
covering the (Eulerian) noncanonical Hamiltonian picture from 
the (Lagrangian) canonical action. After obtaining the bracket–
Hamiltonian pair, we comment on potential extensions of this 
framework.

4.1. Derivation of the inertial MHD bracket

Our first step is the determination of the Hamiltonian, which is 
done via a Legendre transformation and Eulerianizing the resultant 
expression. The exercise was already performed in Section 3.2, and 
the Hamiltonian is given by (14). An alternative route is to invoke 
Noether’s theorem, which also leads to the same result.

Next, we need to obtain the noncanonical bracket. A detailed 
description of this procedure can be found in [34]; here, we shall 
merely present the salient details. Before proceeding on to the 
derivation, we reformulate our observables. We replace the velocity 
v by the momentum Mc , and the entropy s by the entropy density 
σ = ρs. The new set of observables result in a simpler and com-
pact noncanonical Poisson bracket. Let us recall from Section 2.1
that the Lagrange–Euler maps can be represented in an integral 
form. We present them below

ρ =
ˆ

d2a δ
(
r − q(a, t)

)
ρ0(a), (21)

σ =
ˆ

d2a δ
(
r − q(a, t)

)
σ0(a), (22)

B j
e =

ˆ
d2a δ

(
r − q(a, t)

)
q j
,k Bk

e0(a), (23)

Mc =
ˆ

d2a δ
(
r − q(a, t)

)
Π(a, t). (24)

The last expression is also equivalent to Mc = ρv , which can be 
found by computing Π from the Lagrangian, and then obtaining 
the Eulerian equivalent. We drop the subscript c henceforth, since 
the canonical momentum Mc is the same as the kinetic momen-
tum M = ρv .
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Next, we note that a given functional can be expressed either 
in terms of the canonical momenta and coordinates, Π and q, or 
in terms of the observables. Hence, we can denote the former by F̄
and the latter by F , and note that F̄ ≡ F . As a result, we find that
ˆ

d2a
δ F̄

δΠ
· δΠ + δ F̄

δq
· δq

=
ˆ

d2r
δF

δM
· δM + δF

δB
· δB + δF

δρ
δρ + δF

δσ
δσ . (25)

From (21), we can take the variation on the LHS and RHS, thereby 
obtaining

δρ = −
ˆ

d2a ρ0∇δ
(
r − q(a, t)

) · δq. (26)

A similar procedure can also be undertaken for (22), (23) and (24)
as well. We substitute (26) into the second line of (25) and carry 
out an integration by parts, and a subsequent interchange of the 
order of integration. This process is repeated for the rest of the 
variables. By doing so, we can determine the functional deriva-
tives δ F̄/δq and δ F̄/δΠ in terms of the functional derivatives of 
the observables. Next, we note that the canonical bracket is given 
by

{ F̄ , Ḡ} =
ˆ

d2a

(
δ F̄

δq
· δḠ

δΠ
− δḠ

δq
· δ F̄

δΠ

)
. (27)

We can now substitute the expressions for δ F̄ /δq and δ F̄/δΠ , ob-
tained as per the procedure outlined above, into (27) and derive 
the noncanonical bracket. It is found to be

{F , G} = −
ˆ

d2r

[
Mi

(
δF

δM j
∂ j

δG

δMi
− δG

δM j
∂ j

δF

δMi

)

+ ρ

(
δF

δM j
∂ j

δG

δρ
− δG

δM j
∂ j

δF

δρ

)

+ σ

(
δF

δM j
∂ j

δG

δσ
− δG

δM j
∂ j

δF

δσ

)

+ Bi
e

(
δF

δM j
∂ j

δG

δBi
e

− δG

δM j
∂ j

δF

δBi
e

)

+ Bi
e

(
δG

δB j
e

∂i
δF

δM j
− δF

δB j
e

∂i
δG

δM j

)]
. (28)

The inertial MHD bracket, derived above, possesses a couple of 
remarkable features. Firstly, we note that the bracket is precisely 
identical to the ideal MHD bracket of [18], if we replace Be in 
(28) with B instead. Secondly, if one replaces M by Mc in the 
above expression, one can obtain an expression for the gyrovis-
cous inertial MHD bracket, yielding results identical to those of 
[34,35].

