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The general, non-dissipative, two-fluid model in plasma physics is Hamiltonian, but this property is

sometimes lost or obscured in the process of deriving simplified (or reduced) two-fluid or one-fluid

models from the two-fluid equations of motion. To ensure that the reduced models are

Hamiltonian, we start with the general two-fluid action functional, and make all the approxima-

tions, changes of variables, and expansions directly within the action context. The resulting equa-

tions are then mapped to the Eulerian fluid variables using a novel nonlocal Lagrange-Euler map.

Using this method, we recover L€ust’s general two-fluid model, extended magnetohydrodynamic

(MHD), Hall MHD, and electron MHD from a unified framework. The variational formulation

allows us to use Noether’s theorem to derive conserved quantities for each symmetry of the action.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896336]

I. INTRODUCTION

Fluid models are ubiquitous in the study of plasmas. It is

desirable that the non-dissipative limits of fluid models be

Hamiltonian, but this property is often lost in the process of

deriving them (see, e.g., Refs. 1 and 2). One way to ensure

the Hamiltonian property of such models is to derive them

from action principles, i.e., to start from a Hamiltonian

parent-model action and to make all the approximations and

manipulations directly in the action (see, e.g., Refs. 3–6).

The equations of motion are then obtained as the stationary

points of the action under variation with respect to the dy-

namical variables. This is known as Hamilton’s principle in

particle mechanics.

Deriving the equations of motion of fluids7–9 and plas-

mas4,5,10–16 from an action principle has a rich history. The

reasons that such a formulation is pursued, even after the

equations of motion are already known, are numerous.

Finding conservation laws using Noether’s theorem,17–20

obtaining variational principles for equilibria,6,21,22 perform-

ing stability analyses,4,22–27 or imposing constraints on a

theory is straight-forward in the action functional, but often

not easily done directly in the equations of motion.

Fluids can be described within the Eulerian or the

Lagrangian viewpoints. The former describes the fluid in

terms of, e.g., the evolution of the fluid velocity field at a

position x, whereas the latter tracks the motion of individual

fluid elements. The map connecting these two viewpoints is

known as the Lagrange-Euler map. Action functionals are

naturally expressed in terms of Lagrangian variables, whereas

the equations of motion of fluid models are Eulerian.

Here, we are interested in fluid models describing two

charged fluids, e.g., an ion and an electron fluid, interacting

with an electromagnetic field. The general, non-dissipative

two-fluid system is Hamiltonian, and therefore it is desirable

that any model attempting to give a reduced description of it,

should also be Hamiltonian and, consequently, not possess

spurious forms of dissipation.

We will use the Lagrangian viewpoint and construct a

general two-fluid action functional. Any subsequent order-

ing, approximation, and change of variables will be done

directly in the action before deriving the equations of motion

using Hamilton’s principle. To ensure that the final equations

of motion are Eulerian, we only construct actions that can be

completely expressed in terms of Eulerian variables. This

general requirement was elucidated in Refs. 5 and 6, where it

was termed the Eulerian Closure Principle (ECP).

This paper is organized as follows: In Sec. II, we review

the Lagrangian and Eulerian picture of fluid mechanics,

including the derivation of the two-fluid equations of motion

through Lagrangian variations of a two-fluid action func-

tional. Starting from this action, we derive a new one-fluid

action functional using careful approximations, e.g., imposing

quasineutrality, and a change of variables in Sec. III. Here,

we also introduce a new Lagrange-Euler map and impose lo-

cality in order to derive Eulerian equations of motion in the

new variables. In Sec. IV, we show in detail how to derive

various fluid models, e.g., extended magnetohydrodynamic

(MHD) and Hall MHD, from this new one-fluid action func-

tional. Sec. V contains a discussion of Noether’s theorem

applied to the new action functional, and finally, Sec. VI our

conclusions and some discussions of future work.

II. REVIEW: TWO-FLUID MODEL AND ACTION

In this section, we will briefly review the derivation of

the non-dissipative two-fluid model equations of motion

from the general two-fluid action functional. This action will

be the starting point for deriving reduced models further

below. In this context we establish our notation and, later on,

discuss differences with our new procedure and results.

Non-dissipative fluids can be described in two equiva-

lent ways: The Eulerian (or spatial) point of view, which

uses the physical observables of, e.g., fluid velocity v(x, t)
and mass density qðx; tÞ as its fundamental variables and

describes the fluid at an observation point x in the three-
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dimensional domain as time passes, or the Lagrangian (or

material) point of view, which considers individual fluid ele-

ments with position q and tracks their time evolution. As

described below, both pictures are related through the stand-

ard Lagrange-Euler map.

From an action functional/variational point of view, the

Lagrangian picture is the more natural one, as it represents

the infinite-dimensional generalization of the finite-

dimensional Lagrangians of particle mechanics. The equa-

tions of motion are then obtained using Hamilton’s principle

as the stationary points of the action, i.e., the first variation

of the action with respect to the variables is equal to zero.

We will use the Lagrangian picture as our starting point

and construct a general two-fluid action functional. To

ensure physical relevance of the theory, we only construct

actions that obey the Eulerian Closure Principle, which states

that any action functional of a physical fluid theory must be

completely expressible in Eulerian variables after the appli-

cation of the Lagrange-Euler map.

To simplify our notation (consistent with Ref. 3), we will

avoid explicit vector notation and define the following: qs ¼
qsða; tÞ is the position of a fluid element (s ¼ ði; eÞ is the spe-

cies label) in a rectangular coordinate system where a ¼
ða1; a2; a3Þ is any label identifying the fluid element and

qs ¼ ðqs1; qs2; qs3Þ. Here we choose a to be the initial position

of the fluid particle at t¼ 0, although other choices are possi-

ble.25 The Lagrangian velocity will then be denoted by _qs.

The Eulerian velocity field will be denoted by vsðx; tÞ
with vs ¼ ðvs1; vs2; vs3Þ where x ¼ ðx1; x2; x3Þ is the position

in the Eulerian picture. Similarly, we define the electric field

vector E(x, t), the magnetic field vector B(x, t), and the vector

potential A(x, t). If we need to explicitly refer to components

of these vectors, we will use subscripts (or superscripts) j
and k. To simplify the equations, we will also often suppress

the dependence on x, a, and t.
The action functional described below will include inte-

grations over position space
Ð

d3x and label space
Ð

d3a. We

will not explicitly specify the domains of integration, but

assume that our functions are well-defined on their respec-

tive domains, and that integrating them and taking functional

derivatives is allowed. In addition, we will assume that all

variations on the boundaries of the domains and any surface

terms (due to integration by parts) vanish.

