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Abstract
Different variants of hybrid kinetic-fluid models are considered for describing
the interaction of a bulk fluid plasma obeying magnetohydrodynamics (MHD)
and an energetic component obeying a kinetic theory. Upon using the Vlasov
kinetic theory for energetic particles, two planar Vlasov-MHD models are
compared in terms of their stability properties. This is made possible by the
Hamiltonian structures underlying the considered hybrid systems, whose
infinite number of invariants makes the energy-Casimir method effective for
determining stability. Equilibrium equations for the models are obtained from
a variational principle and in particular a generalized hybrid Grad–Shafranov
equation follows for one of the considered models. The stability conditions are
then derived and discussed with particular emphasis on kinetic particle effects
on classical MHD stability.

Keywords: magnetohydrodynamics, Vlasov equation, hybrid kinetic-MHD,
Hamiltonian systems, energy-Casimir method

1. Introduction

Several plasma systems comprise an energetic species interacting with a fluid bulk usually
described by magnetohydrodynamics (MHD). For example, in fusion plasmas, the fusion
reactions produce energetic alpha particles that escape the usual fluid closures and require a
kinetic theory description. Another example is provided by the interaction of Earth’s mag-
netosphere with the energetic solar wind.
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The interaction of an energetic component with a MHD plasma can be described by
hybrid kinetic-fluid models that couple the energetic particle kinetics with the MHD
equations. Although nonlinear hybrid kinetic-fluid models already appeared in the 70ʼs [9],
the very first nonlinear hybrid MHD models were proposed in the early 90s [7, 10, 11, 35],
when it was recognized that two different kinetic-MHD coupling schemes can be consistently
formulated. When the coupling occurs by Lorentz force terms in the MHD fluid equation, the
hybrid model is known as the current-coupling scheme (CCS); on the other hand, when the
coupling occurs by the kinetic pressure tensor, the corresponding model is referred to as the
pressure-coupling scheme (PCS). Moreover, each scheme may involve different possible
variants to describe the energetic particle kinetics: drift-kinetic, gyro-kinetic and full Vlasov-
type equations. While the first two are most used in current computer simulations [17, 34, 38],
the simple mathematical form of the Vlasov equations can be advantageous in analytical
studies such as that presented in this work. For an example of how the Vlasov equation is
employed in hybrid MHD simulations, see [16].

While energy conservation for the CCS was first verified in [39], the PCS suffers (in its
original formulation) from not conserving the total energy; consequently, unphysical energy
sources may drive spurious instabilities [41]. The formulation of an energy-conserving PCS
variant was presented in [40], upon adopting the Vlasov description for the energetic parti-
cles. In this case, while the fluid momentum equation is unaltered by energy conservation, the
accompanying kinetic equation is modified by the presence of terms that arise from
expressing the energetic particle kinetics in the frame of the MHD bulk. The energy-con-
serving PCS of [40] was obtained by applying standard methods in the theory of non-
canonical Hamiltonian systems. More particularly, the Hamiltonian structures of MHD
[13, 20, 22, 25–27, 29] and of the Vlasov equation [19–22, 25–27] were combined to obtain
the Hamiltonian structure of the CCS and of the new Hamiltonian PCS. Then, since the
energy-conserving PCS is also Hamiltonian, the general theory offers the opportunity to
investigate stability properties by applying the energy-Casimir method [14, 25, 32], a method
that is a descendent of the Lyapunov method known as thermodynamic stability in the early
plasma literature [6, 8, 18]. This method has two main advantages: it is relatively easy to
implement and it gives a stronger notion of stability than that based on linear analysis, for it
can lead to mathematically rigorous proofs of nonlinear stability and nonlinear bounds on
growth. However, the expense paid for this is that the conditions are generally less definitive.
Also, the energy-Casimir method is effective when applied to Hamiltonian systems posses-
sing a large number of Casimirs, which is the case for the CCS and the PCS when the
dynamics is restricted to a plane, an approximation that can be relevant for both laboratory
and astrophysical plasmas. This paper applies the energy-Casimir method to both the CCS
and the Hamiltonian PCS in order to analyze the stability properties of these two systems in
planar geometry.

In the remainder of this introduction we describe the hybrid models in section 1.1 and
give a brief description of the energy-Casimir method in section 1.2. Then, in section 2 we
consider the CCS. Here we present the Casimir invariants, obtain equilibria from the energy-
Casimir variational principle, and then proceed to stability results. The analogous material is
presented in section 3 for the PCS. Finally, in section 4 we conclude.

