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A general procedure for constructing action principles for continuum models via a generalization

of Hamilton’s principle of mechanics is described. Through the procedure, an action principle for a

gyroviscous magnetohydrodynamics model is constructed. The model is shown to agree with a

reduced version of Braginskii’s fluid equations. The construction reveals the origin of the gyromap,

a device used to derive previous gyrofluid models. Also, a systematic reduction procedure is

presented for obtaining the Hamiltonian structure in terms of the noncanonical Poisson bracket.

The construction procedure yields a class of Casimir invariants, which are then used to construct

variational principles for equilibrium equations with flow and gyroviscosity. The procedure for

obtaining reduced fluid models with gyroviscosity is also described. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4891321]

I. INTRODUCTION

The main purpose of this paper is to describe a very gen-

eral procedure for constructing action principles for plasma

models, and then to use the procedure to construct a gyrovis-

cous magnetofluid model, a version of which agrees with a

two-dimensional reduced ideal limit of Braginskii’s equa-

tions.1 The action principle leads naturally to an unambigu-

ous conserved energy functional, with the associated

Hamiltonian description. In addition, a family of constants of

motion is also obtained, which can be used for construction

of variational principles for equilibria and dW type stability

criteria. Another by-product obtained is the derivation and

physical identification of the gyromap, a tool introduced in

Ref. 2 and used in previous derivations of reduced fluid mod-

els.3–5 It is shown how to directly obtain such reduced fluid

models from the action principle.

The construction and use of Hamiltonian and action

principle (HAP) formulations of continuum models possess a

fascinating history that dates back to Langrange’s pioneering

work in analytical mechanics,6 which was extended by many

illustrious scientists (e.g., see Refs. 7–11) in the 19th cen-

tury. In the 20th century, important seminal contributions,

too numerous to list (e.g., see Refs. 12–14), were obtained;

and in 1980s renewed interest in HAP formulations arose

from the key work.15 Reviews of this approach can be found

in Refs. 16–19.

Evidently, the HAP formalism has a distinguished his-

tory—it is also the conventional basis for building models in

theoretical physics and describing how to do this in a plasma

physics context is a major goal of the present work. There

are many reasons for constructing models via an action prin-

ciple, apart from the aesthetics and simplicity afforded by

the approach. Since the underlying basic physics possesses a

HAP formalism, viz., the relativistic 2N-body problem of N
electrons and N ions interacting via the core electromagnetic

interaction, one expects the nondissipative versions of sim-

plified models to inherit this underlying HAP structure. This

is the case for the most important equations of plasma

physics, e.g., magnetohydrodynamics (MHD),15 the Vlasov

description (e.g., see Refs. 16 and 20), and the BBGKY hier-

archy21 all possess HAP structure. Another reason is that

building an action principle, by the steps we describe here, is

easier than the usual perturbative or alternative model build-

ing approaches. And, an oft stated advantage is the clear

emergence of energy and other invariants of motion for the

nondissipative dynamics, which will be exemplified here by

the discovery of new such invariants.

The elimination of unphysical dissipation is an impor-

tant advantage of the HAP formalism over other approaches.

It is common to start with a parent model, and perform an

ordering in the equations of motion, to obtain a “reduced”

model. However, in this process of obtaining simplified mod-

els, one runs the risk of introducing “false” dissipation (e.g.,

see Refs. 22–25 for such cases); i.e., the feature of energy

conservation can be broken through an improper phenome-

nological prescription. By using the HAP formalism, an

ordering can be done in a rigorous manner that ensures the

resultant model is non-dissipative, when it should be.

The process of obtaining reduced fluid models lends

itself well to the HAP approach. These kinds of models are

two or nearly two-dimensional magnetofluid models that

have been developed to incorporate important physics into

computable closed dynamical systems. One of the early

examples is reduced MHD,26 but many models for many

purposes have been obtained over the years (e.g., see

Refs. 4, 22, and 27–34). In the past, reduced fluid models

mostly have been obtained through an asymptotic expan-

sion, through suitable orderings, or through ad hoc

approaches. (See Refs. 35 and 36 for general theory of
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models of this type.) In this paper, we will show how the

HAP formalism presents a clear-cut manner to obtain

reduced fluid models with gyroviscous effects. This is done

in the context of a three field high-b reduced MHD

(RMHD) model. Also, as noted above, we will explain the

origin of the gyromap, a tool introduced in Ref. 2 and used

in previous derivations of reduced fluid models.4,5

The remainder of the paper is organized as follows. In

Sec. II, we commence with a description of the action prin-

ciple suitable for the derivation of our continuum models of

interest here. In Sec. III, the Lagrangian and Eulerian

descriptions of a fluid are reviewed, and the rationale

behind choosing the former as a starting point is presented.

In Sec. IV, we describe the general procedure for building

action principles. In Sec. V, we describe how a gyroviscous

model is constructed by using this approach, present the re-

sultant equations of motion, and compare them to those of

Braginskii.1 In Sec. VI, we describe the transformation

from the action principle description of Sec. V to the

Eulerian variable Hamiltonian description in terms of non-

canonical Poisson brackets. In Sec. VII, we present

Casimirs for the full and reduced models, and describe

equilibria that are obtained via the energy-Casimir method.

In this way, equilibrium equations with flow and the influ-

ence of gyroviscous effects are obtained. Here, we also

describe how to derive reduced fluid models. Finally, we

summarize and conclude with some comments on the HAP

formalism in Sec. VIII.

II. HAMILTON’S PRINCIPLE AND THE FUNCTIONAL
DERIVATIVE

Most textbooks follow a similar prescription for deploy-

ing Hamilton’s principle. They begin by identifying a config-

uration space and variables that describe the system in its

entirety, the generalized coordinates qi(t), where i¼ 1, 2,…,

N and N is the number of degrees of freedom of the system.

Then, the Lagrangian L :¼T – V is obtained by identifying

the kinetic energy T and potential energy V, yielding the

action functional

S½q� ¼
ðt2

t1

dt Lðq; _q; tÞ : (1)

By “functional,” we refer to a quantity whose domain is

comprised of functions and whose range is given by real

numbers. In other words, for a given path q(t), the action

functional S[q] returns a real number upon substitution of the

path into the above expression.

