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1. Introduction

Fluid models have been effectively used to describe a vast range 
of physical phenomena, from microscopic to macroscopic scales, 
in fields as diverse as plasma physics, condensed matter physics, 
oceanography, atmospheric science, geophysics, and astrophysics. 
Often these models are obtained by using phenomenological meth-
ods or other modes of reasoning. In contrast, in this paper, we 
present a framework for extracting fluid equations of motion from 
a general action principle. The action principle produces a general 
class of fluid equations that include the possibility of transport-
ing momentum by gyroscopic motion by means of a gyroviscosity 
tensor that conserves energy.

We work with the action as our central object, as it represents 
an instantly recognizable and transparent method of deriving dy-
namical equations for models. The action formalism dates back to 
the original pioneering work by Lagrange [1], which was extended 
by many illustrious scientists (e.g., [2–9]) in the 19th and 20th 
centuries. The action formalism is closely tied to the Hamiltonian 
approach, which involves the use of noncanonical Poisson brack-
ets, and this field was reinvigorated following the crucial work 
of [10]. A summary of this approach can be found in [11–14]. 
As the Hamiltonian and action principle approaches are mutually 
complementary, with a close connection between the two, we shall 
refer to them henceforth as the Hamiltonian and Action Principle 
(HAP) formalism.
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The use of action principles is ubiquitous, as it is a basic tool 
in general relativity, high energy physics and condensed matter 
physics. However, for fluid, plasma, and other matter dynamics one 
must guarantee the existence of a set of Eulerian variables, as we 
shall see. In the context of plasma physics, the HAP formalism has 
been employed in magnetohydrodynamics (MHD) [10], the Vlasov 
description (e.g., [11,15]), and the BBGKY hierarchy [16], as all 
these models possess an underlying Hamiltonian structure. There 
is yet another reason to employ such an approach, as it eliminates 
“spurious” dissipation, i.e., several models are often claimed to be 
energy conserving, even when they aren’t. For a discussion of the 
same, we refer the reader to Refs. [17–21]. The HAP formalism en-
ables us to construct and build non-dissipative models from first 
principles via a transparent procedure.

The general procedure for building fluid action principles is de-
scribed in the companion works [22,23]. We note that the HAP 
approach enables us, amongst other virtues, to construct versions 
of MHD [25–27], reduced fluid models [17,28–38], gyrofluids [9,
39–43], the Oldroyd-B fluid [44,45], nematic fluids [46], and to ex-
plain the origin of the gyromap, a tool introduced in [47] and used 
in previous derivations of reduced fluid models [48–50].

The remainder of the paper is organized as follows. In Section 2, 
we describe the underlying physical and mathematical principles 
in building up actions. In Section 3, the basic approach is high-
lighted, and then applied to build the gyroviscous fluid – a gen-
eral class of fluid and magnetofluid models. The resultant equation 
of motion is analyzed in Section 4, and some general comments 
about conservation laws are presented. In Section 5 we illustrate 
the methodology by showing how to produce a fluid model that 
includes intrinsic angular momentum, and highlight potential sys-
tems where such models might be of interest. Lastly, in Section 6, 
we round up our analysis by presenting avenues for future work.
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2. The action principle and the Lagrangian coordinates

The action principle for particles involves a standard prescrip-
tion, which we shall not describe in detail here. First, a set of 
generalized coordinates, denoted by qk(t) are chosen, where k runs 
over all possible degrees of freedom. The action principle is given 
by

S[q] =
t1∫

t0

dtL(q, q̇, t), (1)

where L = T − V represents the Lagrangian, with the kinetic and 
potential energies denoted by T and V respectively. We note that 
S serves as a “functional”, i.e. it has a domain of functions and 
a range of real numbers. Hamilton’s principle of least action states 
that the equations of motion can be found by extremizing the 
action, i.e. we require δS[q]/δqk = 0. The functional derivative is 
defined via

δS[q; δq] = dS[q + εδq]
dε

∣∣∣∣
ε=0

=:
〈
δS[q]
δqi

, δqi
〉
. (2)

It is natural to seek a generalization of the above procedure for 
continuous media. As such, the discrete label k is replaced by 
a continuous one, which we denote by a. As a result q is now 
a function of a and t , and tracks the location of a fluid parti-
cle labelled by a. Two associated quantities which shall recur in 
this paper are the deformation matrix, ∂qi/∂a j =: qi

, j , and the 
corresponding determinant, the Jacobian, J := det(qi

, j). A volume 
element evolves in time via

d3q = J d3a, (3)

and an area element is governed by

(
d2q

)
i = J a j

,i

(
d2a

)
j, (4)

where J a j
,i is the transpose of the cofactor matrix of q j

,i . From 
the definitions of q, the Jacobian, the deformation matrix, etc., one 
can derive a host of identities which we shall not reproduce here; 
instead, we refer the reader to [7,12].

