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Linear stability of inviscid, parallel, and stably stratified shear flow is studied under the assumption of 
smooth strictly monotonic profiles of shear flow and density, so that the local Richardson number is 
positive everywhere. The marginally unstable modes are systematically found by solving a one-parameter 
family of regular Sturm–Liouville problems, which can determine the stability boundaries more efficiently 
than solving the Taylor–Goldstein equation directly. By arguing for the non-existence of a marginally 
unstable mode, we derive new sufficient conditions for stability, which generalize the Rayleigh–Fjørtoft 
criterion for unstratified shear flows.
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1. Introduction

Instabilities of stratified shear flows are important for under-
standing not only geophysical phenomena but also fundamental 
mechanisms of flow instabilities. The couplings among vortical 
waves and gravity waves, supported by the choice of background 
basic state, give rise to various types of instabilities named af-
ter Kelvin, Helmholtz, Holmboe, and Taylor (see the reviews [1,
2]). By replacing gravity by centrifugal force, the analogous mech-
anism further triggers instabilities of swirling flows and vortices. 
The above instabilities have been described most clearly by as-
suming staircase profiles of the ambient vorticity and density, 
which enables one to interpret the instabilities in terms of the 
couplings of a finite number of discrete eigenmodes [1,2]. Slightly-
smoothed staircase profiles are studied approximately by using 
matched asymptotic expansions [3].

However, it is generally difficult to predict and interpret the 
instabilities of more realistic smooth profiles because the stable 
disturbances occupy a continuous spectrum [4,5] even for a fixed 
streamwise wavenumber and for a wall-bounded domain (which 
was explicitly pointed out by Case [6]). Since the corresponding 
eigenvalue problem, called the Taylor–Goldstein equation, is non-
self-adjoint and singular, the accurate computation of the stability 
boundary is often hard both analytically and numerically. The clas-
sical Miles–Howard criterion [5,7] states that the stratified shear 
flow is stable if the local Richardson number J is greater than 1/4
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everywhere. Although many theoretical investigations have been 
made concerning various situations where J ≤ 1/4 somewhere 
(see [8–10] and references therein), a general stability criterion for 
smooth profiles does not appear to be in the literature. However, 
a generalized version of Rayleigh–Fjørtoft criterion is found when 
0 < J ≤ 1/4 everywhere in Ref. [11].

In this letter, we will present an efficient method for find-
ing marginally unstable modes in the case of J > 0 everywhere. 
Following this method, we will further obtain new sufficient con-
ditions for stability.

2. Search for marginally unstable modes

We consider the linear stability of parallel shear flow U =
(0, U (x)) in an inviscid, incompressible fluid of variable density 
ρ(x) on a domain (x, y) bounded by two walls at x = ±L, where 
the gravitational acceleration g acts in the −x direction. By intro-
ducing the stream function of the disturbance as φ(x)eik(y−Ct) with 
a complex phase speed C ∈ C and a (real) wavenumber k > 0, sta-
bility is governed by the Taylor–Goldstein (TG) equation:

φ′′ − k2φ + U ′′

C − U
φ + N2

(C − U )2
φ = 0, φ(±L) = 0, (1)

where the prime (′) indicates the x derivative and the Boussi-
nesq approximation [ρ(x) = ρ0 + δρ(x) where ρ0 � |δρ|] has been 
used, with N = √−gρ ′/ρ0 being the Brunt–Väisälä (or buoyancy) 
frequency. If this equation has a nontrivial solution for C with a 
positive imaginary part, Im C > 0, the shear flow is spectrally un-
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stable. In what follows, we assume a strictly increasing shear flow 
and a stably stratified density, i.e.,

U ′ > 0 and ρ ′ < 0 on [−L, L], (2)

so that the local Richardson number J = N2/U ′ 2 is positive ev-
erywhere. (Strictly decreasing shear flows U ′ < 0 can be treated 
similarly by replacing U by −U in the TG equation. In fact, a flow 
U is stable if and only if −U is so.) When the domain is un-
bounded (L = ∞), we also assume that U and ρ approach bounded 
values at infinity.