1.1. Hybrid Vlasov-MHD in three and two dimensions

The nonlinear equations of the CCS and PCS appeared first in [7, 35], where they were
derived by direct manipulations on the separate equations for MHD and energetic particle
kinetics. Later, the CCS and the energy-conserving PCS were derived by operating on the

J. Phys. A: Math. Theor. 48 (2015) 185501 C Tronci et al

2



Poisson brackets for MHD and the Vlasov equation [40]. In planar geometry, one can study
two possible configurations depending on whether the magnetic field lies on the plane or
points vertically. Due to the analogy with reduced MHD [12, 14, 30], here we choose to study
the first case as it is more physically relevant. This section presents explicitly the nonlinear
equations of Vlasov-MHD models in both the CCS and the Hamiltonian PCS variants.

Upon introducing the Vlasov phase-space density f tx p( , , ) and its first three moments

∫ ∫ ∫= = =n f f fp K p p pp pd , d , d ,3 3 3

(here, p is the kinetic momentum coordinate) the nonlinear equations for the CCS and the
Hamiltonian PCS are respectively:
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where =a q mh h h is the kinetic particle mass-to-charge ratio and we have used the ordinary

relation μ= ×−J B0
1 . Both systems preserve the total energy
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where  ρ( ) denotes the MHD internal energy so that the scalar pressure is expressed as
p ρ ρ= ′( )2 . The nonconservative version of the PCS occurring in the plasma literature is
given by (4) and (6), while equation (5) is replaced by (2).

In order to study the simplest case, while retaining essential physical features of these
models, we consider the incompressible limit in two-dimensional geometry. In particular, we
assume that the magnetic and velocity fields lie in the −x y plane of a Cartesian coordinate
system, and we assume translational invariance along the z-direction. Consequently, we
replace the first of (3) and (6) by the divergenceless condition  =u· 0 and write

  ϕ ω Δϕ= × = × = × = −⊥ ⊥AB z u z z uˆ , ˆ , and ˆ · , (8)

where Aẑ is the vector potential, ϕ is the stream function, and ω is the usual vorticity of the
MHD fluid, the subscript ⊥ denotes planar components, and Δ denotes the perpendicular
Laplacian without the subscript ⊥. Then, after introducing the notation  ∫=⊥ zx x( ) ( )d ,
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we have the following equations for the planar incompressible CCS:
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where = ∂ ∂ − ∂ ∂a b a b a b[ , ] x y y x is the canonical Poisson bracket, ϕ Δ ω= − −( )1 and
Δ= −J A is the current density, which is directed perpendicular to the −x y plane.

By proceeding analogously, we also find the corresponding equations of motion for the
planar incompressible (Hamiltonian) PCS:
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where we have defined  ∫=⊥ ⊥ ⊥ fp p pˆ d3 . The explicit derivation of the above planar models
is presented in the appendix, which makes use of the corresponding Hamiltonian structures.
Both models conserve the following expression of the total energy:

∫ ∫ω Δ ω
μ

Δ= − − +−
⎛
⎝
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⎞
⎠
⎟⎟( )H A A

m
f p p x

1
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1 1 ˆ d d . (13)
h
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0

2 3 2

As outlined in the previous section, the Hamiltonian nature of the CCS and the PCS
presented here allows a Lyapunov stability study that is made possible by direct application of
the energy-Casimir method [14, 32]. This procedure is discussed in the next section. Unless
otherwise specified, the remainder of this paper will refer to the Hamiltonian PCS simply as
the PCS and we shall drop the hat symbol for simplicity of notation. Moreover, we shall
set all physical constants equal to 1, as they can always be restored without essential
difficulties.

1.2. Stability and the energy-Casimir method

Consider a dynamical system =z V˙ (not necessarily Hamiltonian) defined on some space ,
where ∈z can be a point or a trajectory, ‘̇ ’ denotes time derivative, and V is an autono-
mous vector field defined on . Equilibria of such system are solutions ze that satisfy

=V z( ) 0e . According to the standard definition of stability, an equilibrium point ze of a
dynamical system is said to be stable if, for any neighborhood N of ze there exists a sub-
neighborhood ⊂S N of ze such that if z̊, an initial condition, is in S then the trajectory

∈z t N( ) for all time >t 0.
The linear problem associated with the above dynamical system reads δ δ=z DV z z˙ ( ) ·e

and is obtained by expanding δ+V z z( )e to first order. If δz remains in N, then the system is
said to be linearly stable, and to distinguish this kind of stability from that with dynamics
under the full vector field V one adds the adjective nonlinear to describe the latter.

Assuming a solution of the form δ λ=z z tˆ exp( ) the linear problem becomes
λ− =DV z( id) · ˆ 0, where id is the identity operator. The spectrum of DV, σ DV( ), is the set
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composed of λ ∈ for which the linear operator λ−DV id has no inverse, and an equili-
brium point is said to be spectrally stable if, for every λ σ∈ DV( ), λ lies in the left half
complex plane, including the ordinate. This latter case, in which λ is purely imaginary,
corresponds to pure oscillations, a case that is sometimes called neutral stability. This is the
only kind of spectral stability possessed by Hamiltonian systems.