In Hamilton’s principle, the lower and upper limits of

the path, q(t1) and q(t2), are fixed and the path that gives rise

to the extremal value is sought. Extremal means that the

functional derivative of the action vanishes, dS[q]/dqi¼ 0,

where the functional derivative is defined by

dS q; dq½ � ¼ dS qþ �dq½ �
d�

����
�¼0

¼:
dS q½ �
dqi

; dqi

� �

¼
ðt2

t1

dt
@L

@qi
� d

dt

@L

@ _qi

� �
dqi : (2)

In the above expression, dq(t) is an arbitrary perturbation of

a path q(t); given the arbitrariness, the only way for dS to

vanish for all dq(t) is to have the quantity within the paren-

theses vanish, i.e.,

dS q½ �
dqi
¼ 0 () @L

@qi
� d

dt

@L

@ _qi
¼ 0 : (3)

In other words, the extremal path corresponds to the Euler-

Lagrange equations of motion.

III. LAGRANGIAN AND EULERIAN DESCRIPTIONS—
ATTRIBUTES, OBSERVABLES, AND THE LAGRANGE
TO EULER MAP

In this section, we review the Lagrangian and Eulerian

descriptions of a fluid and their relationship. The section is

divided into two parts. In Sec. III A, we describe the basic

Lagrangian variable that describes a trajectory of a fluid ele-

ment, and then present some useful algebraic identities and

properties. This description most naturally possesses HAP

formulations, since it effectively treats the fluid as a set of

particles. Then, in Sec. III B, we explore the relationships

between the intrinsic properties of a fluid element and their

Eulerian observable counterparts via the Lagrange to Euler

map that relates the two descriptions. For background mate-

rial we suggest Refs. 12,13,17, and 37.

A. The Lagrangian variable q and its properties

The Lagrangian variable can be understood as a coordi-

nate that denotes the position of a fluid element or parcel,

as it is sometimes called, at a given time t. The coordinate,

which indicates the position relative to some origin

is denoted by q¼ q(a, t)¼ (q1, q2, q3); for the sake of sim-

plicity, Cartesian coordinates are used. The quantity

a¼ (a1, a2, a3) denotes the fluid element label at time t¼ 0,

which implies that a¼ q(a, 0), but this means of labeling

need not always be the case (cf. Ref. 38). In general, the con-

tinuous label a is analogous to the discrete index that enables

us to keep track of a given particle in a finite degree-of-free-

dom system. Suppose D denotes the domain that is fully

occupied by the fluid, then the map q : D! D is assumed to

be 1-1 and onto at a given fixed time t. We will suppose that

q is invertible and smooth and any other “nice” properties

that the problem demands.

Given the Lagrangian coordinate q, we introduce two

other related important quantities: the deformation matrix,

@qi=@aj ¼: qi
; j and the corresponding determinant, the

Jacobian, J :¼ detðqi
; jÞ, which in three and two dimensions,

respectively, is given by

J ¼ 1

6
�kjl�

imnqk
;iq

j
;mql

;n ; (4)

¼ 1

2
�kj�

ilqk
;iq

j
;l ; (5)

where �ijk¼ �ijk and �ij¼ �ij are the Levi-Civita tensors in the

appropriate number of dimensions. Assuming the label

specifies a unique trajectory, we conclude that J 6¼ 0; this
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ensures the invertibility of q¼ q(a, t), denoted by a¼ a(q, t).
The quantity a(q, t) can be understood to be the label of a

fluid element that reaches q at time t. In general for coordi-

nate transformations, we have

qi
;kak

; j ¼ ai
;kqk

;j ¼ di
;j ;

i.e., the deformation matrix has an inverse given by ak
; j ¼

@ak=@qj where repeated indices are summed. Using q(a, t) or

its inverse, we can express quantities such as ak
; j as functions

of either q or a.

A volume element d3a at time t¼ 0 maps into the vol-

ume element at time t according to

d3q ¼ J d3a ; (6)

and the components of an area element evolve according to

ðd2qÞi ¼ J aj
;i ðd2aÞj ; (7)

where J aj
;i is the transpose of the cofactor matrix of qj

;i given

by

J ai
;k ¼

1

2
�kjl�

imnqj
;mql

;n or J ai
;k ¼ �kj�

ilqj
;l ; (8)

in three and two dimensions, respectively. Other useful iden-

tities are

1

J
@J
@qi

; j

¼ aj
;i ; (9)

@ðJ ai
;kÞ

@ai
¼ 0 ; (10)

where (9), the standard rule for differentiation of determi-

nants, follows from (4) or (5), and (10) follows from (8) by

the antisymmetry of �ijk or �ij.

B. Attributes, observables, and the Lagrange to Euler
map

Up to now, we have considered kinematical properties

of the fluid, as described by the Lagrangian coordinate q.

But, a fluid element is not solely characterized by its position

q and its label a. In addition, it is endowed with certain

intrinsic properties, such as its density or, in the case of

MHD, some magnetic flux it might carry unchanged. Thus, it

is natural to investigate a general characterization of such

intrinsic properties. Here, we do this for the case of three

spatial dimensions.

We will refer to quantities that the fluid element carries

as attributes, since they are intrinsic to the fluid under consid-

eration. A fluid element that starts off at time t¼ 0 carries its

attributes unchanged. Thus, by definition attributes are purely

functions of the label a and are Lagrangian variable constants

of motion. We will use the subscript “0” to distinguish attrib-

utes from their Eulerian counterparts, discussed below.

Usually in fluid mechanics, the Lagrangian variable

description is not emphasized and, consequently, attributes

are usually not discussed. More typically, it is the Eulerian

fields that are emphasized and observed. We will refer to

such as Eulerian observables, or just observables for short.

The observables, being Eulerian, vary in space and time and

are therefore functions of r:¼ (x, y, z)¼ (x1, x2, x3) and t.
Some of the most commonly used Eulerian variables

include velocity field v(r, t) and the mass density q(r, t). We

reiterate that it is crucial to distinguish the Lagrangian coor-

dinate q from the Eulerian observation point r. The latter is

an independent variable that does not move with the fluid,

although it is a point of D. The inability or unwillingness to

distinguish between the two descriptions has led to confusion

in the literature. Therefore, it is important to ask, how pre-

cisely are the two descriptions related to one another?