Stability boundaries are often studied by searching for mar-
ginally unstable eigenmodes with C = c + i0 = limε→+0(c + iε)

(where c = Re C ∈ R), which were called singular neutral modes by 
Miles [5] because the TG equation becomes singular at the critical 
layer xc satisfying c = U (xc). Miles proved that a singular neutral 
mode may exist only when J (xc) ≤ 1/4 and only in the form of 
either φ ∝ φ+ or φ ∝ φ− (see the results VIII and IX of [5]), where

φ± = (c + i0 − U )1/2±νc ϕ±(c, x), (3)

with the sign of νc = √
1/4 − J (xc) delineating the two linearly 

independent solutions obtained by the Frobenius method, and ϕ±
are real analytic functions satisfying ϕ±(c, xc) �= 0 as well as the 
boundary condition ϕ±(c, −L) = ϕ±(c, L) = 0. Specifically, the sin-
gularity of (3) has the following branch cuts extending to infinity,

(c + i0 − U )1/2±νc

= |c − U |1/2±νc exp

[
iπ

(
1

2
± νc

)
H(xc − x)

]
, (4)

where H(x) is the Heaviside function. Thus, the existence of the 
domain D w = {x ∈ [−L, L] : J (x) ≤ 1/4} is necessary for instability, 
in that the singular neutral modes must have the critical layers on 
it. Since 0 ≤ νc < 1/2 for xc ∈ D w , we will refer to the less singu-
lar mode φ+ as the “small” neutral mode, and φ− as the “large” 
neutral mode (following the terminology of ideal MHD stability 
theory [12]).1 Notice that these two types of neutral modes de-
generate to (c + i0 − U )1/2ϕ(c, x) only when J (xc) = 1/4 (which 
usually occurs when xc is an endpoint of D w ). For later use, we 
also define Ď w = {x ∈ [−L, L] : J (x) < 1/4} by omitting such the 
endpoints.

In order to find these singular neutral modes efficiently, we 
first apply a transformation ψ = (C − U )−1/2+νc φ to the TG equa-
tion [13] and obtain, for C = c + i0,

(Pψ ′)′ − (k2 + Q )Pψ = 0, ψ(±L) = 0, (5)

where

P (x, xc) = |U − c|1−2νc exp [iπ (1 − 2νc) H(xc − x)] ,

Q (x, xc) =
(

1

2
+ νc

)
U ′′

U − c
− U ′ 2 J − J (xc)

(U − c)2
.

Because |P |−1, |P | and |Q P | are integrable functions for given 
xc ∈ Ď w , this transformed equation is considered to be a regular
Sturm–Liouville equation [16,17], and hence ψ and Pψ ′ are con-
tinuous including the point x = xc . Moreover, we note from (3) that 
the small and large neutral modes, respectively, satisfy ψ+(xc) = 0
and (Pψ ′−)(xc) = 0 at the critical layer xc ∈ Ď w . Base on this fact, 
we divide the domain into [−L, xc] and [xc, L], and seek the small 
and large solutions on each side as follows. By introducing the op-
erator,

1 Actually, there is yet another type of neutral modes that may exist on the ranges 
c ≤ U (−L) and U (L) ≤ c as the gravity waves. But, they are always stable according 
to Howard’s semi-circle theorem [7].
E(xc, λ)ψ := (|P |ψ ′)′ − (λ + Q )|P |ψ, (6)

that depends on the parameter λ = k2 > 0, we solve

E(xc, λL+)ψ = 0, ψ(−L) = 0, ψ(xc) = 0, (7)

E(xc, λL−)ψ = 0, ψ(−L) = 0, (|P |ψ ′)(xc) = 0, (8)

on [−L, xc] and

E(xc, λR+)ψ = 0, ψ(L) = 0, ψ(xc) = 0, (9)

E(xc, λR−)ψ = 0, ψ(L) = 0, (|P |ψ ′)(xc) = 0, (10)

on [xc, L]. Because each of (7)–(10) is a regular Sturm–Liouville 
problem with either Dirichlet or Neumann boundary condition at 
x = xc , Sturm’s oscillation theorem [17] guarantees that the eigen-
values can be ordered as follows.