We remark that there are logical relations between linear, nonlinear, spectral stability but
these can be subtle, particularly in infinite dimensions. Some descriptions of implications
between the different kinds of stability can be found, for instance, in [14, 25]. The present
work concentrates on the particular kind of stability in Hamiltonian systems that we refer to as
energy-Casimir stability.

For Hamiltonian systems, the vector field of our dynamical system is generated by a
Poisson bracket so that the equations of motion have the form =z z H˙ { , }. In finite dimension,
one can write = ∂z J H˙i ij

j , where J is the Poisson bivector (cosymplectic form). Recalling the
above definition of equilibrium point, it follows then that, for Hamiltonian systems, equili-
brium points satisfy ∈H Jd Ker( ). A consequence of the Poisson bracket identities is the Lie–
Darboux theorem, which implies JKer( ) is spanned by Casimir invariants, which satisfy

=C f{ , } 0, for all functions f (although there are serious unresolved issues with this theorem
for infinite-dimensional systems (see, e.g., [42])). Equilibria of Hamiltonian systems are then
critical points of an invariant energy function

 = +H C

and this fact is very useful for establishing stability criteria.
For finite-dimensional systems, definiteness (positive or negative) of the quadratic form

δ δz z( ; )e
2 assures both linear and nonlinear stability. For linear systems δ2 is invariant, in
fact it is the Hamiltonian for the linear dynamics, and its definiteness means the phase space
region surrounding the equilibrium point is foliated by nested invariants sets that are topo-
logically spheres. The interior of these sets can thus serve as the subneighborhoods S in the
above definition of stability. For nonlinear systems  is invariant and, under mild smoothness
conditions, δ2 determines the topological character of the level sets of  in a sufficiently
small neighborhood of the equilibrium point ze. This guarantees that for any neighborhood N
there is an ⊂S N , determined by some level set of  , within which the flow must remain.

For infinite-dimensional systems, such as those of interest here, the situation is con-
siderably more complicated. In the first place, even if δ2 has definite sign, this does not
imply that an extremal point that satisfies δ = 0 is in fact an extremum (maximum or
minimum). Moreover, for both linear and nonlinear stability one requires δ2 to lead to a
norm for defining open sets. This leads to a second and for nonlinear stability an often
formidable complication: even if one is able to construct a norm from δ2 , a rigorous proof of
nonlinear stability requires that the solution to the dynamical system actually exists in this
norm. For most of the infinite-dimensional systems of interest in plasma physics, in particular,
global existence results are not available. Even in cases when existence results are available, it
can turn out that more than one choice of norm may be constructed and a given equilibrium
can be stable in one norm and not in another; in this case a physical determination must be
made about what is important. The reader interested in seeing what makes up a rigorous
application of the energy-Casimir method is referred to [4, 36].

In this paper we will derive criteria for which δ2 is positive definite for our hybrid
models, following the practice in the physics literature (e.g. [12, 14, 25, 28]). We will refer to
this kind of stability as energy-Casimir stability. We remark that this stability implies linear
stability [14, 25] but, for infinite-dimensional systems nonlinear stability is subject to the
caveats mentioned above.
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Finally, we find it opportune to recall that the classical δW criterion conceived and
adopted for ideal MHD stability analysis [5] is intimately related to a energy-Casimir stability.
Indeed, the variation of the potential energy in terms of the displacement vector, which is
denoted as δW , is related (see, e.g., [14, 25]) to the second variation δ2 , so that stability in
terms of δW implies energy-Casimir stability with respect to δ2 . The connection between
the two criteria can be extended to reduced models obtained from MHD, as in the case e.g.of
compressible reduced MHD [33].

2. Stability of the planar CCS

This section presents the stability analysis of the planar incompressible CCS model (10)–(9).
After reviewing the corresponding Casimirs in both three and two dimensions, these quan-
tities will be used to provide energy-Casimir stability conditions.

2.1. Helicity and Casimirs

In three dimensions, the CCS equations (1)–(3) were shown in [15] to possess the following
conservation law for the cross-helicity invariant:

∫ =
t

u B x
d

d
· d 0,3

which is accompanied by the usual conservation of magnetic helicity, that is ∫ B A x· d3 .
Moreover, collisionless kinetic equations are well known [14] to possess an infinite family of
invariants that are expressed as

∫ Λ=C f f x p[ ] ( )d d , (14)V
3 3

where Λ is an arbitrary function of one variable. The above functional is also preserved by the
hybrid CCS.

In planar geometry, the above conservation laws produce a more general family of
invariants for the incompressible CCS. This family of invariants can be combined into a
single functional

∫ω ω ωΦ Ψ= + = +C C f C A C A A A x[ ] [ , ], with [ , ] ( ( ) ( ))d ,V MHD MHD
2

where CMHD has arbitrary functions Φ and Ψ, and integrations are now over two-dimensional
domains. The CasimirCMHD for ideal MHD in planar geometry was obtained in [30], where it
was shown that the two terms are descendent from the conservation of cross-helicity and
magnetic helicity of three-dimensional MHD, respectively.