2.1. The Lagrangian and Eulerian pictures

The Lagrangian picture, as we have seen, is based on the La-
grangian coordinate q for a fluid element, which is solely labelled 
by a. However, a fluid particle can also carry other properties with 
it. It may be endowed with some mass density, entropy or a mag-
netic field in the case of magnetofluid models. These quantities are 
attached to the fluid particle, and are consequently dependent on a
alone. We refer to them as attributes, since they are intrinsic to the 
fluid. As they depend solely on a, these serve as Lagrangian con-
stants of motion. The subscript 0 is used to describe the attributes, 
in contrast to their Eulerian counterparts.

The Eulerian picture is used because it allows for an easy de-
scription in terms of observable parameters. All Eulerian fields 
depend on the position r := (x1, x2, x3) and t , which can both be 
measured in the laboratory. As a result, we refer to these fields as 
observables. We describe the Lagrange–Euler maps, which allow us 
to move from one description to another.

First, let us consider the velocity field v(r, t). A measurement 
of v corresponds to determining the velocity of the fluid element 
at a location r and time t . From the Lagrangian picture, this must 
also equal q̇(a, t), since we wish to preserve an equivalence be-
tween these two frameworks. Thus, we see that q̇(a, t) = v(r, t), 
where the overdot indicates that the time derivative is obtained at 
fixed a. This relation is incomplete because a hasn’t been specified. 
However, we note that the fluid element is at r in the Eulerian pic-
ture, and at q in the Lagrangian one. Thus, we see that r = q(a, t), 
which implies that a = q−1(r, t) =: a(r, t). We note that the lat-
ter part of this statement requires invertibility, which is assumed 
henceforth. As a result, the Eulerian velocity field is given by

v(r, t) = q̇(a, t)|a=a(r,t). (5)

The above map constitutes a Lagrange to Euler map; it can also be 
interpreted as a Euler to Lagrange map if we replace the LHS with 
v(q(a, t), t) and drop the a = a(r, t) on the RHS.

Now, we consider the attributes defined earlier, which are car-
ried by the fluid. A fluid may have a certain entropy associated 
with it, which we denote by s0. In an ideal fluid, we expect the 
entropy to be conserved along the fluid element. In other words, 
the Eulerian entropy s(r, t) must remain constant throughout, im-
plying that s = s0. This amounts to s behaving as a zero-form. We 
denote all attributes that obey this property by Sα

0 and the cor-
responding observables by Sα , where α runs over all such fields. 
Apart from entropy, the magnetic stream function ψ for 2D gyro-
viscous MHD [23,27] also obeys this property.

Next, we can consider attributes which obey a conservation law 
similar to the density. Let us denote the attribute by ρ0(a) and the 
observable by ρ(r, t). Mass conservation in a given volume dic-
tates that ρ(r, t)d3r = ρ0d3a. By using (3) we obtain ρ0 = ρJ . As 
a result, we have found a prescription for ρ , geometrically inter-
pretable as a three-form. Other attributes (and their corresponding 
observables), such as the entropy density, may also obey a similar 
conservation law. We denote them by Pβ

0 and Pβ respectively.
A natural extension involves the magnetic field B0(a) carried 

by a given fluid element, which satisfies the frozen flux constraint. 
Mathematically, this amounts to B · d2r = B0 · d2a, and from (4) we 
obtain J Bi = qi

, j B j
0. In other words, the magnetic field B can be 

interpreted as a two-form [55,56]. As before, we generalize this to 
include other fields that satisfy frozen flux constraints, and denote 
the attribute-observable pairs by Bγ

0i and Bγ
i , respectively.

In each of the above expressions, we see that there is a mis-
match since the label a is present in the attributes. To com-
plete the Lagrange–Euler maps, we evaluate the attributes at a =
q−1(r, t) =: a(r, t). As a result, one can now construct observables 
once the attributes and the field q(a, t) are known.