Given knowledge of q(a, t), the observables are uniquely

determined. The rules for this determination are based on the

nature of the attributes, in particular, their tensorial proper-

ties. For example, consider the velocity field v(r, t). If we

were to insert a velocity probe into a fluid at (r, t), we would

measure the velocity of the fluid element that happened to be

at r at time t. Hence, _qða; tÞ ¼ vðr; tÞ, where the overdot indi-

cates that the time derivative is obtained at fixed a. We are still

left with the ambiguity of determining the label a, but the ele-

ment at r is given by r¼ q(a, t), whence a¼ q�1(r, t)¼ : a(r, t).
By combining all this information, we see that the Eulerian ve-

locity field is given by

vðr; tÞ ¼ _qða; tÞja¼aðr;tÞ : (11)

The above expression is an example of the Lagrange to Euler

map that supplies a means of moving from one picture to the

other.

Attributes, as part of their definition, possess rules for

transformation to their corresponding Eulerian observable.

The totality of these rules determines the set of observables.

For a continuum system, in which mass is neither created nor

destroyed, it is natural to attach a mass density, q0(a), to the

element labeled by a. We note that the mass in a given vol-

ume is given by q0d3a. By demanding that the mass by con-

served, regardless of whether one uses the Eulerian or

Lagrangian picture, we see that q(r, t)d3r¼q0d3a. By using

(6), we obtain q0 ¼ qJ . This defines the rule for transforming

to the Eulerian description, which here amounts to q defining

a three-form. Similarly, we may attach a magnetic field B0(a)

to a given fluid element and define its transformation law by

insisting on frozen in flux. This yields B � d2r¼B0 � d2a, and

from (7) we obtain JBi ¼ qi
;j Bj

0. This condition amounts to B
defining a two-form. Evaluating the expressions for the mass

density and the magnetic field at a¼ q�1(r, t)¼: a(r, t), then

gives the Lagrange to Euler map for these quantities. In other

words, given q(a, t) and the attributes, the fields {q, v, B}, the

observables, are now defined.

Most of the time we will find it convenient to work with

the alternative set of observables {q, M, B}, where M¼qv is

the momentum density. This allows a convenient way to rep-

resent the Lagrange to Euler map in terms of integrals of

over a Dirac delta function, which is used as a probe to

“pluck out” the fluid element that happens to be at the

Eulerian observation point r at time t. As an example of this

procedure, the mass density q(r, t) is obtained by
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q r; tð Þ ¼
ð

D

d3a q0 að Þ d r � q a; tð Þð Þ ¼
q0

J

����
a¼a r;tð Þ

: (12)

We will introduce the momentum density,

Mc ¼ ðMc
1;M

c
2;M

c
3Þ, which is related to the Lagrangian ca-

nonical momentum through the expression

Mc r; tð Þ ¼
ð

D

d3a P a; tð Þ d r � q a; tð Þð Þ ¼
P a; tð Þ
J

����
a¼a r;tð Þ

:

(13)

The superscript “c” indicates that the momentum density

constructed is the canonical one, as opposed to a different

momentum density introduced in Sec. V. For MHD,

Pða; tÞ ¼ ðP1;P2;P3Þ ¼ q0 _q. In general, note that P(a, t)
can be found from the Lagrangian through Pða; tÞ ¼ dL=d _q
and is not always equal to q0 _q. Lastly,

Bi r; tð Þ ¼
ð

D

d3a qi
; j a; tð ÞBj

0 að Þ d r � q a; tð Þð Þ

¼ qi
; j a; tð Þ

Bj
0 að Þ
J

����
a¼a r;tð Þ

; (14)

for the components of the magnetic field.

We round off this subsection with a mention of a few

additional useful identities that play a role in Secs. IV–VI.

The chain rule reveals the components of the Eulerian gradi-

ent are given by

@

@xk
¼ ai

;k

@

@ai

����
a¼a r;tð Þ

: (15)

With the condition that r¼ q(a, t), the time derivative of

any function f ða; tÞ ¼ ~f ðr; tÞ ¼ ~f ðqða; tÞ; tÞ can be mapped

to the corresponding Eulerian variables according to the

expression

_f ja¼a r;tð Þ ¼
@~f

@t
þ _qi a; tð Þ

@~f

@xi

����
a¼a r;tð Þ

¼ @
~f

@t
þ v � r~f r; tð Þ : (16)

As stated earlier, we note that the overdot denotes the time

derivative at constant a, @=@t denotes the time derivative at

constant r, and r is the Eulerian derivative, i.e., @=@r with

components @=@xi.

Lastly, we can obtain an evolution equation for the de-

terminant J using Eq. (9)

_J ¼ @J
@qi

; j

_qi
;j ¼ J aj

;i _qi
;j ; (17)

which upon evaluation at a¼ a(r, t) gives a formula due to

Euler12

@ ~J
@t
þ v � r ~J ¼ ~J r � v : (18)

IV. A GENERAL PROCEDURE FOR BUILDING AN
ACTION PRINCIPLE FOR CONTINUUM MODELS

In this section, we provide a brief summary of the general

methodology advocated in Ref. 39 for building action princi-

ples for continua. One of the major advantages of building an

action principle from scratch deserves a mention before pro-

ceeding further. As opposed to ordering in the equations of

motion or ad hoc methods that are deployed in obtaining mod-

els from a basic set of equations, we proceed to introduce each

term in the action serially, and emphasize the physical rele-

vance of each to the model being built. This allows for

improved physical understanding and motivation as to why the

different terms arise, and what roles they play in the model.

The first step in constructing an action principle lies in

choosing the domain D. For a fluid it would be either one,

two, or three-dimensional, D � R1;2;3. Furthermore, we sup-

pose that there exists a Lagrangian (trajectory) variable

q : D! D. We also suppose that q(a, t), where the label

a � D, is a well behaved function that is smooth, has an

inverse, etc.

The next step lies in choosing the sets of attributes and

the corresponding observables, defined via a Lagrange to

Euler map. There is some freedom in choosing the set of

observables that interest us, as discussed in Sec. III. It is im-

portant to recognize that the observables must be completely

determined by the functions q(a, t), but the converse state-

ment is not a necessity.