2.2. Equilibria via the first variation

As we shall see, the stability analysis for the planar CCS is actually straightforward due to the
direct sum structure of the Poisson bracket underlying CCS [40]. Upon following the pre-
scriptions in section 1.2, the equilibria are identified by the variational principle

δ δ δ δ= + + =H C C 0.VMHD
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Since the total energy (13) can also be split as = +H H HV MHD, with

∫ ∫ω ω Δ ω Δ= − − =−( )( )H A A A H f fx p x p[ , ]
1

2
d , [ ]

1

2
d d ,VMHD

1 2 2 2 3

the equilibria are found from

 δ ω δ+ =A f[ , ] [ ] 0,VMHD

where  = +H CMHD MHD MHD and  = +H CV V V . Because the Hamiltonian and Casimirs
are additive, this implies

 δ ω δ= =A f[ , ] 0, [ ] 0.VMHD

Therefore, the equilibrium states for the hybrid CCS obtained from the variational principle
are simply given by MHD equilibria coexisting with Vlasov equilibria. Upon computing
 ∫δ Λ δ= ′ + ∣ ∣( ) fp x p2 d dV

2 2 2 and

 ∫ ∫δ Φ Δ ω δω Δ ωΦ Ψ δ= − + − + ′ + ′−( )( ) ( )A A A A Ax x( ) d ( ) ( ) d ,MHD
1 2 2

the following equilibrium conditions are obtained:

ϕ Φ+ =( )A 0, (15)e e

Δ ω Φ Ψ− ′ − ′ =( ) ( )A A A 0, (16)e e e e

Λ∣ ∣ + ′ =( )fp
1

2
0, (17)e

2

where the index e is used to denote quantities in the equilibrium configuration. All the above
equilibrium relations are well known and have been extensively discussed in [12, 14, 23]. In
particular, the first equation expresses the fact that, at equilibrium, streamlines are magnetic
flux functions. The second equation is a generalization of the Grad–Shafranov equation5 that
includes flow, while the third implies (upon assuming an invertible Λ′) isotropic equilibria of
the type = ∣ ∣f f p( 2)e e

2 .
In [23] (and later in [37]) it was shown that the transformation

∫χ Φ≔ − ′( ) ( )A A A1 ( ) d (18)e

A 2e

transforms (15) and (16) into Δχ χ= F ( ), where χ Φ χ= ′ ″◦F A ( ). Using (8) and (15) gives

Φ′ = −
u

B
, (19)e

e

where = ∣ ∣u ue e and = ∣ ∣B Be e , we see that associated with every sub-Alfvénic MHD
equilibrium with flow there corresponds a static equilibrium state.

2.3. Energy-Casimir stability via the second variation

The calculation of the second variation δ2 proceeds analogously to those in the previous
section. Indeed, the same arguments lead to the stability criterion

5 While the Grad–Shafranov equation is traditionally written in toroidal geometry, equation (16) simply represents a
slab version of the original. Following [14], we shall also call (16) and its hybrid generalization (see following
sections) Grad–Shafranov equation.
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 δ ω δ> >A f[ , ] 0 and [ ] 0.V
2

MHD
2

Then, stability of the hybrid CCS requires that both the stability conditions for ideal MHD
(first inequality) and for the Vlasov kinetic equation (second inequality) are satisfied. More
explicitly, upon computing

   ∫
∫
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From (20) the following sufficient conditions for positive definiteness are immediate:

Φ′ < 1, (21)2

ω Φ Ψ Φ ΔΦ″ + ″ + ′ ′ > 0, (22)

Λ″ > 0. (23)

In order to add some physical insight to expression (20) and conditions (21)–(23), we rewrite
(20) as in [23], viz.
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2
2

The first term of (24) vanishes for Alfvénic motions, i.e., motions to neighboring equilibrium
states [28], the second term represents line bending energy, reduced by the presence of an
equilibrium flow. The first term of the second line can be recognized as the usual kink term,
also modified by the presence of flow, while the last term is interchange-like, that involves
curvature and ram pressure ue

2, taking the role of pressure, which does not occur in low-β
reduced MHD. As follows from equation (19), the inequality (21) implies that one of the
conditions for stability is that the equilibrium flow be sub-Alfvénic. Condition (22) is a
sufficient condition for stability, but a more in-depth analysis would show that the line
bending term can add a positive contribution. (See e.g.[3]). Lastly, condition (23) is the
monotonicity-isotropy condition on the distribution function (see e.g. [24, 31]).

While the stability analysis of the hybrid CCS does not add any new physical feature to
the well-studied stability properties of ideal MHD and the usual convexity relation (23) for
Vlasov stability, the hybrid PCS leads to quite different results. These differences are the
subject of the remainder of this paper.