There exists a more intuitive way to represent the Lagrange to 
Euler map in terms of integrals. Let us suppose that we are given 
the attribute-observable relationships described above. In order to 
move from the Lagrangian description to the Eulerian one, we need 
to ‘pluck out’ the fluid element that happens to be at the Eule-
rian observation point r at time t . This is accomplished via the 
delta function δ(r −q(a, t)). For instance, the three forms described 
above are obtained via

Pβ(r, t) =
∫
D

d3aPβ

0 (a)δ
(
r − q(a, t)

)

= Pβ

0

J

∣∣∣∣
a=a(r,t)

. (6)

We will introduce the momentum density, Mc = (Mc
1, M

c
2, M

c
3), 

which is related to the Lagrangian canonical momentum through 
the expression

Mc(r, t) =
∫
D

d3aΠ(a, t)δ
(
r − q(a, t)

)

= Π(a, t)

J

∣∣∣∣ . (7)

a=a(r,t)
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The superscript ‘c’ indicates that the momentum density con-
structed is the canonical one. For MHD, Π(a, t) = (Π1, Π2, Π3) =
ρ0q̇. In general, note that Π(a, t) can be found from the Lagrangian 
through Π(a, t) = δL/δq̇ and is not always equal to ρ0q̇. Similarly, 
one can construct equivalent integral relations for Sα and Bγ

i , re-
spectively.

Hitherto, we have introduced Eulerian observables that behave 
geometrically as zero, two, and three-forms, respectively. Observ-
ables that behave as one-forms were not included in our de-
scription. One reason for this stems from the fact that, in three 
dimensions, they amount to the Hodge dual of the 2-forms and 
might lead to over specification (see, e.g., [57]). Furthermore, such 
quantities do not usually appear in the context of fluids and mag-
netofluids. Hence, we shall not consider such quantities in this 
paper, although they can be incorporated without any difficulty.

3. Action principle for the general gyroviscous fluid

In this section, we provide a brief summary of the general 
methodology advocated in [22] for constructing action principles 
for fluid and magnetofluid models and obtain the gyroviscous fluid 
action. The advantages of this approach are manifold, and we shall 
refer the reader to [22,23] for a discussion of the same. Next, we 
describe how we build our model and obtain the corresponding 
equation of motion, thereby proving the Eulerian closure principle 
along the way.

3.1. The general action

First, we choose the domain D ⊂ R
3. We also assume the ex-

istence of the Lagrangian coordinate q: D → D , which is a well 
behaved function that is sufficiently smooth, invertible, etc. Next, 
we specify our set of observables, which are fully determined by 
the attributes and q. In our case, the set corresponds to E =
{v, Sα, Pβ, Bγ }. The last step involves the imposition of a closure 
principle, which is necessary for our model to be ‘Eulerianizable’. 
Mathematically, this principle is implemented by demanding the 
action to be expressible fully in terms of our Eulerian observables. 
In other words, we require our action to be expressible as follows:

S[q] :=
t1∫

t0

∫
D

d3adtL(q, q̇, ∂q/∂a) =: S̄[E]. (8)

Now, we shall make one additional simplification: S̄ = ∫ t1
t0

∫
D d3r ×

dtL̄, where L̄, can depend on the observables and their spatial 
and temporal derivatives of any order. However, for convenience 
we shall use the following ansatz for the Lagrangian density L̄:

S̄ =
t1∫

t0

∫
D

d3rdtL̄
(

v,Sα,Pβ,Bγ ,∇v,∇Sα,∇Pβ,∇Bγ
); (9)

i.e., that the action only involves the observables and their first-
order spatial derivatives. Such a simplification is well-motivated 
since most of the widely used fluid and magnetofluid models pos-
sess this form. The generalization to higher derivatives is straight-
forward.

To sum up, there are two simplifications employed in this 
model. Firstly, we assumed that our model does not have ob-
servables that are akin to one-forms and, secondly, we chose the 
ansatz (9) for the action. In order to obtain the equation of mo-
tion, we must use Hamilton’s principle to extremize the action (8). 
We shall instead show how we can extremize the action (9), and 
how it leads to equations of motion that are purely Eulerian.

As a result, for our family of models, this amounts to proving 
the Eulerian closure principle, which states that a completely Eu-
lerianizable action yields Eulerian equations of motion. We shall 
drop the overbar in the action and the Lagrangian density de-
scribed in (9), to simplify the notation. For the same reason, we 
also drop the Greek indices α, β and γ present in (9).