∞ > λ
(1)
L− > λ

(1)
L+ > λ

(2)
L− > λ

(2)
L+ > λ

(3)
L− > · · · → −∞,

∞ > λ
(1)
R− > λ

(1)
R+ > λ

(2)
R− > λ

(2)
R+ > λ

(3)
R− > · · · → −∞,

where the superscript (n) indicates the nth largest eigenvalue. 
Here, only a finite number of positive eigenvalues is of our interest 
(since λ = k2 > 0) and these eigenvalues depend on xc ∈ Ď w con-
tinuously. Again at the endpoints xc ∈ D w\Ď w (namely, J (xc) =
1/4), the degeneracy, λ

(n)
L− = λ

(n)
L+ and λ

(n)
R− = λ

(n)
R+ (n = 1, 2, . . . ), 

must occur. If the matching condition λL− = λR− > 0 between the 
left and right domains is satisfied for a specific xc ∈ D w , there is a 
large neutral mode ψ− for such c = U (xc) and k = √

λL− = √
λR− . 

Similarly, there exists a small neutral mode ψ+ if λL+ = λR+ > 0
occurs for a specific xc ∈ D w .

Thus, all neutral modes can be found systematically in the pa-
rameter space (xc, λ) ∈ D w × [0, ∞]. In numerical computation, 
positive eigenvalues (λ > 0) of the regular Sturm–Liouville prob-
lems (7)–(10) are scanned for every xc ∈ D w ⊂ [−L, L] and, only if 
they exist, the aforementioned crossing among them is searched. 
Various iteration methods (such as the shooting method and the 
conjugate gradient method) are useful for obtaining the real eigen-
values of (7)–(10) in descending order and their continuous depen-
dence on the scan parameter xc . For the purpose of determining 
the stability, this numerical approach is more efficient than solving 
for complex eigenvalues of the TG equation for each k.

We have applied this approach numerically to the following 
three examples:

(i) U = tanh(10x), N2 = 22,
(ii) U = x, N2 = 0.1 + 10x2,

(iii) U = tanh(10x), N2 = 30/(1 + 104x2),

on the common domain [−L, L] = [−1, 1]; the basic states (i)–(iii) 
are primarily unstable to the Kelvin–Helmholtz (KH), Taylor (T) and 
Holmboe (H) instabilities, respectively. The results are shown in 
Fig. 1(i)–(iii), where the shaded areas indicate the exterior of D w . 
Several large and small neutral modes are found, respectively, as 
indicated by the open and filled circle symbols in Fig. 1. We have 
also searched for neighboring unstable eigenvalues (Im C > 0) by 
the shooting method and confirmed that unstable modes indeed 
exist between these neutral modes. The black solid lines indicate 
the locus of xc = U−1(c) calculated from the real parts c = Re C
of the unstable eigenvalues. For the case (i), the stratification in-
duces three more unstable modes in addition to the KH instability 
that originally exists in the mixing layer. As exemplified by these 
modes as well as the Taylor instability (ii), increasing the stratifica-
tion (or N2) generally tends to spawn more unstable modes, whose 
eigenfunctions are more oscillatory (i.e., λ(n)

L± and λ(n)
R± with larger 

n show up on the positive side). At the same time, however, the 
width of D w tends to be narrowed by increasing N2, which in turn 
contributes to stabilization. In the case (iii), D w is divided into two 



1858 M. Hirota, P.J. Morrison / Physics Letters A 380 (2016) 1856–1860
Fig. 1. Eigenvalues λL− , λL+ , λR− and λR+ of (7)–(10) scanned over xc ∈ D w (dashed 
and dotted color lines) that are calculated numerically for the examples of unstable 
flows (i)–(iii). Large and small neutral modes (C = c + i0), respectively, exist at the 
parameters of open and closed dots; c = U (xc) and k = √

λ. The real parts (c = Re C ) 
of unstable eigenvalues for each k are independently calculated and plotted as black 
solid lines through the mapping xc = U−1(c). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

parts by the sharply peaked profile of N2 (or density jump) and 
the KH mode is split into the Holmboe modes. Here, it should be 
noted that the unstable modes may exist outside D w while the 
neutral modes are forced to exist inside D w .