From the analogy with Hamilton’s action principle in

mechanics, it is evident that the action will comprise of terms

that involve the variable q(a, t) and its derivatives with

respect to both its arguments. The last step of the method is

to impose a most stringent requirement upon the terms in the

action—viz., the existence of a closure principle which ulti-

mately means that our theory must be ‘Eulerianizable.’ More

precisely, we impose the condition that our action be ex-

pressible entirely in terms of our set of observables. Such a

requirement is well motivated, since it leads to energy-like

quantities that are entirely expressible in terms of the desired

Eulerian variables. As an example, note that the kinetic

energy functional for a fluid satisfies

T q½ � :¼
1

2

ð
D

d3a q0 að Þj _qj2 ¼ 1

2

ð
D

d3r qjvj2 ; (19)

where j _qj2 :¼ _qigij _qj ¼ _qi _qi and for Cartesian coordinates

the metric gij¼ dij is chosen. Thus, the Lagrangian variable

description of the first equality can be written as the purely

Eulerian description of the second. The imposition of the

closure principle leads to important consequences: equations

of motion that are purely expressible in terms of our observ-

ables, i.e., an Eulerian variable description, and an Eulerian

Hamiltonian description in terms of noncanonical Poisson

brackets, which are discussed in Secs. VI–VIII.

V. BUILDING AN ACTION PRINCIPLE FOR THE 2D
GYROVISCOUS FLUID MODEL

Now we follow the method described in Sec. IV. First,

we introduce and motivate the set of observables, then we
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describe how their corresponding attributes are used to con-

struct an action principle.

A. The observables of the 2D gyroviscous model

For the first step, choosing the domain, we select

D ¼ R2, with coordinates (x, y), since our theory is two-

dimensional. Next, when defining the set of observables we

must select the momentum density. We can choose either the

canonical momentum defined in (13) or the “kinetic” mo-

mentum defined by

M r; tð Þ ¼
ð

D

d2a q0 að Þ _q a; tð Þ d r � q a; tð Þð Þ

¼ q0 _q a; tð Þ
J

����
a¼a r;tð Þ

: (20)

The 2D version of the canonical momentum defined through

(13) is given by

Mc r; tð Þ ¼
ð

D

d2a P a; tð Þ d r � q a; tð Þð Þ ¼
P a; tð Þ
J

����
a¼a r;tð Þ

;

(21)

where we suppose there is no momentum in the ẑ-direction.

In general, the kinetic and canonical momenta are not the

same; in fact, for the action we construct for our gyroviscous

model, their difference defines the gyromap, a key result of

this paper. When deriving the equations of motion, we work

with M, although we make use of Mc when developing the

Hamiltonian formalism for this model. Next consider the

magnetic field, which will be in our set of observables. Since

r� B¼ 0, we decompose it as follows:

B ¼ Bzðx; y; tÞ ẑ þ ẑ �rwðx; y; tÞ; (22)

which is a usual decomposition with w representing the par-

allel vector potential. Following the same line of reasoning

of Sec. III B, the associated attribute takes on the form

B0 ¼ B0zðaÞ ẑ þ ẑ �raw0ðaÞ ; (23)

with the correspondence between these attributes and observ-

ables following from (14) and yielding the Lagrange to Euler

correspondences

Bz r; tð Þ ¼
ð

D

d2a B0z að Þ d r � q a; tð Þð Þ ¼
B0z

J

����
a¼a r;tð Þ

; (24)

wðr; tÞ ¼ w0ja¼aðr;tÞ : (25)

Our last observable is the density, which is given by the 2D

version of (12)

q r; tð Þ ¼
ð

D

d2a q0 að Þ d r � q a; tð Þð Þ ¼
q0

J

����
a¼a r;tð Þ

: (26)

Thus, our set of observables is {q, M, Bz, w}.

Up to now, we have not specified anything about the in-

ternal energy per unit mass, which in general is U :¼U(q, s).

However, we restrict ourselves to the barotropic case, i.e.,

assume a thermodynamic energy that is independent of the

entropy s. Thus, the pressure is obtained from U :¼U(q) via

P¼ q2dU/dq¼jq2, with j constant. The Lagrange to Euler

map between P and P0 can be determined through the use of

(26); it takes on the form

P ¼ P0

J 2

����
a¼a r;tð Þ

: (27)

Next introduce a new variable, the usage of which will

seem somewhat ad-hoc, but whose purpose will soon

become evident. The new variable attribute-observable pair

is the following:

b ¼ P

Bz
and b0 ¼

P0

B0z
: (28)

Making use of the Lagrange to Euler map for the ẑ-compo-

nent of the magnetic field and the pressure, respectively

given by (24) and (27), leads to the Lagrange to Euler map

of the form

b ¼ b0

J

����
a¼a r;tð Þ

; (29)

which demonstrates that the above equation is similar to (26)

and (24), and that these three obey similar Eulerian equations

of motion. From (28), we see that only 2 out of {P, Bz, b} can

be treated as independent functions. Thus, we proceed with the

following set of variables {q, M, Bz, w, b}, although we shall

introduce Mc in place of M and analyze the consequences later.

We have assembled together all the requisite apparatus for

building the action principle. We proceed now to this task.

B. Constructing the gyroviscous action

From Secs. II and IV, we know the kinetic energy for a

fluid element is analogous to that of a particle, and that it

must obey the closure principle. This leads to the first term

in the action

T q½ � :¼
1

2

ð
D

d2a q0 að Þj _qj2 ¼ 1

2

ð
D

d2r qjvj2 : (30)

Now, consider the multiple components that make up the

potential energy of the Lagrangian. The first involves the inter-

nal energy of the fluid, which is given by the following

functional:

Uint q½ � :¼
ð

D

d2a
B0zb0

J ¼
ð

D

d2r Bzb ; (31)

which, in light of (28), satisfies the closure principle.

The next component of the internal energy is the mag-

netic field. The field energy density is B2/8p; upon scaling

away the factor of 4p, we obtain

Umag q½ � :¼
1

2

ð
D

d2a
jB0zj2

J þ J gklai
;k aj

;l

@w0

@ai

@w0

@aj

 !

¼ 1

2

ð
D

d2r jBzj2 þ jrwj2
� �

; (32)
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an expression that by (22) satisfies the closure principle,

while physically corresponding to the magnetic energy

density.