3.2. The Eulerian closure principle and equations of motion

The variation of the action (9) yields

δS =
t1∫

t0

∫
D

d3rdt

(
δS

δvk
δvk + δS

δBk
δBk + δS

δP
δP + δS

δS
δS

)
. (10)

However, we need to express the quantities δBk , δS , etc., in terms 
of δq in order to derive the equation of motion [51]. We shall 
present this calculation in detail for δP , since it is the most con-
venient for illustrating the procedure. From (6), we find that

δP = −
∫
D

d3aP0(a)∂kδ
(
r − q(a, t)

)
δqk, (11)

where the partial derivative is with respect to r now. Substituting 
this into the relevant component of (10) and integrating by parts 
yields

t1∫
t0

∫
D

d3rdt
δS

δP
δP =

t1∫
t0

∫
D

d3adtP0

[
∂k

δS

δP

]
q
δqk, (12)

where the notation [∂k
δS
δP ]q is short-hand for

[
∂k

δS

δP

]
q
=

∫
D

d3rδ
(
r − q(a, t)

)
∂k

δS

δP
. (13)

The above expression has a ready physical interpretation. We ear-
lier mentioned that the observables can be generated from the cor-
responding attributes since the delta function allows us to ‘pluck 
out’ the appropriate fluid element. Here, the converse relation is 
true: given an Eulerian field (expressed in terms of the observ-
ables), the delta function allows us to pluck out the Lagrangian 
counterpart. As a result, the quantity (13) is fully Lagrangian, since 
the action is fully representable either in terms of q and its deriva-
tives, or in terms of the Eulerian observables. Hence, the subscript 
q denotes its Lagrangian nature.

Let us now return to (12) and extremize the action. This re-
quires everything appearing in front of δqk must vanish. The con-
tribution from the P term is evidently

P0

[
∂k

δS

δP

]
q
, (14)

and since we know that the determinant J �= 0, we can divide 
throughout by J . Next, evaluating this expression at the label a =
q−1(r, t) and using (6) gives the following Eulerian contribution 
form the P-term:

P∂k
δS

δP
, (15)

where we have used the fact that [∂k(δS/δP)]q evaluated at a =
q−1(r, t) yields ∂k(δS/δP). This effectively amounts to taking the 
quantity ∂k(δS/δP) and Lagrangianizing it (expressing it in terms 
of q, its derivatives and the attributes) and then re-Eulerianizing it 
again (re-expressing in terms of the Eulerian fields). We can also 
derive the same relation, by using the approach outlined in [24]. 
With the notation employed in [27] where the Lagrangian variation 
δq is denoted by ξ and the Eulerianized counterpart is denoted 
by η, the variation for P takes the form
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δP = −∂k
(
Pηk). (16)

Substituting this into (12), integrating by parts and separating 
out the algebraic expression in front of ηk , gives the same result 
as (15).

Consider now the S-term. Since S = S0, when the RHS is eval-
uated at a = q−1(r, t), the integral representation of this amounts 
to

S =
∫
D

d3aS0J δ
(
r − q(a, t)

)
. (17)

Again, with this term we can either carry out the approach out-
lined above, or use the equivalent approach described in [24]. 
Substituting (17) into the appropriate term in (10), obtaining the 
Lagrangian expression, dividing throughout by J , and Eulerianiza-
tion gives

S∂k
δS

δS
− ∂k

(
S

δS

δS

)
. (18)

Next, we consider the variable B-term, which satisfies the rela-
tion

B j =
∫
D

d3aq j
,iB

i
0δ

(
r − q(a, t)

)
. (19)

Repeating the procedure, for this term gives

B j∂k
δS

δB j
− ∂ j

(
B j δS

δBk

)
. (20)

Lastly, we note that the velocity is determined via

v j =
∫
D

d3aq̇ jJ δ
(
r − q(a, t)

)
, (21)

and we can use this to determine δv in terms of δq and obtain the 
final Eulerian result. It is given by

v j∂k
δS

δv j
− ∂k

(
v j δS

δv j

)
− ∂ j

(
v j δS

δvk

)
− ∂

∂t

(
δS

δvk

)
. (22)

Together, Eqs. (15), (18), (20) and (22) constitute the pieces that 
make up the equation of motion. Putting them all together, we 
have

P∂k
δS

δP
+ S∂k

δS

δS
− ∂k

(
S

δS

δS

)

+ B j∂k
δS

δB j
− ∂ j

(
B j δS

δBk

)
+ v j∂k

δS

δv j

− ∂k

(
v j δS

δv j

)
− ∂ j

(
v j δS

δvk

)
− ∂

∂t

(
δS

δvk

)
= 0. (23)

It is evident that (23) is fully Eulerian, since it does not contain 
any Lagrangian pieces. Earlier, we’d mentioned that two different 
assumptions were made in building our model. Of these, we have 
used only the absence of the 1-forms in proving that our equation 
of motion is Eulerian. This assumption can also be relaxed, and the 
ensuing result still remains the same.

