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We derive the Hamiltonian structure of the modified Hasegawa–Mima equation from the ion fluid
equations applying Dirac’s theory of constraints. We discuss the Casimirs obtained from the corresponding
Poisson structure.
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Zonal flows are believed to have a dramatic effect on the con-
finement of magnetized plasmas by suppressing the associated tur-
bulent transport, notably the radial transport. Through the years
various reduced models have been developed for describing trans-
port in toroidal plasmas, and zonal flows have been observed in
simulations of some of these models. An early example of such
a reduced model is the Hasegawa–Mima (HM) equation [1], but
more general electrostatic fluid models using both the FLR (e.g.,
[2]) and gyrofluid (e.g., [3,4]) approaches have been available for
many years. Similarly, electromagnetic gyrofluid models (e.g., [5,6])
have been developed. Some of these models have noncanonical
Hamiltonian structure (see [7–9]), which has been used to guide
construction and led to the identification of new and physically
important terms (e.g., [10]), and has also been shown to be im-
portant for the consistent calculation of zonal flow dynamics (e.g.,
[11,12]).

Zonal flows have been associated with drift wave modulational
instability subject to the physics contained in the HM equation.
However, it was recognized in [13] that the physics is more accu-
rately described by a modified form of the HM equation, in which
the electron response is modified and takes into account the ge-
ometry of magnetic surfaces. This modification has been shown to
enhance the generation of zonal flows (see [14–16]).

The purpose of the present contribution is to demonstrate that
the modified Hasegawa–Mima (mHM) equation has a Hamiltonian
structure by obtaining it from Dirac’s theory of constrained Hamil-
tonian systems [17–20], a technique used in previous derivations
[21–23]. It is known that the modification of the HM equation ap-
plies for more general multifield theories (e.g., [24]); consequently,
the methods we use and the results we obtain are of general util-
ity and can be adapted to apply to a very large class of reduced
fluid models.

* Corresponding author.

For simplicity of our argumentation, we consider a slab geom-
etry in which x corresponds to the radial direction and y to the
poloidal angle (the magnetic field is in the z-direction). The zonal
part of any field χ(x, y) is given by χ̃ = χ − χ̄ , where

χ̄ = 1

2π

2π∫
0

dyχ ≡ Pχ.

The mHM equation is given by

(� − 1 + P )φ̇ = [�φ + Pφ + λ,φ],
where the dot indicates the partial derivative with respect to
time and � denotes the Laplacian. Here the bracket is defined as
[ f , g] = ẑ · ∇ f × ∇g , where ẑ is the unit vector in the z-direction,
and λ(x, y) is a function related to the electron density at equi-
librium. The mHM equation arises under the assumption that only
the magnetic flux surface-varying part of φ, the electrostatic po-
tential, is considered in the adiabatic electron response. In this way
unphysical fluctuations in the averaged density are removed, and it
is now understood that such a removal facilitates zonal flow pro-
duction.

For the derivation of the Hamiltonian structure of the mHM
equation, we first consider a parent model with two dynamical
equations, from which the mHM equation can be derived: one de-
scribing the transverse dynamics of the ion velocity field v(x, y, t)
and the other describing the dynamics of the ion density field
n(x, y, t):

v̇ + (v · ∇)v = −∇φ + v × B, (1)

ṅ = −∇ · (nv). (2)

Here we use units such that the ion mass is M = 1 and its
charge e = 1. The magnetic field is assumed to be constant and
uniform. Without restrictions, we assume that the amplitude of
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the magnetic field is unity. The usual HM derivation is performed
by a rather straightforward combination of the two equations for
the density and the velocity field, assuming that the ion polariza-
tion velocity is much smaller than the E × B drift. In a previous
work [22] we have shown a different way of deriving this equation
from the Hamiltonian structure of the parent model. This method
of derivation allows one to derive the reduced equation with the
Hamiltonian structure naturally provided.