Finally, we introduce a novel term that will be seen to

account for gyroviscosity. Since gyroviscosity is ultimately

gyroscopic in nature, this suggests a term of the following

form:

G½q� :¼
ð

D

d2a P? � _q ¼
ð

D

d2r M? � v ; (33)

which, unlike the other terms that are either independent of

or quadratic in _q, is linear in _q. It remains to determine the

form of M? or its corresponding attribute P?. From the clo-

sure principle, it is evident that G should obey (33), where

M* is expressible purely in terms of the observables and their

Eulerian derivatives. There are an endless number of possi-

bilities, but we shall assume that P* has the simple follow-

ing form:

P�i ¼ m

2e
J �ijam

; j

@

@am

b0

J

� �
; (34)

which is motivated in part by the knowledge that gyrovis-

cous effects should be linear in the magnetic moment that

scales as b � P/B. From (33), we see that

M? ¼ P�

J

����
a¼a r;tð Þ

; (35)

which can be used in conjunction with (34) to conclude that

M? ¼ m

2e
r� bẑð Þ : (36)

The m/(2e) prefactor of (34) and (36) can be explained by

defining L?, the intrinsic angular momentum, according to

M?¼ : r�L?, identified as the inherent magnetic moment

of the fluid particles due to gyro-effects. The magnetic

moment and the angular momentum are related via the gyro-

magnetic ratio that is proportional to m/e. Writing the mag-

netization in terms of the pressure, the magnetic moment can

be identified and this leads to the factor of 2. This also agrees

with a two-dimensional version of Braginskii.1

Now we construct our action by combining Eqs.

(30)–(33) as follows:

S ¼
ðt2

t1

dt ðT½q� � Uint½q� � Umag½q� þ G½q�Þ ; (37)

and we are ready to explore its consequences.

We round off this section by providing more rationale

for the definitions of P? and M?. In the 1970s and 80s,

Newcomb14,40,41 developed a theory of incompressible gyro-

fluids. Later, it was shown in the 1990s42–44 that the above

action gives rise to a version of the Braginskii equations1

that is a compressible generalization of Newcomb’s mod-

els.45 Momentum transport by gyroviscosity arises from mi-

croscopic charged particle gyration,46,47 and so it is natural

to think that the mass and charge of the important species

(ions for a single fluid model) would enter. Similarly, the

presence of gyration is immediately suggestive, when visual-

ized pictorially, of the presence of a curl. From (36), we do

see that each of these properties are indeed satisfied by M?.

If we were to add an additional component to the kinetic mo-

mentum M, such that the continuity equation remains

unchanged, it is evident that the new momentum must be

divergence free. In other words, it must be the curl of another

quantity, which has the dimensions of angular momentum

density. This provides a second reason for M? involving a

curl. Since M has already been “used” elsewhere, this leaves

q, w, Bz, and b to construct this curl. Using dimensional anal-

ysis, and the presence of m and e (outlined above), it is seen

that (36) can also be justified on heuristic grounds.

C. The Eulerian equations and the gyromap

We begin by giving the Eulerian dynamical equations

for the observables q, Bz, w, and b. These are found from the

expressions (26), (24), (25), and (29), respectively,

@q
@t
¼ �@sMs ; (38)

@Bz

@t
¼ �@s

BzMs

q

� �
; (39)

@w
@t
¼ �Ms

q
@sw ; (40)

@b
@t
¼ �@s

bMs

q

� �
: (41)

The final Eulerian equation, which governs the evolution of

momentum, is found from dS¼ 0. The computation is some-

what long and tedious, but straightforward. Hence, we first

present the equation and then discuss the origin of various

terms. The Eulerian momentum equation is

_Ms¼�@lðMsMl=qÞ�@sðPþjBj2=2ÞþBl@lBs�@lpls ; (42)

where the pressure is given by (28) and the gyroviscous ten-
sor pls is

pls ¼ Nsjlkb@k
Mj

q

� �

Nsjlk ¼
m

2e
dsk�jl � djl�sk

� �
: (43)

Now consider the gyroviscous action given by (37). On

varying the kinetic energy functional, we obtain q0q
::

, which

yields the terms on either side of the equality sign in (42).

The second term in the action, the internal energy, gives rise

to the pressure gradient as expected. Similarly, the magnetic

component of the internal energy, which comprises of two

terms, as seen from (32), gives rise to the magnetic pressure

and the penultimate term in (42). Lastly, the gyroviscous

part of the action gives rise to the gyroviscous tensor, as

defined in (43), and constitutes the last term in (42). Note

that this gyroviscous tensor is consistent with that of

Braginskii,1 when the dissipative terms are neglected and re-

stricted to two dimensions. It also corresponds to the model
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used in Ref. 2 and it is a compressible generalization of that

obtained by Newcomb.45

The action (37) has two different terms that involve _q,

and hence the canonical momentum will not be the same as

q _q. In fact, defining L ¼
Ð

d3aL, we find that

P ¼ dL

d _q
¼ q _q þP? : (44)

Dividing throughout by J and evaluating the expression at

a¼ a(r, t), the Eulerian counterpart is obtained through the

use of (20), (21), (35), and (36)

Mc ¼ M þM? ¼ M þ m

2e
r� bẑð Þ : (45)

As we are dealing with a two-dimensional momentum vec-

tor, we can write the above equation as

Mc
s ¼ Ms �

m

2e
�ls@lb ; (46)

which is the gyromap.

We shall return to the gyromap when discussing the

Hamiltonian formulation of this gyroviscous model, and

show how one can move back and forth between the two var-

iables Mc and M, and the ensuing consequences.

VI. THE HAMILTONIAN DESCRIPTION

Hitherto, we have focused almost exclusively on the

action principle formulation. But, there exists a close and

sometimes bijective relationship between the action and

Hamiltonian formulations; for this reason, we have grouped

them under the same heading, HAP. When a Lagrangian is

convex, this relationship follows straightforwardly through

the Legendre transform. In this section, we first review the

Legendre transform for infinite systems, thereby obtaining

the Lagrangian variable Hamiltonian description. Then, we

transform to obtain an Eulerian variable Hamiltonian

description with a noncanonical Poisson bracket.

A. Legendre transformation to Hamiltonian form

The Legendre transform for infinite degree-of-freedom

systems proceeds as for the finite counterpart (e.g., see

Ref. 17). As discussed in Secs. IV and V A–V C, the

Lagrangian has the form L¼T[q] – V[q], where the canoni-

cal momentum (density) is defined through P ¼ dL=d _q,

which for the present case is given by (44). Analogous to fi-

nite dimensions, the Hamiltonian functional is given by

H½q;P� ¼
ð

D

d2a _q �P� L : (47)

Here, eliminate _q by expressing it in terms of P, yielding a

Hamiltonian with a term linear in P, akin to that for a parti-

cle in a magnetic field. Later, we will write the Eulerian

form of this Hamiltonian for our model.

The Poisson bracket of two functionals F, G, again

invoking analogy with finite dimensions, is given by

F;Gf g ¼
ð

D

d2a
dF

dq
� dG

dP
� dG

dq
� dF

dP

� �
: (48)

This bracket with H[q, P] give equations equivalent to those

of dS¼ 0 as

_q ¼ fq;Hg and _P ¼ fP;Hg ; (49)

the Lagrangian variable Hamiltonian form.