We must reiterate the importance of the bracket, because it 
further highlights the merits of Be as a dynamical variable. Our 
simple postulate in Section 3.1, that Be behaves as a two form, en-
sures that inertial MHD and ideal MHD are identical to one another 
under the exchange Be ↔ B . Not only does Be yield equations of 
motion that are highly similar to those of extended MHD, but it 
also maintains a close connection with ideal MHD via its notion of 
flux freezing. Owing to the near-identical nature of the inertial and 
ideal MHD brackets, an independent analysis of inertial MHD is not 
required; instead, one can simply migrate the results pertaining to 
the Casimirs, equilibria and stability of ideal MHD models, by re-
placing B by Be in the suitable places. In particular, we note that 
the Casimir

C1 =
ˆ

d3r ρ f (s), (29)
still remains an invariant in inertial MHD. On the other hand, the 
counterpart of the magnetic helicity of ideal MHD is

C2 =
ˆ

d3r Ae · Be =
ˆ

d3r

[
A · (∇ × A) + 2me

μ0ne2
B · (∇ × B)

+ m2
e

e4

(
J

n

)
·
(

∇ ×
(

J

n

))]
, (30)

and it is seen that each of the three terms is of the form W · (∇ ×
W ). Note that the second and third terms on the RHS of the above 
equation vanish when me/mi → 0, thereby yielding the ideal MHD 
magnetic helicity. The cross helicity of ideal MHD morphs into

C3 =
ˆ

d3r v · Be =
ˆ

d3r v · (∇ × Ae)

=
ˆ

d3r

[
v · B + me

e2
v ·

(
∇ ×

(
J

n

))]
, (31)

and we see that it reduces to the ideal MHD cross helicity if we as-
sume me/mi → 0. It is easily seen that the ideal and inertial MHD 
cross helicities are both expressible as v · (∇ × W ).

4.2. The six-field model and its subcases

Hitherto, we have not fully exploited the 2D nature of our 
model. The choice was deliberate since the bracket and the equa-
tions of motion could be expressed in a relatively compact form. 
However, it comes at the cost of obtaining a narrower class of 
Casimirs, and an inability to clearly demarcate the behavior of the 
different fields. We shall now exploit this 2D symmetry.

First, let us consider Be , defined via (10). We see that it is 
divergence free. As z serves as our ignorable coordinate, we can 
immediately express it as

Be = Bez ẑ + ∇ψe × ẑ. (32)

Next, we consider the momentum, recognizing that it involves 
two components. Hence, the most general possible representa-
tion is

M = ∇Γ + ∇ϕ × ẑ. (33)

We note that a similar analysis, albeit in terms of B instead 
of Be , was carried out in [45,46]. The advantage of inertial MHD is 
that the bracket is identical in structure to that of ideal MHD under 
the interchange Be ↔ B . Upon substituting (32) and (33) into (28)
and using the functional derivative chain rule, we obtain a bracket 
identical to that of Eq. (98) in [45], except for two differences. The 
bracket obtained involves an integration over d2r, as opposed to 
d3r in [45]. Secondly, one must set Mz = 0 in Eq. (98) in [45] as 
our model lacks the z-component of the velocity.

In summary, we have a 6-field model with our observables 
given by (Γ, ϕ, Bez, ψe, ρ, σ). Each of these six fields are now 
scalar and possess clear physical interpretations. We can whit-
tle the model down to a 5-field model by assuming it to be 
isentropic, which eliminates σ . If we assume incompressibility, 
we eliminate ρ and Γ – the last of which follows from the 
condition ∇ · v = 0. Lastly, we can eliminate the guide field 
Bez by making it constant, and our resultant model now in-
volves just ϕ and ψe . We introduce the notation ω = �ϕ , im-
plying that the two functional derivatives are related via �Fω =
−Fϕ , and the final bracket and Hamiltonian are respectively given 
by

{F , G} = −
ˆ

d2r
[
ω[Fω, Gω] + ψe

([Fω, Gψe ] − [Gω, Fψe ]
)]

(34)
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and

H =
ˆ

d2r
1

2

[
d2

e (∇2ψ)2

μ0
+ |∇ψ |2

μ0
+ |∇ϕ|2

ρ

]
, (35)

where B = ∇ψ × ẑ, and the relation between ψe and ψ is deter-
mined via (10). We note that de represents the ion skin depth. The 
bracket and Hamiltonian, given by (34) and (35) are of consider-
able importance, as they give rise to the well known Ottaviani–
Porcelli model [15], used in modeling collisionless magnetic recon-
nection.