Now, we shall make use of the second assumption, namely the 
ansatz from (9) to recast (23) into a more recognizable form. From 
the definition of the functional derivative, it can be shown that

δS

δΨ
= ∂L

∂Ψ
− ∂ j

(
∂L

∂(∂ jΨ )

)
, (24)

where Ψ represents any of the observables. This follows from the 
fact that L only involves the observables and their first-order spa-
tial derivatives. Using this, one can rewrite (23) as
− ∂

∂t

(
δS

δvk

)
+ ∂ j

[
δ

j
k

(
P

δS

δP
+ B j δS

δB j
−L

)]

+ ∂ j

[
∂L

∂(∂ jS)
(∂kS) + ∂L

∂(∂ jP)
(∂kP)

]

+ ∂ j

[
∂L

∂(∂ jBi)

(
∂kBi) + ∂L

∂(∂ j vi)

(
∂k vi)]

− ∂ j

[
B j δS

δBk
+ v j δS

δvk
+ . . .

]
= 0. (25)

It is important to clarify the notation employed in the above equa-
tion. We commence with the observation that S and L are the 
Eulerian action and Lagrangian density respectively, since the over-
bars were dropped at the end of the previous subsection. The 
functional derivatives of S are just the shorthand notation for the 
RHS of (24). Hence, it must be noted that the final expression only 
involves the partial derivatives of L with respect to the observ-
ables, and with respect to the spatial gradients of the observables. 
Lastly, we note that the “. . .” indicate that higher order derivatives 
of the observables can be included in the action (9), which induce 
higher order derivatives (and terms) in the above equation.

The equation of motion has been determined, and is given 
by (25). Now, let us evaluate the dynamical equations for the 
observables. From the Lagrange–Euler maps, one can use the pro-
cedure outlined in [22,23] to obtain the corresponding dynamical 
equations. For P , we find that

∂P
∂t

+ ∇ · (Pv) = 0. (26)

The dynamical equation for S is found to be

∂S
∂t

+ v · ∇S = 0, (27)

and lastly, the evolution equation for B is given by

∂B
∂t

+ B(∇ · v) − (B · ∇)v + (v · ∇)B = 0. (28)

We observe that replacing the specific entropy S by the entropy 
density σ =PS in (27) leads to a conservation law of σ .

Finally, we note that our Lagrangian density (typically) pos-
sesses an internal energy density U per unit mass/particle. Closure, 
on the fluid level, is achieved by choosing U to be a suitable 
function of the thermodynamic variables. By extending this frame-
work to incorporate B as well, one can construct models with 
anisotropic pressure. We refer the reader to [11] for a detailed 
discussion of the same. The Lagrangian counterpart of these mod-
els is achieved via the closure principle, i.e. we choose Lagrangian 
functionals such that they Eulerianize to their known (Eulerian) 
counterparts.

4. Analysis of fluids, magnetofluids, and gyro fluids

In this section, we use Noether’s theorem in conjunction 
with (25) to make some general statements about fluids and mag-
netofluids. Then, we shall specialize to the case of the gyrofluid 
and discuss it in greater detail.

We work with the commonly used observables for fluid models, 
i.e., S is replaced by s, B by B and P by ρ , and the action is 
decomposed into a part depending on q̇ and one that does not:

S[q] =
t1∫

t0

(
T [q̇] − V [q]). (29)

It is important to note that there is no explicit q-dependence in 
our model. This arises from the fact that none of our Lagrange–
Euler maps involve q explicitly; instead, they involve only the 
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derivatives of q with respect to t and a. Since our action is fully 
Eulerianizable, it must involve the observables alone. None of the 
observables, on mapping back to their Lagrangian counterparts, in-
volve q explicitly. In general, let us suppose that we can write T [q̇]
as

T [q̇] =
∫
D

d3a
(
M0i q̇

i + ℘0i jq̇
i q̇ j + V0i jkq̇iq̇ j q̇k + . . .

)

=
∫
D

d3r
(
Mi vi + ℘i j vi v j + Vi jk vi v j vk + . . .

)
, (30)

where we have used the fact that our action is fully Eulerianizable. 
In other words, we require Mi = M0i/J and identical relations 
for ℘ and V in order to ensure this property. Note that the RHS of 
this relation is evaluated at a = q−1(r, t) as always.