B. Noncanonical Poisson brackets and Casimirs

Next we obtain from the Lagrangian variable

Hamiltonian form, an Eulerian variable Hamiltonian form.

Because Eulerian variables are not canonical, the Poisson

bracket obtained is noncanonical. The idea that common

models such as MHD and hydrodynamics are noncanonical

Hamiltonian theories, i.e., that the theory is expressed in

terms of noncanonical variables and bracket, was introduced

in Ref. 15. The noncanonical bracket has Lie algebraic prop-

erties, but it possesses degeneracy and is very different from

(48). The presence of degeneracy gives rise to invariants

known as the Casimir invariants. We will return to the

Casimirs shortly; for now, we will proceed to describe the

general methodology by which a noncanonical bracket can

be constructed from a canonical one.

Suppose the functionals F and G that enter the Poisson

bracket of (48) are functions of the canonical variables (q, P)

through the Eulerian variables, i.e., F½q;P� ¼ �F½q;…�. Then,

variation of F gives

dF ¼
ð

D

d2a
dF

dq
� dqþ dF

dP
� dP

� �
¼ d �F

¼
ð

D

d2r
d �F

dq
dqþ � � �

� �
: (50)

But, each of these Eulerian variables depends on q and P
through the Lagrange to Euler map. Hence, we may substi-

tute in the Eulerian variations induced by Lagrangian to

obtain expressions for the functional derivatives with respect

to q and P in terms of the observables. For example, with

(26) the density variation induced by dq is

dq ¼ �
ð

D

d2a q0rdðr � qÞ � dq ; (51)

which gives upon substitution into (50)ð
D

d2a
dF

dq
� dqþ dF

dP
� dP

� �

¼ �
ð

D

d2r
d �F

dq

ð
D

d2a q0rd r � qð Þ � dqþ � � � : (52)

Interchanging the order of integration and equating coeffi-

cients of dq yields an expression of the form

dF

dq
¼ Oq

d �F

dq
þ � � � ; (53)

where the O’s appearing on the RHS are operators that

involve the Dirac delta functions and integrals over d2r. A
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similar procedure can be carried out to obtain the functional

derivative with respect to P. Once the functional derivatives

with respect to q and P are known, we can substitute the rel-

evant expressions into (48) and obtain the noncanonical

bracket in terms of the noncanonical Eulerian variables (e.g.,

see Refs. 17 and 18).

Once the noncanonical bracket is obtained, the equa-

tions of motion follow from _/ ¼ f/;Hg, where / is any

Eulerian observable and H is the Hamiltonian in terms of the

observables, the existence which follows from the closure

principle. By this method of derivation, the noncanonical

bracket obtained is guaranteed to satisfy the properties of

bilinearity, antisymmetry and the Jacobi identity.17 An alter-

native proof is given in Ref. 2.

Because the Lagrange to Euler map is not one-to-one,

noncanonical brackets are degenerate, a consequence of

which are Casimir invariants (Casimirs). We shall not delve

too deeply into the theory of Casimirs, instead, we refer the

reader to Refs. 17 and 18 for general discussion, Refs. 38,

48, and 49 for application to MHD, and Refs. 50–52 for

subtleties about their incompleteness. For our purposes, it

suffices to state that Casimirs can be found from fF;Cg
¼ 0 8F, and to investigate their role in studying equilibria

and stability.

Casimirs give rise to variational principles for Eulerian

equilibria of the form

dF :¼ dðH þ CÞ ¼ 0 ; (54)

where C represents any number of known Casimirs. Given

such equilibria, the energy-Casimir method is a means for

obtaining sufficient conditions for stability. This method ori-

ginated in the plasma literature in Ref. 53, but hearkens back

to Dirichlet’s work in the 19th century54 on stability of

finite-dimensional Hamiltonian systems. From (54), by sec-

ond variation we obtain the symmetric matrix operator

Fab :¼ d2F

d/ad/b
; (55)

where the /’s are the Eulerian fields. The energy-Casimir

method states that positive-definiteness of this operator is a

sufficient condition for stability.55,60–62 Thus, Casimirs

through their presence in F, play a crucial role in this method

for determining the stability, which we investigate for a sim-

ple gyroviscous case below, but reserve comprehensive sta-

bility analyses for future work.

VII. THE GYROVISCOUS MODEL—POISSON
BRACKET, CASIMIRS, AND REDUCTION

Now we study two different cases of the gyroviscous

model and action developed in Sec. V. First, we set the at-

tribute w0 set to zero, and consequently w as well, giving a

simplified model that is more tractable yet possesses many

similarities to the full model. This facilitates observations

about the general nature of the Hamiltonian and the bracket,

and their connection to the gyromap. In the second case, the

full bracket is studied, and corresponding bracket and the

Casimirs are obtained.

A. The w	 0 model

For this reduced model, we choose to work with Mc of

(45), because it is directly obtained via the canonical mo-

mentum P through (21). Thus, since w	 0, only the ẑ-com-

ponent of the magnetic field is present. From the Legendre

transformation and the closure principle, the following

Hamiltonian is obtained:

H ¼
ð

d2r
1

2q

����Mc � m

2e
r� bẑð Þ

����
2

þ bBz þ
B2

z

2

 !
; (56)

which, when written in terms of the “kinetic” momentum M,

becomes the recognizable

H ¼
ð

d2r
jMj2

2q
þ bBz þ

B2
z

2

 !
: (57)

In terms of Mc, the noncanonical bracket obtained by using

the procedure of Sec. VI, is

fF;Gg0
c ¼

ð
d2r

	
Mc

l

dG

dMc
k

@k
dF

dMc
l

� dF

dMc
k

@k
dG

dMc
l

� �

þq
dG

dMc
k

@k
dF

dq
� dF

dMc
k

@k
dG

dq

� �

þBz
dG

dMc
k

@k
dF

dBz
� dF

dMc
k

@k
dG

dBz

� �

þb
dG

dMc
k

@k
dF

db
� dF

dMc
k

@k
dG

db

� �

; (58)

the bracket for MHD of Ref. 16 restricted to B ¼ Bzẑ with

the momentum Mc replacing M. Thus, the effect of gyrovis-

cosity is contained in the definition of Mc. However, if we

write the bracket in terms of M, it becomes

fF;Gg0
G ¼ fF;Gg

0 � bNijsl @s
dG

dMi

� �
@l

dF

dMj

� �
; (59)

where we obtain a new term that produces the gyroviscous

tensor and {F, G}0 is the bracket of (58) with Mc replaced by

M. This bracket is identical to that given in Ref. 2, which was

obtained by ad hoc means. If we compare the Hamiltonian-

bracket pair of Eqs. (56) and (58) with that of Eqs. (57) and

(59), the significance of the gyromap becomes evident. We

can choose to work with a system that possesses a relatively

simple Hamiltonian with a more complex bracket, or vice

versa, and it is the gyromap that allows us to move back and

forth between these two versions. Both versions give the same

equations of motion: those obtained in Sec. V C with w 	 0.