A. Constructing the two-fluid action

The action functional of a general theory of a charged

fluid interacting with an electromagnetic field should include

the following components: The energy of the electromag-

netic field, the fluid-field interaction energy, the kinetic

energy of the fluid, and the internal energy of the fluid,

which describes the fluid’s thermodynamic properties.

We will assume two independent fluids corresponding

to two different species (ions and electrons with charge es,

mass ms, and initial number density of ns0ðaÞ) which interact

with the electromagnetic field, but not directly with each

other. Therefore, the fluid-dependent parts of the action will

naturally split into two parts, one for each species.

The complete action functional is given by

S½qs;A;/� ¼
ð

T

dtL; (1)

where T is a finite time interval and the Lagrangian L is

given by

L¼ 1

8p

ð
d3x

�����1

c

@A x; tð Þ
@t

�r/ x; tð Þ
����
2

�jr�A x; tð Þj2
" #

(2)

þ
X

s

ð
d3ans0 að Þ

ð
d3xd x� qs a; tð Þð Þ

� es

c
_qs � A x; tð Þ � es/ x; tð Þ

� �
(3)

þ
X

s

ð
d3ans0 að Þ ms

2
j _qsj2�msUs msns0 að Þ=J s;ss0

� �� �
:

(4)

The symbol J s is the Jacobian of the map between

Lagrangian positions and labels, q(a, t), which we will dis-

cuss in more detail below. Here, we have expressed the elec-

tric and magnetic fields in terms of the vector and scalar

potential, E ¼ �1=cð@A=@tÞ � r/ and B ¼ r� A. The first

term (2) is the electromagnetic field energy, while the next

expression (3) is the coupling of the fluid to the electromag-

netic field, which is achieved here by using the delta func-

tion. The last line of the Lagrangian L (4) represents the

kinetic and internal energies of the fluid. Note, the specific

internal energy (energy per unit mass) of species s, Us,

depends on the Eulerian density as well as a function ss0, an

entropy label for each species. Also note that the vector and

scalar potentials are Eulerian variables (i.e., functions of x).

B. Lagrange-Euler map

In accordance with the above-mentioned Eulerian Closure

Principle, we need to ensure that the action Eqs. (1)–(4) can

be completely expressed in terms of the desired set of Eulerian

variables, which in turn ensures that the resulting equations of

motion will also be completely Eulerian, hence representing a

physically meaningful model.

The connection between the Lagrangian and Eulerian pic-

tures of fluids is the Lagrange-Euler map. Before looking at

the mathematical implementation of this map, it is instructive

to discuss its meaning. As an example, consider the Eulerian

velocity field v(x, t) at a particular position x at time t. The

velocity of the fluid at that point will be the velocity of the par-

ticular fluid element _qða; tÞ which has started out at position a
at time t¼ 0 and then arrived at point x ¼ qða; tÞ at time t.

To implement this idea, we define the Eulerian number

density nsðx; tÞ in terms of Lagrangian quantities as follows:

nsðx; tÞ ¼
ð

d3ans0ðaÞdðx� qsða; tÞÞ: (5)

Using properties of the delta function, this relation can be

rewritten as

ns x; tð Þ ¼
ns0 að Þ
J s

����
a¼q�1

s x;tð Þ
; (6)
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where, J s ¼ detð@qs=@aÞ is the Jacobian determinant. Note

that Eq. (6) implies the continuity equation

@ns

@t
þr � nsvsð Þ ¼ 0; (7)

which corresponds to local mass conservation if we define

the mass density as qs ¼ msns.

The corresponding relation for the Eulerian velocity is

vsðx; tÞ ¼ _qsða; tÞja¼q�1
s ðx;tÞ; (8)

where the dot means differentiation with respect to time at

fixed particle label a. This relation follows from integrating

out the delta function in the definition of the Eulerian mo-

mentum density, Ms :¼ msnsvs

Msðx; tÞ ¼
ð

d3a ns0ða; tÞdðx� qsða; tÞÞms _qsða; tÞ: (9)

Finally, our Eulerian entropy per unit mass, ssðx; tÞ, is

defined by

qsssðx; tÞ ¼
ð

d3a ns0ðaÞss0ðaÞmsdðx� qsða; tÞÞ; (10)

completing our set of fluid Eulerian variables for this theory,

which is fns; ss;Msg. It is easy to check that the closure prin-

ciple is satisfied by these variables.

For later use, we quote (without proof) some results

involving the determinant and its derivative

@qk

@aj

Ai
k

J ¼ di
j; (11)

where Ai
k is the cofactor of @qk=@ai :¼ qk

;i. A convenient

expression for Ai
k is

Ai
k ¼

1

2
�kjl�

imn @qj

@am

@ql

@an
; (12)

where �ijkð¼ �ijkÞ is the Levi-Civita tensor. Using Eq. (11)

one can show that

@J
@qi

;k

¼ Aj
i (13)

and using the chain rule

@

@qk
¼ 1

J Ai
k

@

@ai
: (14)

For further discussions see, e.g., Refs. 3, 5, and 28.

C. Varying the two-fluid action

The action of Eq. (1) depends on four dynamical varia-

bles: the scalar and vector potentials, / and A, and the posi-

tions of the fluid elements qs.

Varying with respect to / yields Gauss’s law

@k �
1

c

@Ak

@t
� @k/

� �
¼ 4pe

ð
d3ani0 að Þd x� qið Þ

�4pe

ð
d3ane0 að Þd x� qeð Þ ;

where @k :¼ @=@xk, or in more familiar form

r � E ¼ 4peðniðx; tÞ � neðx; tÞÞ: (15)

Similarly, the variation with respect to A recovers the

Maxwell-Ampere law

1

4p
�r�r� Aþ 1

c

@

@t
� 1

c

@A

@t
�r/

� �� �

� e

c

ð
d3a d x� qeð Þne0 _qe � d x� qið Þni0 _qi

	 

¼ 0;

or in more familiar form

r� B ¼ 4pJ

c
þ 1

c

@E

@t
; (16)

where the Eulerian current density J is defined as

Jðx; tÞ ¼ eðnivi � neveÞ: (17)

Recall that the other two Maxwell equations are contained in

the definition of the potentials.