We have not yet specified anything about the tensors M, ℘
and V . At this stage, we only know that they are functions of 
the observables and their spatial derivatives, i.e., they must pos-
sess the same form as L from (9), minus the dependence of v . Let 
us postulate further that these tensors are fully symmetric under 
the exchange of any pair of indices for the sake of simplicity. Since 
we know that our action is independent of q, the corresponding 
canonical momentum must be conserved. The canonical momen-
tum is given by

Πi = M0i + 2℘0i j q̇
j + 3V0i jkq̇ jq̇k + . . . , (31)

since the tensors are symmetric. The Eulerian counterpart can be 
found from (7) by using the fact that Mi =M0i/J (and the same 
for the rest). It turns out to be

Mc
i = Mi + 2℘i j v j + 3Vi jk v j vk + . . . . (32)

This result can also be obtained from (25), thereby serving as 
a consistency check. The first term in (25), which is given by 
− ∂

∂t (
δS
δvk ), reduces to ∂Mc

k/∂t . As a result, our equation of motion 
becomes

∂Mc
k

∂t
+ ∂ j T

j
k = 0, (33)

which ensures that Mc is conserved. The conservation of angu-
lar momentum is a trickier business. The sufficient condition for 
angular momentum conservation is that T j

k must be symmetric. 
Since we are dealing with a very general ansatz, it is not possible 
to determine a priori whether our classes of models will conserve 
angular momentum in general. The quantities M, ℘ , etc., must be 
explicitly known in order to provide a definite answer. For the case 
of ideal hydrodynamics and magnetohydrodynamics, the tensor T j

k
is indeed symmetric.

Now, let us consider the simpler case wherein ℘i j = 1
2 ρδi j . We 

define the kinetic momentum M = ρv . We find that

Mc
i = Mi + Mi + 3

Vi jk

ρ2
M j Mk + . . . , (34)

and we know that the LHS is conserved, i.e. d
dt

∫
D d3rMc is zero, 

provided we assume that the boundary terms vanish. Let us now 
consider the constraints under which the conservation of Mc sim-
plifies to the conservation of M . For starters, the first term on 
the RHS of (34) must be expressible as the divergence of a ten-
sor. Upon integration, it will then yield a boundary term which 
can be made to vanish. Hence, a sufficient condition for M to be 
conserved is Mi = ∂ jL

j
i and Vi jk = 0.

We will now focus our attention on the model where the above 
constraints are satisfied. Let us choose to work with an action
S = SMHD −
t1∫

t0

∫
D

d3rdtL j
i ∂ j vi, (35)

where our set of observables are now ρ , s, B and v . The quantity 
SMHD represents the ideal MHD action, whose explicit expression 
is known (see, e.g., [22]). From our preceding analysis, it is clear 
that both Mc and M are conserved for this model. It is also clear 
that this action satisfies the ansatz that we specified in (9). Fur-
thermore, the ideal MHD action yields a symmetric momentum 
flux tensor, ensuring that T j

k is symmetric. Hence, the first term 
in (35) also conserves angular momentum.

As a result, we only need to investigate L and the constraints 
that must be imposed upon it to ensure that T j

k is symmetric. 
Given that L can only depend on B , s and ρ and their first or-
der derivatives, there are still an infinite number of terms that can 
be generated. It is evident of course that this system is too elabo-
rate to permit further analysis. Hence, for starters, we shall assume 
that L j

i is symmetric and that it has the form

L
j
i = 1

2

[(
B j Bi + Bi B j

)
αI + (

δ
j
i + δi

j

)
αII

]
, (36)

with αI,II only depending on s, ρ and |B|. We use (35) and (36)
in (25). Rather than use brute force, we shall use some of the in-
herent symmetries of (25). Note that the first line in (25) contains 
terms that yield a symmetric contribution to T j

k , since they are 
gradient terms, similar to the pressure. In the second line of (25), 
there are no contributions since there are no density and entropy 
gradients. The same is also true for the first term on the third line 
of (25), since (36) does not possess magnetic field gradients. As 
a result, we are left with only three terms of interest – the last 
three occurring in the LHS of (25). Upon evaluation, we find that 
the resulting tensor is not symmetric, and the ansatz (36) does not 
possess angular momentum conservation.

The presence of the magnetic field makes it difficult to address 
the issue of angular momentum conservation. However, one may 
find an angular momentum, albeit not r × M , that is conserved. 
Some of the intricacies behind angular momentum conservation 
will be tackled in a subsequent paper on gyroviscous magnetofluid 
models.