Using {F, C}¼ 0 for all F to find the Casimirs implies

that the only Casimirs, which exist are independent of the

gyro term, and in fact, are independent of the velocity of the

fluid. We find the following infinite family of Casimirs:

C ¼
ð

d2r bf
q
b
;
Bz

b

� �
; (60)

where f is an arbitrary function, a result that was first

obtained in Ref. 2. Because of its homogeneous form, the
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three variables of (60) are interchangeable, i.e., we can per-

mute q, b, and Bz.

Effecting the energy-Casimir method, as described in

Sec. VI, we examine equilibria satisfying dF¼ 0. This yields

two familiar conditions

M ¼ 0 and Pþ B2
z

2
¼ const ; (61)

conditions implying zero equilibrium flow and total pressure

balance. That these equilibria are easily checked directly

from the equations of motion, as expected.

In the above calculations, we have reverted back to M.

This can be done in general through the following procedure:

find the Casimirs by working in terms of Mc, and then apply

the gyromap to express them in terms of M. Since the

Hamiltonian is much simpler in terms of M, we can proceed

to calculate dF, wherein M is the variable of choice, and not
Mc. We shall use this procedure in Secs. VII B and VII C as

well to express our final results in terms of M.

Having determined the equilibria, we proceed to the sta-

bility analysis. Using the energy-Casimir methodology and

computing the elements of (55), we find that equilibria satis-

fying (61) are always stable, regardless of the functional

form of the Casimir. This is, of course, to be expected and

serves as a sanity check.

B. The w 6	 0 model

Now consider the full model with w 6	 0 and magnetic

field given by (22). Since we have already highlighted the

significance of the gyromap, we proceed to the Hamiltonian

and bracket in terms of Mc, noting that the simplicity of the

latter is obtained at the expense of the former. The

Hamiltonian is

H ¼
ð

d2r
1

2q

����Mc � m

2e
r� bẑð Þ

����
2

þ bBzþ
B2

z

2
þ jrwj2

2

 !
;

(62)

which is equal to (56) plus the perpendicular magnetic

energy, and the Poisson bracket is

fF;Ggwc ¼ fF;Gg
0
c þ

ð
d2rrw � dF

dMc

dG

dw
� dG

dMc

dF

dw

� �
:

(63)

Bracket (63) with Hamiltonian (62), produce the equations

of motion derived in Sec. V C.

The presence of a w leads to significant changes in the

Casimirs obtained. Unlike the w 	 0 case, we obtain

Casimirs that depend on Mc, which implies that they depend

on the gyroviscous term. There are two different Casimir

families. The first, independent of Mc, has the form

C ¼
ð

d2r Cðq; b;BzÞKðwÞ ; (64)

where C ¼ bf ðq=b;Bz=bÞ or an equivalent function involving

a permutation of q, b, and Bz. The similarities with (60) are

self-evident, since the two expressions only differ by KðwÞ.
Setting K ¼ const is tantamount to eliminating w from (64),

which makes it identical to (60). But, this elimination of w is

exactly what differentiates the two models, which explains

why (64) can be interpreted as an extension of (60).

Now we seek the second Casimir family that depends on

Mc. From {F, C}¼ 0, we obtain

@l Mc
k

dC

dMc
l

� �
þMc

l @k
dC

dMc
l

� �

þ q@k
dC

dq

� �
þ Bz@k

dC

dBz

� �

þ b@k
dC

db

� �
� dC

dw
@kw ¼ 0 ; (65)

@k
dC

dMc
k

q
� �

¼ 0 ; @k
dC

dMc
k

b
� �

¼ 0 ; (66)

@k
dC

dMc
k

Bz

� �
¼ 0 ;

dC

dMc
k

@kw ¼ 0: (67)

From the second expression of Eq. (67), we obtain the

candidate

C ¼
ð

d2r Mc � ðẑ �rwÞFðq; b;Bz;wÞ ; (68)

which, when inserted in the first equation of (66), gives

C ¼
ð

d2r
Mc � ẑ �rwð Þ

q
F wð Þ ; (69)

while the remaining two expressions from Eqs. (66) and (67)

imply

w;
Bz

q

	 

¼ w;

b
q

	 

¼ 0; (70)

where in cartesian coordinates [f, g]¼ fxgy – fygx. Equation

(70) implies there are no velocity dependent Casimirs unless

the model is reduced, which is well known for MHD (e.g.,

see Ref. 38). The constraints of (70) are a consequence of

over labeling,56 since the three advected labels of Eqs. (38),

(39) and (41) cannot be independent. Thus, we assume Bz/q
and b/q are functions of w and eliminated them from the dy-

namics. With this assumption (69) is a Casimir since it also sat-

isfies (65). Upon collapsing (64), our general Casimir is then

C ¼
ð

d2r
Mc � ẑ �rwð Þ

q
F wð Þ þ qJ wð Þ

� �
: (71)

Using B? ¼ ẑ �rw; M � B ¼ M � B? and Mc � ẑ ¼ 0

(although parallel momentum could be included), and setting

F ¼ constant, the first term of (71) reduces to the well-

known cross-helicity invariant, except the velocity is now

vc¼Mc/q. Thus, in the absence of gyroviscosity, vc¼ v and

the usual cross-helicity is recovered.

Given the Casimir invariants, we can proceed to the var-

iational equilibrium analysis and follow the development of

Ref. 38, in order to address the effect of gyroviscosity.

Because this analysis can be complicated, consider first the

case with no flow as a warm-up. For this case, the variational

principle dF¼ 0 contains only the Casimir of (64), giving
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M 	 0 and Dw ¼ �P0 � BzB
0
z ; (72)

where P and Bz are flux functions and prime denote differen-

tiation with respect to w. As expected, we obtain the Grad-

Shafranov equation.