Variation with respect to the qs’s is slightly more com-

plex, and we will show a few intermediate steps. Varying the

kinetic energy term is straight forward and yields

�ns0ðaÞms €qsða; tÞ: (18)

The jth component of the interaction term results in

esns0 að Þ � 1

c

dAj qs; tð Þ
dt

þ 1

c
_qk

s

@Ak qs; tð Þ
@qj

s

� @/ qs; tð Þ
@qj

s

" #

¼ esns0 að Þ
�
� 1

c

@Aj qs; tð Þ
@t

� 1

c
_qk

s

@Aj qs; tð Þ
@qk

s

þ 1

c
_qk

s

@Ak qs; tð Þ
@qj

s

� @/ qs; tð Þ
@qj

s

�

¼ esns0 að Þ E qs; tð Þ þ
1

c
_qs a; tð Þ � rqs

� A qs; tð Þð Þ
� �

j

: (19)

Note that this expression is purely Lagrangian. The fields A
and E are evaluated at the positions qs of the fluid elements

and the curl rqs
� is taken with respect to the Lagrangian

position. Also note, since qs ¼ qsða; tÞ, any total time deriva-

tive of, e.g., Aðqs; tÞ will result in two terms.

Variation of the internal energy term yields

Aj
i

@

@aj

q2
s0

J 2
s

@U
qs0

J s
; ss0

� �

@
qs0

J s

� �
0
BBB@

1
CCCA: (20)

Setting the sum of Eqs. (18)–(20) equal to zero and

invoking the usual thermodynamic relations between internal

energy and pressure and temperature

ps ¼ msnsð Þ2
@Us

@ msnsð Þ
and Ts ¼

@Us

@ss
; (21)
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results in the well-known (non-dissipative) two-fluid equa-

tions of motion

msns
@vs

@t
þ vs � rvs

� �
¼ esns Eþ 1

c
vs � B

� �
�rps: (22)

Further analysis (see, e.g., Refs. 29 and 30) of these

equations usually involves the addition and subtraction of

the two-fluid equations and a change of variable transforma-

tion to

V ¼ 1

qm

minivi þ meneveð Þ;

J ¼ e nivi � neveð Þ;
qm ¼ mini þ mene;

qq ¼ e ni � neð Þ :

(23)

The resulting equations are then simplified by, e.g.,

making certain assumptions (quasineutrality, v� c, etc.)

and ordering to obtain two new one-fluid equations—one

often referred to as the one-fluid momentum equation and the

other as the generalized Ohm’s law.

III. THE NEW ONE-FLUID ACTION

The first step in building an action functional for fluid

models is to decide on the relevant Eulerian observables of

the model. Since we want to derive, e.g., the two-fluid

model of L€ust and various reductions, our Eulerian observ-

ables are going to be the set fn; s; se;V; J;E;Bg, where

s ¼ ðmisi þ semeÞ=m, with m ¼ me þ mi, and n is a single

number density variable.

Next, we have to define our Lagrangian variables and

with them construct the action. Any additional assumption

(e.g., quasineutrality) and ordering will be implemented on

the action level. Varying the new action will then result in

equations of motion that, using properly defined Lagrange-

Euler maps, will Eulerianize to, e.g., L€ust’s equation of

motion and the generalized Ohm’s law.

A. New Lagrangian variables

We will start by defining a new set of Lagrangian varia-

bles, inspired by Eq. (23),31

Q a; tð Þ ¼
1

qm0 að Þ
mini0 að Þqi a; tð Þ þmene0 að Þqe a; tð Þ
� �

;

D a; tð Þ ¼ e ni0 að Þqi a; tð Þ � ne0 að Þqe a; tð Þ
� �

;

qm0 að Þ ¼ mini0 að Þ þmene0 að Þ;
qq0 að Þ ¼ e ni0 að Þ � ne0 að Þð Þ :

(24)

Here, Q(a, t) can be interpreted as a center of mass position

variable and D(a, t) as a local dipole moment variable, con-

necting an ion fluid element to an electron fluid element. It is

then straight-forward to take the time-derivative of Q and D
which can be interpreted as the center-of-mass velocity
_Qða; tÞ and a Lagrangian current _Dða; tÞ, respectively. Using

appropriately defined Lagrange-Euler maps, _Qða; tÞ will map

to the Eulerian velocity V(x, t) and _Dða; tÞ to the Eulerian

current J(x, t) as defined by Eq. (23).

We will also need the inverse of this transformation

qi a; tð Þ ¼
qm0 að ÞQ a; tð Þ þ

me

e
D a; tð Þ

qm0 að Þ þ me

e
qq0

;

qe a; tð Þ ¼
qm0 að ÞQ a; tð Þ �

mi

e
D a; tð Þ

qm0 að Þ � mi

e
qq0

;

ni0 að Þ ¼
qm0 að Þ þ me

e
qq0 að Þ

m
;

ne0 að Þ ¼
qm0 að Þ � me

e
qq0 að Þ

m
:

(25)

B. Ordering of fields and quasineutrality

Typically, reductions of the full two-fluid model are

obtained by imposing an auxiliary ordering on the equations

of motion. In order to preserve the variational formulation,

we perform an ordering directly in the action.

To construct the action, we will start with the two-fluid

action of Eq. (1) and change variables to Q and D, but in

light of the fluid models we are interested in, we will first

make two simplifying assumptions: We order the fields in

the action so that the displacement current in Eq. (16) will

vanish, and we assume quasineutrality. In this section, we

describe this field ordering in detail and discuss quasineutral-

ity in the Lagrangian variable context, which as far as we

know has not been done before.

The omission of the displacement current is allowed,

when the time scale of changes in the field configuration is

long relative to the time it takes for radiation to

“communicate” these changes across the system.32 We use

non-dimensional variables by introducing a characteristic

scale B0 for the magnetic field and a characteristic length

scale ‘ for gradients. Times are then normalized by the

Alfv�en time tA ¼ ‘=vA and the _qs’s by the Alfv�en speed

vA ¼ B0=
ffiffiffiffiffiffiffiffi
4pq
p

, resulting in the following form for the sum

of the field and interaction terms of the Lagrangian (4):

B2
0

8p

ð
dt

ð
d3x̂

����� vA

c

@Â

@ t̂
� /0

B0‘
r̂/̂

����
2

� jr̂ � Âj2
" #

þ
X

s

B2
0

� ð
dt

ð
d3ân0n̂s0 að Þes

ð
d3x̂d x̂ � q̂sð Þ

� vA‘

B0c
_̂qs � Â �

/o

B2
0

/̂
� ��

;

where /0 and n0 are yet to be specified scales for the electro-

static potential and the densities of both species, respectively.

We also require that the two species’ velocities are of the same

scale. Requiring the two interaction terms in the Lagrangian to

be of the same order results in a scaling for /; viz.,

/0 � B0‘vA=c. Thus, both parts of the jEj2 term are of order

OðvA=cÞ. Neglecting this term and varying with respect to Â
results in
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r̂ � B̂ ¼ 4pen0vA

c

‘

B0

�ð
d3ad x̂ � q̂ið Þn̂i0 að Þ _̂qi

�
ð

d3ad x̂ � q̂eð Þn̂e0 að Þ _̂qe

�
;

which can be written as

B0

‘
r̂ � B̂ ¼ 4pj0

c
Ĵ ; (26)

where j0 ¼ en0vA is a scale for the current.