Now, let us suppose that we consider the hydrodynamic case 
where B is absent. We shall consider the case where gradients 
with respect to s and ρ are absent, and the gyroscopic term is of 
the form (35). The condition for angular momentum conservation 
becomes particularly simple, since the tensor

L
j
i

(
∂k vi) + v j∂i

(
Li

k

)
, (37)

must be symmetric.

5. An illustration of the formalism

To demonstrate the utility of the formalism developed in this 
paper, we now consider a simple illustration that demonstrates 
how an additional attribute can be added to ideal HD. The attribute 
we add represents an internal degree of freedom, an intrinsic rota-
tional (angular) velocity, attached to each fluid element. Given the 
new set of observables, we immediately use (25) to compute the 
corresponding equation of motion.

There are many physical situations where an internal angular 
velocity or momentum is appropriate, because such microscopic 
behavior influences the macroscopic dynamics. One example is 
the effect of finite Larmor radius gyration of charged particles in 
a magnetic field while another occurs in the theory of nemato-
dynamics. We consider the latter which applies to liquid crystals 
that are modeled as a fluid composed of rigid rods. These rods are 
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endowed with a preferred direction, called the director, and an in-
trinsic angular momentum. The relevant dynamics for this system 
are described in [46] (with details in the classic works of [65–68]). 
A simplified limit of this work where phenomenological dissipative 
relaxing is removed (their parameter γ −1 → 0) results in a reduc-
tion to a single variable Ω‖ , an angular velocity proportional to 
the intrinsic angular momentum parallel to the now constant di-
rector. The new variable Ω‖ is advected by the fluid velocity field, 
and thus behaves as a zero form. We shall work with this subcase 
henceforth.

One must now construct an appropriate Lagrange–Euler map 
for our attribute-observable pair, denoted by Ω0‖ and Ω‖ , respec-
tively. Since we have noted that Ω‖ is advected, this corresponds 
to Ω‖ = Ω0‖ , with the RHS evaluated at a = q−1(r, t). The advec-
tion equation is given by

∂Ω‖
∂t

+ v j∂ jΩ‖ = 0, (38)

and the similarity to the entropy is self-evident. One can now con-
struct an angular momentum density, l2ωd := ρl2Ω‖ , that behaves 
as a three-form. Here the quantity l represents the radius of gyra-
tion with l2 being interpreted as the moment of inertia per unit 
mass. Its governing equation is

∂ωd

∂t
+ ∂ j

(
v jωd

) = 0, (39)

and the relationship between ωd and its corresponding attribute 
ω0d is ωd = ω0d/J with the RHS evaluated at a = q−1(r, t).

By analogy with classical (discrete) mechanics, we propose the 
continuum rotational kinetic energy functional,

Krot :=
∫
D

d3a
1

2
ρ0l2Ω2

0‖ =
∫
D

d3al2
ω2

0d

2ρ0
. (40)

It is easily verified that the above functional satisfies the Eule-
rian closure principle, with its counterpart given by l2ω2

d/(2ρ). 
Since (40) is entirely independent of q, it serves as a Lagrangian 
invariant, and does not enter the equation of motion. This can also 
be verified by taking the Eulerian counterpart and substituting it 
into (25). Despite its absence in the momentum equation of mo-
tion, it is instructive to see how the rotational and translational 
kinetic energies stack up against each other. In order to compute 
the rotational energy, we assume that our fluid particles can be 
modeled as molecules. In such a scenario, we find that the ratio 
reduces to

l2Ω2‖
v2

∼ Θ

T
, (41)

where Θ denotes the rotational temperature [58]. We have as-
sumed that v is characterized by the thermal velocity, and lΩ‖
by the rotational temperature. In general, it is evident that this ra-
tio is extremely small for hot fluids, such as the ones observed 
in fusion reactors or in stars. However, there exist environments in 
nature, such as giant molecular clouds which possess temperatures 
of a few tens of Kelvin [59,60]. They are comprised of molecu-
lar hydrogen, whose rotational temperature is known to be around 
88 K [58]. As a result, we see that the two energies are compa-
rable in this regime and there remains an outside possibility that 
such effects might be of importance. We note that the above term 
does not enter the equation of motion, but it serves as a Casimir 
invariant, and is therefore of interest.