3. Sufficient conditions for stability

Now, we recall that Howard [7] obtained the upper bound of 
Im C as Im C < k−1 max[−L,L]

√
U ′ 2/4 − N2, which implies Im C →

0 as k → ∞. On the other hand, we have shown the absence of 
neutral modes for sufficiently large wavenumber k satisfying ei-
ther k2 > λ

(1)
L− or k2 > λ

(1)
R− for all xc ∈ D w , which proves stability 

at k → ∞. By noting that the eigenvalues must move continuously 
on the upper half plane of C as the parameter k2 changes, unstable 
eigenvalues remain absent as k2 decreases from ∞ and such an 
eigenvalue can only emerge via a marginally unstable eigenvalue 
C = c + i0. Therefore, the absence of neutral modes for sufficiently 
large k proves the absence of any unstable mode for the same 
range of k. Since the largest eigenvalues, λ

(1)
L− and λ

(1)
R− , of the 

Sturm–Liouville problem are easily calculated by the variational 
method, we can derive a stability condition in the following form.

Criterion 1. The flow (2) is spectrally stable for the wavenumber k that 
satisfies either

k2 > − min
ψ(−L)=0

∫ xc
−L |P |(ψ ′ 2 + Q ψ2)dx∫ xc

−L |P |ψ2dx
, (11)

or

k2 > − min
ψ(L)=0

∫ L
xc

|P |(ψ ′ 2 + Q ψ2)dx∫ L
xc

|P |ψ2dx
, (12)

for all xc ∈ D w .

Suppose that we have computed the right hand sides of (11)
and (12) (namely, λ(1)

L− and λ(1)
R−) for all xc ∈ D w and found that 

they are negative on subsets D w1 ⊂ D w and D w2 ⊂ D w , respec-
tively. If D w = D w1 ∪ D w2, the flow is spectrally stable for all k. 
Note that either D w1 or D w2 may be the null set and then (11) or 
(12) will be not applicable.

If Q (x, xc) ≥ 0 both on [−L, xc] for all xc ∈ D w1 and on [xc, L]
for all xc ∈ D w2, Criterion 1 immediately proves stability. This 
observation enables us to derive further stability conditions as 
follows. Let a ∈ [−L, L] be the rightmost point in D w1, i.e., a =
max D w1. By using the inequality

J (xc) − J (x)

U (xc) − U (x)
≥ min[−L,a]

J ′

U ′ for x ≤ xc ≤ a, (13)

we get

Q (x, xc) ≥ U ′ 2

c − U

[
−

(
1

2
+ νc

)
U ′′

U ′ 2
+ min[−L,a]

J ′

U ′

]
, (14)

on [−L, xc] ⊂ [−L, a]. The requirement Q (x, xc) ≥ 0 on [−L, xc] for 
all xc ∈ D w1 (for which 0 ≤ νc < 1/2) leads to (15) below. A similar 
inequality can also be derived for [xc, L] ⊂ [b, L] in terms of the 
leftmost point b in D w2. Thus, we obtain the following stability 
criterion:

Criterion 2. The flow (2) is spectrally stable if there exist a, b ∈ [−L, L]
such that

max[−L,a]
σ=1/2,1

(
σ

U ′′

U ′ 2

)
≤ min[−L,a]

(
J ′

U ′

)
, (15)

min
[b,L]

σ=1/2,1

(
σ

U ′′

U ′ 2

)
≥ max

[b,L]

(
J ′

U ′

)
, (16)

and D w ⊂ [−L, a] ∪[b, L] hold, where (15) or (16) may be omitted when 
a = −L or b = L, respectively.

We remark that, in (15), for example, we should adopt σ = 1/2
if max[−L,a] U ′′ < 0, or σ = 1 otherwise.