Varying the scaled action with respect to /̂ yields

0 ¼
ð

d3âdðx̂ � q̂iÞn̂i �
ð

d3âdðx̂ � q̂eÞn̂e � Dn̂: (27)

The above equation states that the difference in the two den-

sities is zero, i.e., the plasma is quasineutral, a property that

holds locally, i.e., niðx; tÞ ¼ neðx; tÞ. Using Eq. (6), this state-

ment would correspond to the following in the Lagrangian

variable picture:

ni0 að Þ
J i a; tð Þ

����
a¼q�1

i x;tð Þ
¼ ne0 að Þ
J e a; tð Þ

����
a¼q�1

e x;tð Þ
: (28)

In the Lagrangian picture, we will make the additional

assumption of homogeneity: ni0ðaÞ ¼ ne0ðaÞ ¼ constant,

which is natural for the plasma we are modeling. It states

that at t¼ 0 all fluid elements are identical in the amount of

density they carry. Therefore, ni0 and ne0 can be replaced by

a constant n0. Equation (28) then reduces to a statement

about the two Jacobians

J iða; tÞja¼q�1
i ðx;tÞ

¼ J eða; tÞja¼q�1
e ðx;tÞ; (29)

which will play a central role in our development below.

Note, that the homogeneity assumption (ni0 ¼ ne0 ¼ n0)

does not prohibit us from describing quasineutral plasmas

with density gradients. What we would have to do in this

case, would be to pick our labeling scheme, and hence the

Jacobian, accordingly, as to reflect the initial density gradient

of the configuration. Thus, there is freedom in this regard

beyond what we are assuming now.

C. Action functional

We are now ready to implement the change of variables

discussed in Sec. III A. Because of the homogeneity assump-

tion ni0ðaÞ ¼ ne0ðaÞ ¼ n0, the new variables of Eq. (24)

reduce to

Q a; tð Þ ¼
mi

m
qi a; tð Þ þ

me

m
qe a; tð Þ;

D a; tð Þ ¼ en0 qi a; tð Þ � qe a; tð Þð Þ;
qm0 að Þ ¼ mn0;

qq0 að Þ ¼ 0;

(30)

and the inverse transformation of Eq. (25) to

qi Q;Dð Þ :¼ qi a; tð Þ ¼ Q a; tð Þ þ
me

men0

D a; tð Þ;

qe Q;Dð Þ :¼ qe a; tð Þ ¼ Q a; tð Þ �
mi

men0

D a; tð Þ ;
(31)

where we choose the notation qsðQ;DÞ to emphasize that

the qs should not be thought of as ion/electron trajectories

any more but as specific linear combinations of Q(a,t)
and D(a,t). In addition, we will need the ion and electron

Jacobians, J iðQ;DÞ and J eðQ;DÞ, now expressed in terms

of Q and D.

The resulting action functional has the form

S¼� 1

8p

ð
dt

ð
d3xjr�A x; tð Þj2þ

ð
dt

ð
d3x

ð
d3an0 d x� qi Q;Dð Þð Þ e

c
_Q a; tð Þþ

me

men0

_D a; tð Þ
� �

� A x; tð Þ� e/ x; tð Þ
� �� 

þ
ð

dt

ð
d3x

ð
d3an0 d x� qe Q;Dð Þð Þ �e

c
_Q a; tð Þ�

mi

men0

_D a; tð Þ
� �

� A x; tð Þþ e/ x; tð Þ
� �� 

þ1

2

ð
dt

ð
d3an0 mij _Qj2 a; tð Þþ

mime

me2n2
0

j _Dj2 a; tð Þ
� �

�
ð

dt

ð
d3an0 miUi

min0

J i Q;Dð Þ ; ms0�mese0ð Þ=mi

� �
þmeUe

men0

J e Q;Dð Þ ; se0

� �� �
; (32)

where we recall s0 ¼ ðmisi0 þ mese0Þ=m.

D. Nonlocal Lagrange-Euler maps

Now we define the Lagrange-Euler maps that connect

the Eulerian observables V and J to the new Lagrangian vari-

ables Q and D. Referring to Sec. II B, one can see that a

Lagrange-Euler map is a relationship between a Lagrangian

quantity and some Eulerian observables, which holds only

when it is evaluated on a trajectory x ¼ qsða; tÞ. If we apply

the inverse Lagrange-Euler maps from Eqs. (6) and (8) to

Eq. (23) and assume quasineutrality, we get

V x; tð Þ ¼
mi

m
_qi a; tð Þ

����
a¼q�1

i x;tð Þ
þ me

m
_qe a; tð Þ

����
a¼q�1

e x;tð Þ
;

J x; tð Þ ¼ e
n0

J i a; tð Þ
_qi a; tð Þ

� �����
a¼q�1

i x;tð Þ

�e
n0

J e a; tð Þ
_qe a; tð Þ

� �����
a¼q�1

e x;tð Þ
;

(33)
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n x; tð Þ ¼
mi

m

n0

J i a; tð Þ

� �����
a¼q�1

i x;tð Þ
þme

m

n0

J e a; tð Þ

� �����
a¼q�1

e x;tð Þ
;

s x; tð Þ ¼
mi

m
si0

����
a¼q�1

i x;tð Þ
þ me

m
se0

����
a¼q�1

e x;tð Þ
;

(34)

seðx; tÞ ¼ se0ja¼q�1
e ðx;tÞ: (35)

The definitions of Q(a, t) and D(a, t) in Eq. (30) suggest

that their time-derivatives should be associated with V and J,

respectively. However, both _Q and _D are nonlocal objects,

since they relate the velocities of electrons and ions which

are located at different points in space. This means that nei-

ther _Q nor _D, when evaluated at the inverse maps for a, can

Eulerianize to a local velocity or current, since, in general,

x ¼ qiðQ;DÞ and x0 ¼ qeðQ;DÞ with x 6¼ x0 or, they

are simultaneously evaluated at different trajectories.