We have earlier mentioned that we study a subcase of [46]
where coupling terms involving v and Ω‖ are non-existent. Now, 
let us add a simple term of the form l2ωdCk

i ∂k vi to the action, 
where Ck

i is a tensor with constant coefficients. Then, the full ac-
tion is given by
S := SHD +
t1∫

t0

∫
D

d3rdtl2ωdCk
i ∂k vi, (42)

where SHD represents the ideal HD action. The new term can be 
interpreted as follows. Integration by parts casts it in the form 
of v · ∇ × Lint , if one associates the tensor Ck

i with the three-
dimensional Levi-Civita tensor (with one of the indices fixed to 
be ẑ, the director direction) and the term Lint with the intrin-
sic angular momentum density. By inspection, it is found that 
Lint = (l2ωd)ẑ = (ρl2)Ω‖ ẑ and it is evidently the product of the 
moment of inertia (per unit volume) and the angular velocity. This 
term was not constructed at random – it corresponds to the ana-
logue of 2D gyroviscous MHD studied in [23]. In gyroviscous MHD, 
the particles undergo Larmor gyration as a result of the mag-
netic field, behaving as though they were indeed endowed with 
an intrinsic angular velocity (and angular momentum). The corre-
sponding equation of motion is given by

∂(ρvk)

∂t
+ ∂ j

[(
C j

k vi − C i
k v j)∂i

(
l2ωd

)]
(43)

+ ∂ j
[(

l2ωd
)(

C j
k∂i vi − C j

i ∂k vi)] + . . . = 0,

where the “. . .” indicate that this corresponds to the ideal HD 
equation of motion. The four additional terms involve gradients 
with respect to the velocity (or angular velocity), and they serve 
as the de facto viscosity tensor. If we assume that the fluid has the 
property that ωd = const, the two terms in the first line of (43)
vanish identically. However, the next two terms are still present, 
which changes the ideal HD momentum flux. With this special 
choice of ωd , the similarities with the orthodox viscous tensor 
are striking – there are terms involving ∂k vi and the divergence 
∂i vi , and the coefficients in front of these terms correspond to 
the dynamic and bulk viscosities respectively. Thus, we see that 
the angular momentum fluid, with some minor restrictions, mir-
rors the conventional viscous fluid. In general, ωd depends on time, 
and hence one can interpret (43) as comprising of time-dependent 
viscosities, thereby representing a theory of non-Newtonian fluids 
[61,62]. The importance of such fluids in biological systems is well-
documented [63,64]. The action (42) conserves energy and linear 
momentum ρv , but not the angular momentum r × (ρv). If we 
assume that the coupling tensor C i

j is purely antisymmetric, akin 
to the 2D Levi-Civita tensor, the stress tensor in (43) becomes sym-
metric, thereby leading to angular momentum conservation.

In our discussion here, we have built a theory of fluids with in-
trinsic angular momentum by incorporating the rotational kinetic 
energy and gyroviscous terms. This illustrative model corresponds 
to a simplified version of [46] for nematic effects in liquid crys-
tals, but with additional effects incorporated, and was presented to 
demonstrate how to build models from scratch. Clearly the nondis-
sipative parts of more complete models can be built in this man-
ner, and potential applications in a variety of fields, e.g., nematics, 
micromorphic systems [69], and plasma physics, come to mind.

6. Conclusion

In this paper, we have presented a general class of actions, de-
scribed by the ansatz (9). This class includes ideal MHD, symmetric 
MHD, reduced MHD, gyroviscous MHD and their HD equivalents. 
For this class of actions, we have shown that an Eulerian action 
gives rise to Eulerian equation(s) of motion, and presented the ex-
plicit form for the latter. By making use of this result, we present 
a general analysis of the conditions under which momentum (and 
angular momentum) is conserved. Lastly, as an illustrative appli-
cation of this formalism, we used it to study HD models where 
the fluid particles possess an intrinsic angular velocity (and angu-
lar momentum). It was shown that these models behaved akin to 
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viscous HD models, but conserved energy and linear momentum, 
but not the angular momentum. These models may prove to be of 
significance in certain astrophysical environments, and in studying 
nematic and biological systems.

One of the chief advantages of this approach stems from the po-
tential application to the two-fluid model action by incorporating 
gyroviscous effects. Such a procedure would amount to an inher-
ently consistent, first-principles derivation of a two-fluid gyrovis-
cous tensor, which can then be compared against the Braginskii 
gyroviscous tensor [70]. Similarly, the formalism developed in this 
paper can be extended to include kinetic and gyrokinetic theories, 
which can then be analyzed to study wide ranging plasma and as-
trophysical phenomena. It is also possible to use the models from 
Section 5 to study their implications for momentum and angular 
momentum transport in astrophysical contexts. In the future [71], 
we shall use the HAP formalism presented herein to derive gyro-
viscous tensors, and to study the intricacies of angular momentum 
conservation, its resolution and its ramifications.
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