The total energy of the ions, given by the sum of their ki-
netic energy plus the potential energy provided by an external
electrostatic potential φ, is a conserved quantity that is also the
Hamiltonian of the system of equations (1)–(2), viz.

H[n,v] =
∫

d2x

[
n

v2

2
+ nφ

]
,

where the integration is over the two-dimensional cylinder R ×
[0,2π ] and d2x = dx dy. The dynamics is determined by the Pois-
son bracket [25,26]

{F , G} = −
∫

d2x

[
Fv · ∇Gn − ∇ Fn · Gv

−
(∇ × v + ẑ

n

)
· Fv × Gv

]
, (3)

where we denote the functional derivatives of a given observ-
able F [n,v] by subscripts, i.e. Fv = δF/δv and Fn = δF/δn. In the
present context we assume that the electrostatic potential φ is
determined by the dynamics of the electrons which leads to a
function φ(ne), where ne is the electron density. From the quasi-
neutrality condition, n = ne , the internal energy is changed from∫

d2xnφ to
∫

d2xψ(n) such that ψ ′(n) = φ(n), so that the Hamil-
tonian becomes

H[n,v] =
∫

d2x

[
n

v2

2
+ ψ(n)

]
. (4)

Using Hamiltonian (4) and Poisson bracket (3), we obtain the equa-
tions of motion (1)–(2). The usual HM equation is obtained by
neglecting the inertia of the electrons so that their density obeys
a Boltzmann law ne = n0 expφ, where n0 = n0(x, y) = 1 −λ(x, y) is
the electron density at equilibrium. For the mHM equation, this re-
sponse has to take into account the prescription of Ref. [13], which
here reads ne = n0 exp φ̃, where φ̃ is the zonal part of the poten-
tial.

Next we perform a change of variables (n,v) �→ (n, φ, D) where

�φ = ẑ · ∇ × v, �D = ∇ · v.

In terms of the new variables (n, φ, D), Hamiltonian (4) becomes

H[n, φ, D] =
∫

d2x

[
n

( |∇φ|2 + |∇D|2
2

+ [φ, D]
)

+ ψ(n)

]
,

and the bracket (3) becomes

{F , G} =
∫

d2x
[

FnG D − F D Gn − Fφ�−1L�−1Gφ

− F D�−1L�−1G D + F D�−1Λ�−1Gφ

− Fφ�−1Λ�−1G D
]
, (5)

where the two linear operators L and Λ acting on a function f (x)

are defined by

L f =
[

�φ + 1

n
, f

]
, Λ f = −∇ ·

(
�φ + 1

n
∇ f

)
.

In order to reduce this three-field model to a one-field one,
we impose constraints on the dynamics. The constraints originate

by imposing that the velocity field v is equal to the E × B drift
velocity, with the zonal flow prescription (i.e., φ replaced by φ̃),
and that a relation exists between the potential and the electron
density fluctuations. Therefore the first constraint is incompress-
ibility, i.e., D = 0, and the second one is a relation between the
streamfunction φ and the density n. Near equilibrium and taking
into account the linear response of the electrons, this relation is
given by n = N(φ) ≡ φ̃ − λ. The reduced dynamics is obtained by
applying Dirac’s theory of constrained Hamiltonian systems with
two local constraints Φ1(x) = D and Φ2(x) = n − N(φ), where
x = (x, y). This theory starts with a parent bracket, which is here
provided by the Poisson bracket (5). The first step is to compute
Cij(x,x′) = {Φi(x),Φ j(x′)} for i, j = 1,2. From the computation of
the inverse, i.e., Dij(x,x′) satisfying
∫

d2x′ Cij
(
x,x′)D jk

(
x′,x′′) = δikδ

(
x − x′′),

we obtain the Dirac bracket {F , G}∗ from the expression

{F , G}∗ = {F , G} −
∫

d2x

∫
d2x′ {F ,Φi(x)

}
Dij

(
x,x′){Φ j

(
x′), G

}
.