Therefore, we have two different inverse functions where

the Lagrangian quantities are to be evaluated, namely,

a ¼ q�1
i ðx; tÞ and a ¼ q�1

e ðx0; tÞ which should be thought of

as the inverse functions of x ¼ qiðQ;DÞ and x0 ¼ qeðQ;DÞ.
To make this work, we define our Lagrange-Euler maps with

x ¼ x0 as

V x; tð Þ ¼
mi

m
_Q a; tð Þþ

me

men0

_D a; tð Þ
� �����

a¼q�1
i x;tð Þ

þme

m
_Q a; tð Þ�

mi

men0

_D a; tð Þ
� �����

a¼q�1
e x;tð Þ

;

J x; tð Þ ¼
en0

J i a; tð Þ
_Q a; tð Þþ

me

men0

_D a; tð Þ
� �����

a¼q�1
i x;tð Þ

� en0

J e a; tð Þ
_Q a; tð Þ�

mi

men0

_D a; tð Þ
� �����

a¼q�1
e x;tð Þ

:

(36)

Due to Eq. (29), the two Jacobian determinants are equal

(as long as they are evaluated at the respective inverse func-

tions) and can be replaced by a common Jacobian determi-

nant, J .

The maps just defined are straight-forward to apply for

mapping an Eulerian statement to a Lagrangian one, but for

our purpose, we have to invert them. To keep careful track

of the two inverse functions, we first invert the intermediate

relations

V x; tð Þ þ
me

men x; tð Þ
J x; tð Þ

¼ _Q a; tð Þ þ
me

men0

_D a; tð Þ
� �����

a¼q�1
i x;tð Þ

; (37)

V x; tð Þ �
mi

men x; tð Þ
J x; tð Þ

¼ _Q a; tð Þ �
mi

men0

_D a; tð Þ
� �����

a¼q�1
e x;tð Þ

; (38)

where we have used Eq. (6). The inverse Lagrange-Euler

maps are now given by

_Q a; tð Þ ¼
mi

m
V x; tð Þþ

me

men x; tð Þ
J x; tð Þ

� �����
x¼qi Q;Dð Þ

þme

m
V x0; tð Þ� mi

men x0; tð ÞJ x0; tð Þ
� �����

x0¼qe Q;Dð Þ
;

_D a; tð Þ ¼ en0 V x; tð Þþ
me

men x; tð Þ
J x; tð Þ

� �����
x¼qi Q;Dð Þ

�en0 V x0; tð Þ� mi

men x0; tð ÞJ x0; tð Þ
� �����

x0¼qe Q;Dð Þ
: (39)

Note that the construction of the maps of Eqs. (36) and (39)

can be done with any invertible linear combination of the

time derivatives of our Lagrangian variables. The only

restriction is that the action should comply with the Eulerian

Closure Principle, i.e., it should be expressible entirely in

terms of the Eulerian observables. It is straightforward to

show that this is true in our case.

E. Lagrange-Euler maps without quasineutrality

Had we not assumed quasineutrality, we would have to

proceed differently: Eq. (23) implies that the proper

Lagrangian variables that would Eulerianize to velocity and

current would be

V x; tð Þ ¼
mi

ni0

J i
_qi a; tð Þ

� �����
a¼q�1

i x;tð Þ

mi
ni0

J i

� �����
a¼q�1

i x;tð Þ
þ me

ne0

J e

� �����
a¼q�1

e x;tð Þ

þ
me

ne0

J e
_qe a; tð Þ

� �����
a¼q�1

e x;tð Þ

mi
ni0

J i

� �����
a¼q�1

i x;tð Þ
þ me

ne0

J e

� �����
a¼q�1

e x;tð Þ

;

J x; tð Þ ¼ e
ni0

J i
_qi a; tð Þ

� �����
a¼q�1

i x;tð Þ

�e
ne0

J e
_q a; tð Þ

� �����
a¼q�1

e x;tð Þ
:

The above equations suggest that without quasineutrality, the

definitions for _Q; _D, etc., should be modified to the following:

_Q a; tð Þ ¼
1

qm0 að Þ
miJ eni0 að Þ _qi a; tð Þ þ meJ ine0 að Þ _qe a; tð Þ
� �

;

_D a; tð Þ ¼ e J eni0 að Þ _qi a; tð Þ � J ine0 að Þ _qe a; tð Þ
� �

;

qm0 að Þ ¼ miJ eni0 að Þ þ meJ ine0 að Þ;

where _Q=ðJ iJ eÞ maps to V(x, t) and _D=ðJ iJ eÞ to J(x, t). In

this case, however, both _Q and _D are implicitly defined, since

J i and J e depend on them. This problem is absent when only

manipulating the Eulerian equations of motion. It might sug-

gest though that when quasineutrality does not hold, the one-

fluid description might not be appropriate. This can also be

seen in the most general case derived by L€ust in Ref. 29. The

resulting equations of motion in V and J still contain terms ex-

plicitly referring to ion/electron quantities, e.g., ni and ne.

From a variational point of view, it is not obvious how to apply

the Eulerian Closure Principle without quasineutrality. It seems
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that in order to preserve it, one would need to distinguish

between integrations over ion and electron labels, so that the

d3a could be related to the proper J s.

F. Derivation of the continuity and entropy equations

Before we derive the equations of motion for several dif-

ferent models in the next section, we derive here the continu-

ity equation, which all of the models below have in common,

and the entropy equations.

Due to the identity of the Jacobians from Eq. (29), the

equation for n (Eq. (33)) reduces to

n x; tð Þ ¼
n0

J i a; tð Þ

� �����
a¼q�1

i x;tð Þ
¼ n0

J e a; tð Þ

� �����
a¼q�1

e x;tð Þ
; (40)

where q�1
s are still the inverse functions of qsðQ;DÞ.

Inverting the equation for the ions and taking the time deriv-

ative yields

dn

dt

����
x¼qi Q;Dð Þ

¼ d

dt

n0

J i a; tð Þ
¼ � n0

J 2
i a; tð Þ

@J i

@t
:

To Eulerianize the equation above, we use the well-known

relations d=dt ¼ @=@tþ v � r and @J =@t ¼ Jr � v. The key

here is to use the correct Eulerian velocity, in this case the

ion velocity in terms of V and J. The result is

@n

@t
þ V þ me

men
J

� �
� rn ¼ �nr � V þ me

men
J

� �
;

which can be further reduced to

@n

@t
þr � nVð Þ þ me

me
r � J ¼ 0:

However, we already know from Eq. (26) that r � J ¼ 0.

Therefore, no matter which equality we choose in Eq. (40),

the continuity equation will be the same

@n

@t
þr � nVð Þ ¼ 0: (41)

Similarly, from Eq. (34) we obtain

@s

@t
þ V � rs ¼ 0;

and from Eq. (35)

@se

@t
þ V � mi

men
J

� �
� rse ¼ 0;

or to leading order in me=mi

@se

@t
þ V � 1

en
J

� �
� rse ¼ 0:

IV. DERIVATION OF REDUCED MODELS

If we vary the action functional (32) with respect to Q
and D and subsequently apply the Lagrange-Euler map we

recover the momentum equation and generalized Ohm’s law

of L€ust33 (in the non-dissipative limit)

nm
@V

@t
þ V � rð ÞV

� �
¼ �rpþ J � B

c

� mime

me2
J � rð Þ J

n

� �
; (42)

EþV�B

c
¼mime

me2n

@J

@t
þ J �rð ÞV� J �rð Þ J

n

� �
þ r�Vð ÞJ

� �

þmime

me2
V �rð Þ J

n

� �
þ

mi�með Þ
menc

J�Bð Þ

þ mime

mn2e2
J V �rð Þn� mi

men
rpeþ

me

men
rpi :

(43)

We will not show this lengthy, although straightforward,

calculation here, but instead show the detailed derivation of

extended MHD in Sec. IV A which requires one more order-

ing in the action of Eq. (32).