3. Stability of the planar PCS

This section contains the stability analysis of the planar PCS model (11) and (12). After
reviewing the corresponding Casimirs in both three and two dimensions, these quantities will
be used to provide stability conditions. Although the discussion of Casimirs and equilibria for
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this case can also be found in [32], here we present new stability conditions that recover the
usual condition (23) for noncollisional kinetics.

3.1. Helicity and Casimirs

In three dimensions, the hybrid PCS of (4) and (6) preserves the usual magnetic helicity as
well as the Vlasov invariant (14). On the other hand, the usual expression for the cross-
helicity is not conserved and a velocity shift is required for the conservation of a modified
cross-helicity, which reads [15]

∫ ρ+ =−( )
t

B u K x
d

d
· d 0.1 3

Then, in two dimensions, one obtains the following infinite set of Casimir invariants for
the incompressible PCS:

∫ω Φ= + − × ⊥C C f C A A z K x[ ] [ , ] ( ) ˆ · d ,V MHD
2

where ∫≔⊥ ⊥fK p pd3 . The proof of the conservation relation =Ċ 0 was presented in [32],
by using the Poisson bracket structure. The last term above couples the parallel vector
potential A to the Vlasov distribution f and, as we shall see, this has a substantial effect on the
equilibrium configurations and their stability conditions.

3.2. Equilibria and hybrid Grad–Shafranov relation

Consider now the equilibrium conditions for the incompressible PCS in planar geometry.
Following again the general theory of section 1.2, we set δ = 0. Unlike the CCS, the
equilibrium condition for the PCS do not split. They read

  ∫ ∫δ ω δ δ Φ+ + × =⊥ ⊥
⎡
⎣⎢

⎤
⎦⎥A f A fx z p p[ , ] [ ] d ( ) ˆ · d 0.VMHD

2 3

Upon computing the variation of the new term,

 



∫ ∫ ∫ ∫
∬

δ Φ δ Φ

δ Φ

× = ′ ×

− ×

⊥ ⊥ ⊥ ⊥

⊥ ⊥

⎡
⎣⎢

⎤
⎦⎥A f A f

f

x z p p x z p p

z p x p

d ( ) ˆ · d d ˆ · d

ˆ · d d , (25)

2 3 2 3

2 3

the equilibrium conditions are seen to be

ϕ Φ+ =( )A 0, (26)e e

Δ ω Φ Ψ− + − × ′ + ′ =⊥ ⊥( ) ( ) ( )A A Az Kˆ · 0, (27)e e e e

 Φ Λ× + ∣ ∣ + ′ =⊥ ⊥ ( )( )A fz p
p

ˆ ·
2

0. (28)e e

2

Using  ϕ = ×⊥ z uˆe e, (26) and (28) imply

Λ+ − + ′ =p u u
1

2

1

2
0, (29)e e

2 2

so that assuming an invertible Λ′, we obtain the following class of anisotropic equilibria:

= + −⎜ ⎟⎛
⎝

⎞
⎠f f p u u

1

2

1

2
.e e e e

2 2
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Next, an explicit computation [32] yields

   ∫ Φ× = − = − ×⊥ ⊥ ⊥ ⊥( )f n nz p p z uˆ · d · ˆ · ( )e e
3

so that equation (27) reads

 Δ Φ Φ Ψ− + ′ + + ′ =⊥ ⊥( )( ) ( ) ( ) ( )A A n A A· 1 0, (30)e e e e e

which we shall call the hybrid Grad–Shafranov equation.
Recognize that the special case Φ = −A A( )e e (Alfvén equilibrium) takes the relation (30)

to

  



Ψ Ψ+ ′ = × + ′ =
⇒ = ×

⊥ ⊥ ⊥

⊥

( ) ( ) ( )
( )

n A A n A

A A n

z u

z u

· ˆ · ( ) 0

ˆ · ( ) ,

e e e e e e

e e e e

while the case Φ =A( ) 0e produces the usual static Grad–Shafranov equilibria of ideal MHD
[12, 14]. For Alfvén one-dimensional equilibria with Φ = −A A x( ) ( )e e , one can study cases
that allow reducing the problem (30) to quadratures. In particular, if =n n A( )e e equation (30)
reads Ψ∂ ′ ′ + ′ =n A A( ( ) ) 0x e e e

2 , where prime denotes differentiation with respect to the
argument. This equation arises as an Euler–Lagrange equation with Lagrangian

 Ψ′ = ′ −L A A A A( , ) ( ) 2 ( )e e e e e
2 , where e denotes the antiderivative of ne. Then, the

variational structure guarantees conservation of the total energy
  Ψ= ′ ∂ ∂ ′ − = ′ ′ − +E A L A L A 2e e e e e