The remarkable feature is that the bracket {· , ·}∗ is a Poisson
bracket if the original bracket {· , ·} is a Poisson bracket. The calcu-
lation of the Dirac bracket has been done in Ref. [22] for a different
function N , corresponding to the Hasegawa–Mima equation. It was
shown that the Dirac bracket is given by

{F , G}∗ =
∫

d2x
(
�φ − N(φ)

)[
(� − N̂)−1 Fφ, (� − N̂)−1Gφ

]
, (6)

where N̂ is the Fréchet derivative of the pseudo-differential func-
tion N . The Hamiltonian is written as

H = 1

2

∫
d2x

(|∇φ|2 + (
N(φ) + λ

)2)
.

Compared to the HM equation, where the second constraint was
N(φ) = φ − λ, here the second constraint is N(φ) = φ − Pφ − λ.
Therefore, N̂ = 1 − P . We notice that P is symmetric in the sense
that

∫
f P g = ∫

g P f .
The Poisson bracket for the mHM equation is given by

{F , G}∗ =
∫

d2x
(
�φ − (1 − P )φ + λ

)

× [
(� − 1 + P )−1 Fφ, (� − 1 + P )−1Gφ

]
, (7)

and its Hamiltonian is

H = 1

2

∫
d2x

(|∇φ|2 + (φ − Pφ)2).
To see that this defines the correct Hamiltonian structure, note that
Hφ = −(� − 1 + P )φ and the mHM equation for φ is given by
φ̇ = {φ, H}∗ which reads as

(� − 1 + P )φ̇ = [�φ − φ + Pφ + λ,φ]. (8)

In order to separate the two dynamics for the mHM system, we
perform the change of variables φ �→ (φ̄, φ̃) where we recall that
φ = φ̄ + φ̃ and φ̄ = Pφ. Any observable F (φ) = F̂ (φ̄, φ̃) has the
functional derivative chain rule relation

Fφ = (1 − P ) F̂ φ̃ + P F̂ φ̄ ,

where we notice that the part P F̂ φ̄ − P F̂ φ̃ is only a function of

x and that P F̂ φ̄ = F̂ φ̄ . In what follows we drop the hats on F for
simplicity. The Poisson bracket in these new field variables is
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{F , G}∗ =
∫

d2x (�φ̄ + �φ̃ − φ̃ + λ)

× [
(� − 1 + P )−1((1 − P )F φ̃ + P F φ̄

)
,

(� − 1 + P )−1((1 − P )G φ̃ + P G φ̄

)]
, (9)

and the Hamiltonian is

H = 1

2

∫
d2x

(|∇φ̃|2 + φ̃2) + 1

2

∫
dx |∇φ̄|2,

where we have used
∫

d2x∇φ̃ · ∇φ̄ = 0. The two dynamical equa-
tions for the mHM system are

˙̄φ = {φ̄, H} = �−1 P [�φ̃, φ̃],
˙̃
φ = {φ̃, H} = (� − 1)−1((1 − P )[�φ̃, φ̃]

+ [�φ̃ − φ̃, φ̄] + [�φ̄ + λ, φ̃]),
where we have used the fact that H φ̄ − P H φ̃ = −�φ̄ and H φ̃ =
−�φ̃ + φ̃. We notice that these equations can also be obtained by
projecting Eq. (8) using P and 1 − P as projectors.

Next we determine the Casimir invariants for the Poisson
bracket (7) and compare them to the ones of the bracket (9). The
Casimir invariants of the Poisson bracket given by Eq. (6) are func-
tionals C of φ such that {C, F }∗ = 0 for all functionals F . If we
perform the change of variables ω = �φ − N(φ), the bracket (7)
becomes {F , G}∗ = ∫

d2xω[Fω, Gω] for which it is well known that
the Casimir invariants are C(ω) = ∫

d2xα(ω) for any scalar func-
tion α. This is found by imposing that [ω, Cω] = 0 or in other
words that Cω is a function of ω which we call α′ . Therefore the
Casimir invariants of the bracket (7) are given by

C(φ) =
∫

d2xα
(
�φ − N(φ)

)
.