A. Extended MHD

At this point we will make one more simplification: We

define the mass ratio l ¼ me=mi and order the action func-

tional keeping terms up to first order in l. Up to first order,

the change of variables is

qi Q;Dð Þ ¼ Q a; tð Þ þ
l

en0

D a; tð Þ;

qe Q;Dð Þ ¼ Q a; tð Þ �
1� l
en0

D a; tð Þ;
(44)

and the action takes on the form

S ¼ � 1

8p

ð
dt

ð
d3xjr � A x; tð Þj2

þ
ð

dt

ð
d3x

ð
d3an0

�
d x� qi Q;Dð Þð Þ

�
�

e

c
_Q a; tð Þ þ

l
cn0

_D a; tð Þ � A x; tð Þ � e/ x; tð Þ
�

þ
ð

dt

ð
d3x

ð
d3an0

�
d x� qe Q;Dð Þð Þ

� � e

c
_Q a; tð Þ þ

1� lð Þ
cn0

_D a; tð Þ � A x; tð Þ þ e/ x; tð Þ
� �

þ 1

2

ð
dt

ð
d3a n0mi 1þ lð Þj _Qj2 a; tð Þ þ

l

e2n2
0

j _Dj2 a; tð Þ
� �

�
ð

dt

ð
d3a n0

�
Ue

n0

J e Q;Dð Þ ; se0

� �

þUi
n0

J i Q;Dð Þ ; si0

� ��
; (45)

where for convenience we have replaced the Us, the internal

energy per unit mass, by Us, the internal energy per particle.

The pressure is obtained from the latter according to

ps ¼ n2@Us=@n.

Varying the action with respect to Qk yields

092118-7 Keramidas Charidakos et al. Phys. Plasmas 21, 092118 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

128.83.61.205 On: Fri, 03 Oct 2014 20:29:54



0 ¼ �n0mi 1þ lð ÞQ
::

k a; tð Þ � @kp

þn0

�
e

c
_Qj a; tð Þ þ

l
en0

_Dj a; tð Þ
� �

@Aj x; tð Þ
@xk

�e@k/ x; tð Þ �
e

c

d

dt
Ak x; tð Þ

�����
x¼qi Q;Dð Þ

þn0

�
� e

c
_Qj a; tð Þ �

1� lð Þ
en0

_Dj a; tð Þ
� �

@Aj x; tð Þ
@xk

þe@k/ x; tð Þ þ
e

c

d

dt
Ak x; tð Þ

�����
x¼qe Q;Dð Þ

: (46)

The variation of the internal energy term proceeds by

varying qs through Eqs. (44), giving dqs ¼ dQ and using

these expressions in the variation of the Jacobians J s. We

have given the Eulerian result since the Lagrangian one

has two terms of the form of Eq. (20), and it is cumbersome

to carry this throughout the rest of the calculation.

(See Ref. 1 for a treatment that orders the Eulerian equa-

tions directly.) Consistent with Dalton’s law, the total sin-

gle fluid pressure is p ¼ pi þ pe and both these pressures

come in entirely at the zeroth order of l. Note that the two

time derivatives of A do not cancel, because they are

advected by different flows, or, since we are still in the

Lagrangian framework, they are evaluated at different

arguments.

To find the Eulerian equations of motion, we start with

Eq. (39) (up to first order in l) and impose locality, i.e.,

x ¼ x0, such that _Q maps to V(x, t) and _D to J(x, t). However,

the time derivatives of _Q and _D have to be treated with care

as they each consists of two terms that are advected with dif-

ferent velocities. We will show how to Eulerianize the equa-

tions of motion in detail.

The €Q in the first term of Eq. (46) can be re-written as

€Q a; tð Þ¼l
d

dt
V x; tð Þ�

1�lð Þ
en xð Þ

J x; tð Þ
� �����

x¼qe Q;Dð Þ

þ 1�lð Þ d

dt
V x; tð Þþ

l
en xð Þ

J x; tð Þ
� �����

x¼qi Q;Dð Þ
(47)

¼ 1� lð Þ
�
@V

@t
þ @qi

@t
� rV þ l

en

@

@t

J

n

� �

þl
e

@qi

@t
� r J

n

� ��
þ l

�
@V

@t
þ @qe

@t
� rV

� 1� lð Þ
en

@

@t

J

n

� �
� 1� lð Þ

e

@qe

@t
� r J

n

� ��
: (48)

From Eqs. (44), we can find explicit expressions for the time

derivatives of the qsðQ;DÞ

@qi

@t
¼ _Q þ l

en0

_D ! V þ l
en

J; (49)

@qe

@t
¼ _Q � 1� l

en0

_D ! V � 1� l
en

J: (50)

Inserting these expression into Eq. (48), we find after some

algebra that

€Q a; tð Þ !
@V

@t
þ V � rð ÞV þ l 1� lð Þ

ne2
J � rð Þ J

n

� �
: (51)

Next we Eulerianize the interaction terms of Eq. (46)

using Eq. (39) (up to first order in l) and Eq. (44). The result is

ne

c
Vj þ

l
en

Jj

� �
@Aj

@xk
� c@k/�

@Ak

@t
� @qi

@t
� rAk

� �

þ ne

c

�
�Vj þ

1� lð Þ
en

Jj

� �
@Aj

@xk
þ c@k/þ

@Ak

@t

þ @qe

@t
� rAk

�
; (52)

which, after substitution using Eqs. (49) and (50), yields

1

c
Jj
@Aj

@xk
� Jj

@Ak

@xj

� �
¼ J � r� Að Þð Þk

c
: (53)

The full Eulerian version of the equation of motion for

the velocity of Eq. (46), also referred to as the momentum
equation is

nm
@V

@t
þ V � rð ÞV

� �
¼ �rpþ J � B

c

�me

e2
J � rð Þ J

n

� �
: (54)

Note, it was shown in Ref. 1 that the last term of Eq. (54) is

necessary for energy conservation.