2 , which in turn can be written as
  κ Ψ′ ′ − = ′ = −A A E2 ( )e e e e

2 . If the function κ is invertible, then the problem can be
reduced to quadratures in the form κ Ψ′ = −−A E( )e

1 . We notice that for the case of

Maxwellian distributions ∝ − +f x p u p u( , ) exp( 2 2)e e e
2 2 , one has

′ = − ′n A n A( ) exp( 2)e e e
2

0
2 with constant n0. This yields κ ′ = ′ + − ′A n A A( ) ( 1)exp( 2)0

2 2

. The function κ in this case is not invertible due to the presence of a local maximum at
′ =A 1e . This is a manifestation of the resonance between the MHD and the kinetic

component.
Having characterized the equilibria of the planar PCS, we can consider the energy-

Casimir conditions for stability, which we do in the next section.

3.3. Stability conditions and kinetic particle effects

As before, we compute the second variation, giving



 





 



∬ ∬
∬

∬

∬

δ δ Λ δ Φ δ

Λ
Λ

δ Φ δ Φ δ

δ Φ δ

Λ δ
Λ

Φ δ

= + ″ + × ″

− ″
″

′ + ′ ×

= + × ″

+ ″ −
″

′ ×

⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥

⊥ ⊥

⎜ ⎟⎛
⎝

⎞
⎠

( )

( )

( )

f f A A

f A A

f A A

f A

x p z p x p

z p x p

z p x p

z p x p

( ) d d ˆ · ( )( ) d d

2
1

· ˆ d d

ˆ · ( )( ) d d

1

2

2
· ˆ d d

2 2
MHD

2 2 3 2 2 3

2 3

2
MHD

2 2 3

2
2 3
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

 







 

 



∬

∬ ∬

∬

∬

∬

∫ ∬
∫ ∬

Λ δ
Λ

Φ δ

Λ
Φ δ

Λ
Φ δ

δ Φ δ

Λ δ
Λ

Φ δ

Λ δ
Λ

Φ δ

Π Φ δ
Λ

Φ δ

Φ Π δ
Λ

Φ δ

+ ″ −
″

′ ×

−
″

× ′ −
″

′ ×

= + × ″

+ ″ −
″

′ ×

+ ″ −
″

′ ×

− ′ +
″

′

− ′ +
″

′

⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

( )

( )

( )

( )

( )

f A

A A

f A A

f A

f A

A A

A A

z p x p

p x p p x p

z p x p

z p x p

z p x p

x p x p

x p x p

1

2

2
· ˆ d d

2
1

d d 2
1

d d

ˆ · ( )( ) d d

1

2

2
· ˆ d d

1

2

2
· ˆ d d

2 Tr ( ) d 2
1

· ( ) d d

2 Tr d 2
1

· d d ,

2
2 3

2 2 3 2 2 3

2
MHD

2 2 3

2
2 3

2
2 3

2 2 2 2 2 2 3

2 2 2 2 2 2 3

where ∫Π Λ≔ ″⊥
−

⊥ ⊥p p p( ) d1 3 . Thus, the PCS stability conditions are

Φ
Π

′ <
+ ⊥

1

1 2 Tr
, (31)2

ω Φ Ψ Φ ΔΦ Φ Π″ + ″ + ′ ′ − ′ >⊥ ⊥2 Tr 0, (32)2

Λ″ > 0, (33)

where ω ω= − ×⊥z Kˆ · is a shifted vorticity accounting for the contributions of both the
MHD and the kinetic components.

Notice that ϕ Φ= − A( )e e implies Φ= − ′ Au B( )e e e, so that the first stability condition
reads

Π⩾ + ⊥( )B u1 2 Tr .e e
2 2

It follows from this expression that, for instance in the presence of a Maxwellian equilibrium
distribution function, a condition stronger than (21) is required on the equilibrium flow for
stability. Compared to the case of reduced MHD or to the CCS, it turns out indeed, that a sub-
Alfvénic equilibrium flow is no longer sufficient for stability in the presence of a population
of kinetic particles, even if the latter follows a Maxwellian distribution.

The condition (32), on the other hand, can be reformulated as

 


   Π

− × − × ×

+
×

× − >

⊥ ⊥
⊥

⊥ ⊥ ⊥

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟( )

B

u

B
J

u

B

B

B

u

B B

u

B

B z B z B z

B z
z K

1
1 ˆ · ˆ · ˆ ·

2

ˆ
· ˆ · 2 Tr 0. (34)

e

e

e
e e

e

e
e

e

e

e

e

e

e

e

e

2

2

2

2

2

2

2

2

2

In the first line of the inequality (34) one can recognize the terms originated from δ2
MHD

and already discussed in the case of the CCS. The remaining terms, on the other hand, are
peculiar to the PCS stability conditions and show an influence of the presence of the kinetic
population. In particular, in the first term of the second line, one is able to identify a further
possible source of instability analogous to the kink instability but with the role of the current
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density played by the vorticity associated with the mean flow of the kinetic species. The last
term, on the other hand is destabilizing and depends on the second order moments of the
equilibrium distribution function.