Next consider the case with the Casimir of (71).

Since this requires the reduction due to (70), we

introduce Bz ¼ q -ðwÞ and b ¼ q 1ðwÞ and the Hamiltonian

becomes

H ¼
Ð

d2r
1

2q
jMc �M?j2 þ q2 1-þ -2

2

	 

þ jrwj2

2

 !
:

(73)

The equilibrium conditions that follow from dF¼ 0, with

(71) and (73), are

dF

dMc
¼ Mc �M? þ ẑ �rwð ÞF ¼ 0; (74)

dF

dq
¼ � 1

2q2
jMc �M?j2 �Mc � ẑ �rwð Þ

q2
F

þ 1

2
J þ 2q 1-þ -2

2

	 

¼ 0; (75)

dF

dw
¼ �Dwþ q2 10-þ 1-0 þ --0½ �

þFr � ẑ �Mc

q

� �
þ qJ 0 ¼ 0: (76)

Manipulation of the above equations gives

1

4
jrwj2 F

q

� �2

þ Pz

q
þ J þ m

2e

F
2q2
rb � rw ¼ 0 ; (77)

r � 1� F
2

q

 !
rw

" #
þ jrwj2 FF

0

q
¼ qJ 0

�q2 Pz

q2

� �0
� m

2e
Fr � rb

q

� �
; (78)

with Pz :¼ Pþ B2
z=2 ¼ q2ð1-þ -2=2Þ and recall

b¼q1(w). Equations (77) and (78) compare with those of

ordinary MHD as in Ref. 38, but with the addition of new

gyro terms identified by the factor of m/(2e). As for MHD,

there are free functions of w that can be chosen to determine

current and flow profiles. Equation (78) is a generalization

of the Grad-Shafranov equation, but since the density is not

a flux function it alone cannot be solved. One uses (77), a

generalized Bernoulli equation, to close the system. These

equations are gyro generalizations with flow of the JOKF

equation.57

There are various ways of rewriting (77) and (78), one

that brings out the Mach singularity is the following:

jrwj2 1

4

F
q

� �2

þ m

2e

F10

2q

" #
þ Pz

q
þ 1

2
J

þ m

2e

F1
2q2
rq � rw ¼ 0 ; (79)

r � 1� F
2

q
þ m

2e
F10

 !
rw

" #

þ jrwj2 FF
0

q
� m

2e
F010

� �
þ m

2e

F10

q
rq � rw

þ m

2e
F1r � rq

q

� �
¼ qJ 0 � q2 Pz

q2

� �0
: (80)

Evidently, the equilibrium equations of (79) and (80) possess

a rich structure. Analyses of their region of hyperbolicity,

modification of the fast and slow magnetosonic waves due to

the gyroviscous terms, etc., are beyond the scope of the pres-

ent paper.

C. High-b gyro-RMHD

As noted in Sec. I, there exists a large literature on

reduced gyrofluid models that have been obtained by various

means. Here, we demonstrate how the nondissipative portion

of such models can be obtained from the HAP formalism. In

particular, we show how to obtain a version of the three-field

model given in Sec. III A of Ref. 4.

From the action, we obtained, without approximation,

the Poisson bracket of (63), or upon using the gyromap on

(63), we obtain fF;GgwG. If we assume Bz! B0 and q! q0

are constant, then P / b, the latter is consistent with incom-

pressibility and permits us to introduce the scalar vorticity

Xc ¼ ẑ � r �Mc and Mc ¼ ruc � ẑ, where uc is the stream

function, up to the constant factor of q0.

The subscript c is present everywhere to indicate that

these include the gyroviscous terms. Following a similar line

of analysis to that employed in Ref. 48, viz., chain rule rela-

tions of the form r2dF=dXc ¼ ẑ � r � dF=dMc, we reduce

the bracket of (63) to the following:

fF;Gg ¼
ð

d2rðXc½FXc ;GXc �

þ wð½Fw;GXc � � ½Gw;FXc �Þ
þ bð½Fb;GXc � � ½Gb;FXc �ÞÞ ; (81)

which is precisely the high-b RMHD bracket first given in

Ref. 27. Because (81) is homogeneous of degree zero in b
and w and of degree one in Xc, which means scaling Xc only

scales time, these quantities can be identified with the corre-

sponding quantities of Ref. 4. Our Hamiltonian reduces to

H ¼ 1

2

ð
d2r jruj2 þ jrwj2
� �

; (82)

which has no pressure terms, because for simplicity we

neglect the effect of toroidal curvature that usually occurs in

high-b RMHD.

From (45), the gyromap relation between Mc and M, we

obtain

uc ¼ uþ m

2e
b ; (83)

where M ¼ ru� ẑ. Equation (83) is precisely the gyromap

used in Ref. 4. Using (83), we can follow one of two paths:
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eliminate u from (82) and insert the resulting H into (81) to

obtain the equations of motion in terms of Xc, or transform

the bracket of (81) to one in terms of X and use the

Hamiltonian of (82) as it stands. Both give gyrofluid evolu-

tion equations equivalent to those of Ref. 4, with the neglect

of toroidal curvature and a Hall term in Ohm’s law that is an

extended MHD effect outside the scope of the present

theory.

VIII. CONCLUSION

In this paper, we have described a general procedure for

constructing action principles for continuum models, an im-

portant portion of which is the elucidation of the Eulerian clo-

sure principle. The procedure was used to construct a fluid

model with gyroviscous effects, and it was also shown how to

obtain the Eulerian Hamiltonian formalism. Consequences of

the construction are the following: the unambiguous identifi-

cation of the origin of the gyromap, Casimir invariants for the

gyroviscous fluid models, variational principles for equilibria

with flow giving rise to generalized Grad-Shafranov equations

with gyroviscous effects, and a first principles derivation of

the gyroviscous effects that appear in reduced fluid models.

We believe that the tools developed here, the method of

constructing action principles and concomitant Hamiltonian

formalisms for fluid models with, in particular, the incorpo-

ration of finite Larmor radius (FLR) effects, provide a natu-

ral, efficient, and transparent method for deriving the

nondissipative parts of plasma theories. The methodology is

quite general—a natural extensions of the present work

would be to include additional two-fluid effects, giving rise

to, e.g., the gyroviscous cancellation,22,58,59 and to obtain

generalizations of models such as that of Ref. 3.
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