Next, varying the action with respect to Dk yields

0¼ mil
n0e2

€Dk a; tð Þþ
1�lð Þ
en0

@kpe�
l

en0

@kpi

þl

��
�1

c

d

dt
Ak x; tð Þ� @k/ x; tð Þþ

1

c

�
_Qj a; tð Þ

þ l
en0

_Dj a; tð Þ
�
@Aj x; tð Þ
@xk

Þ
�����

x¼qi Q;Dð Þ

þ 1�lð Þ
��
�1

c

d

dt
Ak x; tð Þ�@k/ x; tð Þþ

1

c

�
_Qj a; tð Þ

� 1�lð Þ
en0

_Dj a; tð Þ
�
@Aj x; tð Þ
@xk

������
x¼qe Q;Dð Þ

: (55)

This time the Jacobians of the internal energies are varied

using dqe ¼ �ð1� lÞdD=ðen0Þ and dqi ¼ ldD=ðen0Þ, which

again follow from Eqs. (44). Note, it is for this reason that

only the electron pressure appears to leading order in Ohm’s

law for extended MHD.

Eulerianizing the €D term in Eq. (55) yields

mil
n0e2

€D a; tð Þ ¼
mil
e2n

@J

@t
þ J � rð ÞV� J � rð Þ J

n

� �
þ r �Vð ÞJ

� �

þmil
e2

V � rð Þ J

n

� �
þ mil

e2n2
J V � rð Þn; (56)

where we have used the continuity equation Eq. (41) to elim-

inate the time derivative of n and kept leading order in l
terms. The interaction terms in Eq. (55) reduce to
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Eþ V � r� Að Þ
c

� 1� 2lð Þ
enc

J � r� Að Þ: (57)

In Eqs. (56) and (57), we see the presence of some terms

involving l, in front of €D and J�B, respectively. However,

in the latter case it occurs in the factor ð1� 2lÞ and since

our ordering is l� 1, we can drop the l-dependence in

Eq. (57), to lowest order. However, in Eq. (56), we cannot

throw out all the terms that depend on l since the factor

lmi=ðne2Þ cannot be cast into a dimensionless form, and

hence one cannot invoke the ordering l� 1 here. Post-

variation, the discrepancy in the order of the derived terms,

i.e., the existence of these anomalous terms, has also been

observed elsewhere.34

The Eulerian version of the equation of motion of the

current Eq. (55) (after keeping zeroth order in l), also known

as generalized Ohm’s law, is then

Eþ V � B

c
¼ me

e2n

@J

@t
þ J � rð ÞV � J � rð Þ J

n

� �
þ r � Vð ÞJ

� �

þ J � Bð Þ
enc

�rpe

en
þme

e2
V � rð Þ J

n

� �

þ me

e2n2
J V � rð Þn : (58)

The last two terms on the right hand side of Eq. (58) can be

combined to give ðme=ðe2nÞÞðV � rÞJ and since r � J ¼ 0,

we can add a Vðr � JÞ term without changing the result, and

combine most terms in the divergence of the tensor VJþ JV
to obtain the following equation:

Eþ V � B

c
¼ me

e2n

@J

@t
þr � VJ þ JVð Þ

� �

� me

e2n
J � rð Þ J

n

� �
þ J � Bð Þ

enc
�rpe

en
: (59)

Equations (54) and (59) constitute the extended MHD

model.

B. Hall MHD

Hall MHD is a limiting case, for which previous work

of an action functional nature exists.35,36 Here, we obtain the

action functional by expanding and retaining only terms up

to zeroth order in l, i.e., if we neglect the electron inertia

ðme ! 0Þ, the action of Eq. (32) reduces to

S¼� 1

8p

ð
dt

ð
d3xjr�A x; tð Þj2þ

ð
dt

ð
d3an0

�
�

1

2
mj _Qj2 a; tð Þ�Ui

n0

J i Qð Þ ;si0

� �
�Ue

n0

J e Q;Dð Þ ;se0

� ��

þ
ð

dt

ð
d3x

ð
d3an0

�
d x�Q a;tð Þ�

1

en0

D a; tð Þ
� �

� �e

c
_Q a; tð Þ�

1

en0

_D a; tð Þ
� �

�A x;tð Þþe/ x; tð Þ
� �

þ
ð

dt

ð
d3x

ð
d3an0

�
d x�Q a; tð Þ
� �

� e

c
_Q a;tð Þ �A x; tð Þ�e/ x; tð Þ

� �
; (60)

and Eqs. (44) become

qiðQ;DÞ ¼ Qða; tÞ;
qeðQ;DÞ ¼ Qða; tÞ � Dða; tÞ=ðen0Þ:

(61)

Observe we have also replaced mi by m in the kinetic energy

term, which is correct to leading order in l.

The inverse maps required for Eulerianizing the equa-

tions of motion reduce to

_Q a; tð Þ ¼ V x; tð Þjx¼qi¼Q;

_D a; tð Þ ¼ en0V x; tð Þjx¼qi¼Q

�en0 V x0; tð Þ � J x0; tð Þ
en x0; tð Þ

 !�����
x0¼qe Q;Dð Þ

:

(62)

Following the procedure outlined in the previous section for

extended MHD, we arrive at what is commonly referred to

as Hall MHD

nm
@V

@t
þ V � rð ÞV

� �
¼ �rpþ J � B

c
; (63)

Eþ V � B

c
¼ J � B

nec
� 1

ne
rpe; (64)

which are the usual forms of the momentum equation and

Ohm’s law for Hall MHD.

C. Electron MHD

Electron MHD,16,37–39 is another limiting case where we

neglect the ion motion completely. This theory is used to

describe the short time scale motion of the electrons in a neu-

tralizing ion background. Since the ions are immobile, we

require _qi ¼ 0 and qi ¼ qiðaÞ. Also, we require that there be

no electric field and, consequently, we neglect / from the

action. In this case, using the Q, D formulation of Sec. III A

is redundant since there is only a single fluid. From _qi ¼ 0

we find _D ¼ �ðen0m=meÞ _Q. (The same relation holds

between Q and D up to an additive constant which represents

the constant position of the ion). In addition, the Lagrange-

Euler map takes on the simple form

ve x; tð Þ ¼ 1þ 1

l

� �
_Q a; tð Þ

����
a¼q�1

e x;tð Þ
; (65)

where

qe a; tð Þ ¼ 1þ 1

l

� �
Q a; tð Þ: (66)

The remaining terms in the action are

S ¼ � 1

8p

ð
dt

ð
d3xjr � A x; tð Þj2

þ
ð

dt

ð
d3an0

1

2
mej _qej2 a; tð Þ � Ue

n0

J e Qð Þ

� �" #

�
ð

dt

ð
d3x

ð
d3ad x� qeð Þ

en0

c
_qe � A x; tð Þ ; (67)
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which is essentially the same action as that of Ref. 16. It is

also straight-forward to express this action in terms of Q
using Eqs. (65) and (66).