Finally, upon deriving the equilibrium relation (29) with respect to p, we obtain

∫Λ Π″ = −
′

⟹ ′ < = − ′⊥ ⊥ ⊥f
f f p p p

1
0 and d ,

e
e e

3

which states that distributions such that ν′ = −f fe e
2 for some constant ν (e.g. Gaussian

distributions) are stable equilibria.

4. Conclusions

The Hamiltonian structures of two hybrid kinetic-MHD models have been presented and their
energy-Casimir stability properties have been analyzed. The two adopted models are exam-
ples of the two paradigmatic coupling schemes adopted for hybrid models, i.e., the CCS and
the PCS. For the latter, in particular, the model we investigated corresponds to a modification
of the one derived in [7], in such a way that the resulting hybrid model is energy-conserving
and possesses a Hamiltonian structure. The Casimir invariants for such models have been
described and compared with those of ideal MHD in two and three dimensions. Equilibria
obtained by extremizing δ and the stability conditions corresponding to the definiteness of

δ2 have then been derived and discussed.
In the case of the CCS, equilibrium relations and stability conditions derived with the

energy-Casimir method correspond to those that would be obtained by considering inde-
pendently 2D planar MHD and the Vlasov equation. In particular, we identified (by imposing
definiteness of δ2 ) the conditions of having a sub-Alfvénic MHD flow, the convexity of the
distribution function, as well as the stability with respect to the ideal kink instability and to an
interchange-like instability.

A more interesting situation occurs for the PCS. In this case, setting to zero the first
variation of the free energy functional yields, among the equilibrium equations, a generalized
hybrid Grad–Shafranov equation, which accounts for the presence of both the MHD flow and
the kinetic particle population. With regard to stability, it emerges that the presence of a
kinetic particle population leads to a different condition on the MHD equilibrium speed,
whereas the convexity condition on the distribution function remains valid. In the case of a
Maxwellian distribution for the kinetic species, the MHD flow has indeed an upper bound
corresponding to the Alfvén speed diminished by a quantity proportional to the equilibrium
pressure of the kinetic population.

As complement to the above results, we have provided an appendix containing deriva-
tions of the planar CCS and PCS models and of their Hamiltonian structures.
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Appendix A. Explicit derivation of planar Vlasov-MHD

This appendix presents the explicit derivation of both CCS and Hamiltonian PCS in planar
geometry.

A.1. Planar CCS

Consider the incompressible CCS equations (1)–(3). These comprise a Hamiltonian system
with Hamiltonian (7) and Poisson bracket [40]

 

 

 

∫

∫

∫

∫

∫

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

ρ δ
δ

δ
δρ

δ
δ

δ
δρ

= −

+ + ∂
∂

× ∂
∂

+ × − × ∂
∂

+ × ∂
∂

+ × × − × ×

− −

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

{ }F G
F G G F

f
F

f

G

f
q

F

f

G

f

q f
F G F G

f

G F

f

F G G F

F G G F

m
m m m m

x

B
p p

x p

B
m m m p m p

x p

B
m B m B

x

m m
x

, · · · d

, · d d

· d d

· d

· · d , (35)

h

h

CCS
3

3 3

3 3

3

3

where ρ=m u is the fluid momentum, as it is expressed in terms of the velocity u and the
density ρ. Then, we use the formula  = × = ×⊥A AB z z( ˆ) ˆ together with the variational
relation

 
δ
δ

δ
δω

δ
δω

= × = ×⊥⎜ ⎟⎛
⎝

⎞
⎠

F F F

m
z zˆ ˆ ,

where ω = ×z mˆ · . (See e.g. [1, 2] for discussion of such relations.) With these formulas
in mind we compute the following term appearing in the fourth line of (35):

∫ ∫

∫

∫

δ
δ

δ
δ

δ
δω

δ
δ

δ
δ

δ
δω

δ
δω

δ
δ

× × = ×

= − ×

= −

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( )

( )

F G
A

F G

G F
A

A
F G

A

B
m B

x z z
A

x

A
z z x

x

· d curl ˆ · curl ˆ d

· curl ˆ curl ˆ d

, d ,

3 3

3

3

where we have used δ δ δ δ=G A Gz Aˆ · and we have introduced the planar bracket
= ∂ ∂ − ∂ ∂k h k h k h[ , ] x y y x . More importantly, we have