From Criterion 2, it is straightforward to obtain the next crite-
rion:

Criterion 3. The flow (2) is spectrally stable if there exist a, b ∈ [−L, L]
such that

U ′′ ≤ 0 and J ′ ≥ 0 on [−L,a], (17)

U ′′ ≥ 0 and J ′ ≤ 0 on [b, L], (18)
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Fig. 2. Examples of stable flows (iv) and (v) found by Criterion 2.

and D w ⊂ [−L, a] ∪[b, L] hold, where (17) or (18) may be omitted when 
a = −L or b = L, respectively.

Recall that unstratified shear flows with no inflection point 
(U ′′ �= 0) were shown to be stable by Rayleigh [14], and even 
when a monotonic shear flow (U ′ > 0) has one inflection point 
U ′′(xI ) = 0, it is still stable if U ′′ < 0 on [−L, xI ] and U ′′ > 0 on 
[xI , L] according to Fjørtoft [15]. Criterion 3 asserts that these flows 
remain stable even with the effect of stratification, if the additional 
condition on the sign of J ′ is satisfied (where a = b = xI is chosen 
for the Fjørtoft case).

Since J ′ ≶ 0 is equivalent to (N2)′/N2 = ρ ′′/ρ ′ ≶ U ′′/U ′ by def-
inition, the case of N2 ≡ const. (or ρ ′′ ≡ 0) automatically satisfies 
the condition on J ′ of Criterion 3. On the contrary, if J has a lo-
cal minimum in the interior of [−L, L] (i.e., somewhere except at 
the wall x = ±L) and its value is below 1/4, Criterion 3 is violated 
and such a stratification can destabilize an otherwise stable shear 
flow, like the Taylor instability of Fig. 1(ii). Criterion 3 is also vio-
lated by a U ′ that has a local maximum (i.e., a local maximum of 
vorticity) in the interior of D w , which can cause KH instability like 
the example of Fig. 1(i).

The more detailed Criterion 2 tells us that this destabilization 
effect of U ′′ (or J ′) may be suppressed by the stabilization effect 
of J ′ (or U ′′). For example, the flows,

(iv) U = arctan(x/2) + x, J = (1 − 3x/4)/5,
(v) U = (x + 3/2)2, J = (x2 + 2)/10,

on [−L, L] = [−1, 1] are found to be stable by Criterion 2. For the 
case (iv), the sign of U ′′ violates the Rayleigh–Fjørtoft criterion and 
U ′ has a maximum in D w , but the stratification J contributes to 
stabilization so that the inequality (16) with D w = [b, L] holds, as 
shown in Fig. 2. Conversely, for the case (v), J has a minimum 
that is below 1/4, but U ′′ > 0 is large enough to satisfy (16) with 
D w ⊂ [b, L].
Fig. 3. Venn diagram of sufficient stability criteria.

4. Concluding remarks

In summary, by using the method developed in this letter, 
we can efficiently find singular neutral modes that are embedded 
in the continuous spectrum. The unstable ranges of wavenumber 
are searched for by solving the regular Sturm–Liouville problems 
(7)–(10) for each xc ∈ D w , which requires less labor than solving 
the TG equation (i.e., a non-self-adjoint eigenvalue problem) for 
each k > 0 directly. With the help of numerical computation, this 
method will be useful for determining stability boundaries for var-
ious flows and understanding their instability mechanisms. Based 
on this method, we have derived new stability criteria (Criteria 1, 
2, and 3) as extensions of the Rayleigh–Fjørtoft criterion to strati-
fied flows, which are of course improvements of the Howard–Miles 
criterion since the local Richardson number is allowed to be less 
than 1/4 (see Fig. 3).

We expect that the present approach could yields stability 
boundaries of non-monotonic shear flows and locally unstratified 
(or constant) densities with additional or different treatments for 
the singularity. A few specific examples were investigated in earlier 
works [18,9,10], which in particular suggests that the singularity at 
the critical layer should be replaced by that of Rayleigh’s equation 
when N2(xc) = 0. By making use of the abundant knowledge about 
Rayleigh’s equation [19,20], more detailed stability criteria tailored 
for these applications will be discussed elsewhere.
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