4.3. Extensions of the inertial MHD bracket

In the preceding subsection, we have obtained the inertial MHD 
noncanonical bracket, with the corresponding expression given 
by (28). A crucial feature of inertial MHD was also identified, 
namely, the close affinity with the ideal MHD bracket, as one can 
be transformed into the other via Be ↔ B .

The analogy between B and Be also makes it possible to im-
port the results of 2D gyroviscous MHD, and recast them in an 
inertial MHD framework. As noted in the previous subsection, the 
noncanonical brackets derived in [35] can be adapted for such a 
purpose. They are easily distinguishable from the non-gyroviscous 
brackets owing to the presence of the canonical momentum Mc

in place of the kinetic momentum M . If the same methodology is 
employed herein, we can obtain a model for 2D gyroviscous iner-
tial MHD. It must be cautioned, however, that these methods are 
only applicable to the inertial and ideal brackets, as they are equiv-
alent under Be ↔ B . Modifying the Hamiltonians is a trickier task, 
as it requires us to explicitly use the relation (10).

As we have stated thus far, our model of inertial MHD pos-
sesses an ignorable coordinate, thereby rendering it 2D. A natural 
generalization of the procedure is to undertake the same work in 
a 3D framework. Our central results thus far were the equation 
of motion (20) and Ohm’s law (19). We find that the former is 
unmodified, and is identical to that of [13]. However, in the 3D 
limit, we find that Ohm’s law of [13] and our model are not in 
agreement, although most of the terms are identical to one an-
other. Next, we consider the incompressible 3D limit, and we find 
that there is a near-exact match; in fact, we find that Ohm’s law 
of [13] reduces to our Ohm’s law (19) when the flow is irrota-
tional.

5. Conclusion

In this paper, we have approached the issue of electron inertia 
in an unusual manner – via the inclusion of geometric constraints. 
We generalized the flux freezing condition of ideal MHD, by re-
placing the vector potential A with an extended vector potential 
Ae , and motivated it via the conservation of canonical momentum. 
Our model, dubbed 2D inertial MHD, comes with an intrinsic ad-
vantage – it is endowed with flux conservation, albeit not for the 
magnetic field.

2D inertial MHD was shown to possess a couple of pleasing 
properties. Firstly, it yielded an equation of motion and Ohm’s law 
that were identical to the ones derived in [13,36], when the 2D 
case of the latter, in the constant guide field limit, was taken. Sec-
ondly, we demonstrated that 2D inertial MHD could be expressed 
as a six (scalar) field model. A limiting subcase of 2D inertial 
MHD was shown to reproduce the Ottaviani–Porcelli model [15] of 
magnetic reconnection. Lastly, we demonstrated the inertial MHD 
bracket was identical to that of ideal MHD under the interchange 
Be ↔ B , thereby cementing the close connection between the two 
models.
There are several avenues that open up for investigation. It is 
possible, akin to ideal MHD, to derive expressions for compress-
ible waves and nonlinear Alfvén-like solutions for inertial MHD. 
A second possibility is to move to the weak 3D limit, and obtain 
a suitable extension of the Ottaviani–Porcelli model. We expect to 
tackle such issues in our subsequent work.
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Appendix A. The Euler–Poincaré approach to magnetofluids

Descriptions of the Euler–Poincaré formalism can be found in 
[37,38,42]. Let us represent the Lagrangian density given in (12)
by L. The equation of motion, via the Euler–Poincaré approach is

∂Mc
i

∂t
+ ∂T j

i

∂x j
= 0, (A.1)

where Mc is the canonical momentum introduced in (7), and is 
given by Mc

i = ∂L/∂vi . The stress tensor in the above equation is 
given by

T j
i = Mc

i v j + ∂L
∂ Bi

e
B j

e + δ
j
i

(
L− ρ

∂L
∂ρ

− Bk
e

∂L
∂ Bk

e

)
. (A.2)

Note that the above expression is independent of the variable s. 
Upon taking the functional derivatives of S with respect to the 
given variables, and substituting them into (A.2) and (A.1), we ob-
tain the equation of motion (20).
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