δ
δ

δ
δ

× =⎜ ⎟⎛
⎝

⎞
⎠

F G
B

m m
· 0

and

 ∫ ∫δ
δ

δ
δ

δ
δ

δ
δω

× ∂
∂

= − ∂
∂

×⊥ ⊥f
F G

f
f

p

G

f

F
AB

m p
x p z x· d d · ˆd

z

3 3 3
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 ∫

∫

δ
δ

δ
δω

δ
δ

δ
δω

= − ∂
∂

×

= ∂
∂

⊥ ⊥

⎡
⎣⎢

⎤
⎦⎥

f
p

G

f

F
A

f
p

G

f
A

F

z x

x

ˆ · d

, d .

z

z

3

3

In addition, one computes





∫ ∫

∫

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

∂
∂

× ∂
∂

= × ∂
∂

× ∂
∂

= ∂
∂

∂
∂

− ∂
∂

∂
∂

⊥

⊥
⊥ ⊥

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

f
F

f

G

f
f A

F

f

G

f

f A
p

G

f

F

f p

F

f

G

f

B
p p

x z
p p

x

p p
x

· d · ˆ d

· d .
z z

3 3

3

Thus, replacing the above results in (35) yields the following Poisson bracket of the planar
incompressible CCS:



∫ ∫

∫

∫

ω δ
δω

δ
δω

δ
δω

δ
δ

δ
δω

δ
δ

δ
δ

δ
δω

δ
δ

δ
δω

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

= + −

+ ∂
∂

− ∂
∂

+ + ∂
∂

∂
∂

− ∂
∂

∂
∂⊥

⊥ ⊥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝⎜

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎞
⎠⎟

⎛
⎝
⎜⎜

⎧⎨⎩
⎫⎬⎭

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

F G
F G

A
F G

A

G F

A

f
v

G

f

F
A

v

F

f

G
A

f
F

f

G

f
A

p

G

f

F

f p

F

f

G

f

x x

x p

p p
x p

{ , } , d , , d

, , d d

, · d d .

z z

z z

3 3

3 3

3 3

Then, upon using the total energy (13), one obtains

 

∫ω ϕ ω ϕ

ϕ

∂ = + − ∂ =

∂ + ∂
∂

+ + ∂
∂

− ∂
∂

=⊥ ⊥ ⊥
⊥

⎡
⎣⎢

⎤
⎦⎥

( )

J p f z A A A

f
f

A A
f

v
v A

f

p

p
x

p
p

[ , ] d d , , [ , ]

· · [ , ] 0.

t z t

t
z

z

3

Notice that the longitudinal coordinate z plays no role in the dynamics and thus it can be
integrated out to yield the equations (9)–(10).

A.2. Planar PCS

Consider the incompressible PCS equations (4)–(6). These comprise a Hamiltonian system
with Hamiltonian (7) and Poisson bracket [40]

 

 

∫

∫

∫

∫

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ

δ
δ
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δ
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δ
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δ
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∂
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∂
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+ × × − × ×

⎜ ⎟
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⎧⎨⎩
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⎧⎨⎩
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m
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, · · · d

, · d d

, · , · d d

· d

PCS

h

3

3 3
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3
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 ∫ ρ δ
δ

δ
δρ

δ
δ

δ
δρ

− −
⎛
⎝⎜

⎞
⎠⎟

F G G F

m m
x· · d . (36)3

In 2D, the terms in the third row become

∫ ∫δ
δ

δ
δ

δ
δ

δ
δω

= ×⊥
⎧⎨⎩

⎫⎬⎭
⎧⎨⎩

⎫⎬⎭f
F

f

G
f

F

f

G
p

m
x p p z x p, · d d , · ˆ d d (37)3 3 3 3

∫ ∫δ
δω

δ
δ

= × ⊥

⎧⎨⎩
⎫⎬⎭

G F

f
fz p x pˆ · , d d (38)3 3

∫ δ
δ

δ
δω

= ×⊥ ⊥
⎧⎨⎩

⎫⎬⎭f
F

f

G
z p x p, ˆ · d d . (39)3 3

The remaining terms in the bracket are computed as in the previous section of this appendix.
Then, the Poisson bracket for the incompressible hybrid PCS reads as

∫ ∫ω δ
δω

δ
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δ
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δ
δ

δ
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δ
δ
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A
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⎛
⎝
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z z

3 3

Then, upon using the total energy (13), one obtains

  ∫ω ψ ω φ ψ∂ = + + × ∂ =⊥ ⊥ ⊥( )J A A Az p p p[ , ] [ , ] ˆ · · d , [ , ] (43)t t
3

  



ψ ψ∂
∂

+ + ∂
∂

− × − ∂
∂

− ∂
∂

=

⊥
⊥ ⊥ ⊥ ⊥

⊥

⊥ ⊥

( )( )f

t
f

f
v A

f

A
f

v

p
x

z p
p

p

[ , ] · ˆ · ·

· 0. (44)

z

z

Again, notice that the longitudinal coordinate z plays no role in the dynamics and thus it can
be integrated out to yield the equations (11)–(12).
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