This form of Casimir invariant for the bracket (7) is ubiquitous,
although its specific from for mHM is reported here for the first
time. Such Casimir invariants appear in all two-dimensional advec-
tion models where the advecting velocity is divergence-free, e.g.,
the HM, Euler, and Vlasov–Poisson systems, systems that are dis-
tinguished by how the advected quantity is related to the advect-
ing velocity (see e.g., [8]). This Casimir invariant can be viewed as
arising from Liouville’s theorem for the characteristic equations of
the system – indeed, the conservation of the area between any two
nested ω-contours is a consequence of these Casimir invariants
(see [27]). Also, it should be noted that the generalized enstrophy,
the conservation of which plays an important role in the dynam-
ics (see, e.g., [28]), is a Casimir invariant obtained in the particular
case where α(ω) = ω2/2.

In a similar way, for the Poisson bracket (9), the condition that
determines the Casimir invariants is

Cφ̄ − P Cφ̃ + Cφ̃ = (� − 1 + P )α′(�φ̃ − φ̃ + �φ̄ + λ),

whence we obtain

C(φ̃, φ̄) =
∫

d2xα(�φ̃ − φ̃ + �φ̄ + λ) +
∫

dxβ(x)P φ̃,

where α and β are two arbitrary scalar functions of one variable.
Notice in particular that P φ̃(x, y) is a local Casimir invariant, ob-
tained for α = 0 and β(x) = δ(x − x′). We have chosen here to
restrict to P φ̃ = 0.

It should be pointed out that Dirac’s theory ensures the Jacobi
identity for the bracket (7) before the change of variables. There-
fore if the change of variables is invertible, i.e., under the condition
P φ̃ = 0, then the Jacobi identity is ensured too. However we show
explicitly that the Poisson bracket (9) satisfies the Jacobi identity

unconditionally, i.e., for all field variables (φ̄, φ̃), not necessarily
restricted to P φ̃ = 0. In order to demonstrate this, we write the
bracket (9) as

{F , G}∗ =
∫

d2x
(
(A − P )φ̃ + �φ̄ + λ

)

× [
A−1((1 − P )F φ̃ + P F φ̄

)
, A−1((1 − P )G φ̃ + P G φ̄

)]
,

where A = �−1+ P . In the following, we let f := (1− P )F φ̃ + P F φ̄ ,
and adopt analogous relations between g and G and h and H . As
was shown in [7], only the functional derivatives of {F , G} that
take into account the explicit dependence of the bracket on the
variables are needed. These are

{F , G}φ̃ = (A − P )
[

A−1 f , A−1 g
]
,

{F , G}φ̄ = P�
[

A−1 f , A−1 g
]
.

The computation of {{F , G}, H} leads to

{{F , G}, H
} =

∫
d2x

(
(A − P )φ̃ + �φ̄ + λ

)

× [
A−1((1 − P )(A − P )

[
A−1 f , A−1 g

]
+ P�

[
A−1 f , A−1 g

])
, A−1h

]
. (10)

Since (1 − P )(A − P ) + P� = A, Eq. (10) becomes

{{F , G}, H
} =

∫
d2x

(
(A − P )φ̃ + �φ̄ + λ

)

× [[
A−1 f , A−1 g

]
, A−1h

]
.

Therefore, the Jacobi identity for the bracket {· , ·} follows from the
Jacobi identity for the bracket [· , ·].

Given the Hamiltonian structure we are now set to use Hamil-
tonian techniques, e.g., for investigating equilibrium and stability
(e.g., [29,8,30,31]) or studies of absolute equilibria and cascading in
turbulence theory (e.g., [32,11,12]). In addition, the proposed con-
struction is sufficiently general that it could be used beyond mHM,
in more general Hamiltonian zonal flow models.
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