Upon varying the action (either in terms of qe or Q) and

Eulerianizing the following equation of motion and con-

straint are obtained:

me
@ve

@t
þ ve � rve

� �
þ e

c

@A

@t
¼ e

c
ve � Bð Þ � rpe

n
;

r� B ¼ � 4p
c

enve;

which are the usual equations of electron MHD.

V. NOETHER’S THEOREM

In this section, we will investigate the invariants of the

action functional for the quasineutral L€ust equations of Eq.

(32) and the extended MHD system of Eq. (45) using

Noether’s theorem.

Note that both actions can be expressed either in terms

of (Q, D) or in terms of ðqi; qeÞ, which are related through a

simple linear transformation, e.g., Eq. (30). Furthermore,

both sets of variables obey the Eulerian Closure Principle.

Hence, it is equivalent to work with an action expressed in

terms of either set of variables. For convenience, we shall

work with the latter set, as the Euler-Lagrange maps are eas-

ier to apply. Noether’s theorem states that if an action is

invariant under the transformations

q0s ¼ qs þ Ksðqs; tÞ; t0 ¼ tþ sðtÞ; (68)

i.e.,

S ¼
ðt2

t1

dt

ð
d3zLðqs; _qs; z; tÞ;

¼
ðt02

t01
dt0
ð

d3z0Lðq0s; _q0s; z
0; t0Þ;

then there exist constants of motion given by

C ¼
ð

d3z s
@L
@ _qs

� _qs � L
� �

� Ks �
@L
@ _qs

� �
; (69)

where the index s represents the number of independent vari-

ables q in the system. Our actions are mixed Lagrangian and

Eulerian, so the variable z can denote a or x.

We note that invariants for general reduced fluid models

have also been derived in Ref. 40 via the Noether approach.

The primary difference between the two stems from the fact

that our approach is purely in terms of Lagrangian variables,

i.e., we obtain invariants by investigating symmetries of the

Lagrangian through suitable transformations of (Q, D), which

serve as our fields. The approach employed in Ref. 40 is com-

plementary as it introduces variations induced by space-time

translations, and investigates the ensuing symmetries.

A. Time translation

It is straight-forward to see that the action is invariant

under time translation with

Ks ¼ 0; s ¼ 1:

The corresponding constant of motion, the energy, is found

to be

E ¼
ð

d3x

�
jr � Aj2

8p
þ
X

s

ð
d3a

�
1

2
n0msj _qsj2

þn0 Us
n0

J s
; ss0

� ���
:

Using suitable Lagrange-Euler maps to express our answer

in terms of the Eulerian variables fn;V; Jg, we obtain

E ¼
ð

d3x
jBj2

8p
þ nUi þ nUe þ mn

jVj2

2
þ memi

mne2

jJj2

2

� �
; (70)

for the quasineutral L€ust model and

E ¼
ð

d3x
jBj2

8p
þ nUi þ nUe þ mn

jVj2

2
þ me

ne2

jJj2

2

� �
; (71)

for the extended MHD model. Note that the two energies are

different since the extended MHD model includes the mass

ratio ordering.

B. Space translation

Space translations correspond to

Ks ¼ k; s ¼ 0;

where k is an arbitrary constant vector. Under space transla-

tions, the constant of motion is the momentum, which is

found to be

P ¼ k �
ð

d3a n0mi _qi þ n0me _qeð Þ

þk �
ð

d3x
e

c
A

ð
d3an0 d x� qið Þ � d x� qeð Þ

	 
� 
:

Using the Lagrange-Euler maps one can show that

P ¼ k �
ð

d3xnmV;

is the conserved quantity. Note that k is entirely arbitrary,

and hence we see that the total momentum

P ¼
ð

d3xqV; (72)

is conserved. This is also evident from the corresponding dy-

namical equation for V.

C. Rotations

The actions are also invariant under rotations which cor-

respond to

Ks ¼ k � qs; s ¼ 0:

Following the same procedure as before, we have
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L ¼ k �
ð

d3xnm r � V;

and since we know that k is arbitrary, we conclude that the

angular momentum given by

L ¼
ð

d3x q r � V; (73)

is a constant of motion.

D. Galilean boosts

When discussing boosts, we have to consider that the

action may remain invariant even when the following holds:

S ¼
ðt2

t1

dt

ð
d3zLðqs; _qs; z; tÞ

¼
ðt02

t01
dt0
ð

d3z0ðLðq0s; _q0s; z
0; t0Þ þ @lk

lÞ ;

because the second term vanishes identically. In all the pre-

vious derivations of the constants of motion, the infinitesimal

transformations did not involve time explicitly. A boost,

though, corresponds to

Ks ¼ ut; s ¼ 0;

where u is an arbitrary constant velocity. For a Galilean

boost in a one-fluid model, the corresponding invariant quan-

tity is given by

B ¼
ð

d3amn0ðq� _qtÞ;

and since we have two different species, this generalizes to

B ¼
X

s

ð
d3amsns0ðqs � _qstÞ:

Using the corresponding Lagrange-Euler maps, the

Eulerianized expression is given by

B ¼
ð

d3xqðx� VtÞ: (74)

VI. CONCLUSIONS

In this paper, we derived several fluid models from a

general two-fluid action functional. All approximations,

ordering schemes, and changes of variables were done in the

action functional before Hamilton’s principle was invoked.

We defined a new set of Lagrangian variables, and under the

assumption of quasineutrality, we constructed a new set of

nonlocal Lagrange-Euler maps assuring that our Lagrangian

equations of motion can be Eulerianized. Last, we derived

several conservation laws for these models using Noether’s

theorem.

The novel nonlocal Lagrange-Euler map of this paper is

of particular general importance. Usual Lagrange-Euler

maps (also known as momentum maps) entail the advection

of various quantities by a single velocity field and this can be

traced to the algebraic structure of the Poisson bracket writ-

ten in terms of Eulerian variables (see, e.g., Ref. 3). For sin-

gle fluid models like MHD the Poisson bracket41 has semi-

direct product structure, which occurs in a variety of fluid

contexts (e.g. Refs. 42–44). However, many systems do not

posses this semi-direct product structure (e.g. Refs. 45–48)

and indeed a general theory of algebraic extensions was

given in Ref. 49. It is the selection of the set of observables

and the ECP that give rise to the general algebras underlying

Poisson brackets. Detailed construction of general algebras

of Ref. 49 will be reported in future publications, along with

derivations of other single fluid models including

gyroviscosity.6,50
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