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Remarkable connections between extended magnetohydrodynamics models

M. Lingam,a) P. J. Morrison,b) and G. Miloshevichc)

Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin,
Texas 78712, USA

(Received 11 May 2015; accepted 30 June 2015; published online 21 July 2015)

Through the use of suitable variable transformations, the commonality of all extended

magnetohydrodynamics (MHD) models is established. Remarkable correspondences between the

Poisson brackets of inertialess Hall MHD and inertial MHD (which has electron inertia, but not the

Hall drift) and extended MHD (which has both effects) are established. The helicities (two in all)

for each of these models are obtained through these correspondences. The commonality of all the

extended MHD models is traced to the existence of two Lie-dragged 2-forms, which are closely

associated with the canonical momenta of the two underlying species. The Lie-dragging of these

2-forms by suitable velocities also leads to the correct equations of motion. The Hall MHD Poisson

bracket is analyzed in detail, the Jacobi identity is verified through a detailed proof, and this proof

ensures the Jacobi identity for the Poisson brackets of all the models. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4926821]

I. INTRODUCTION

Since the pioneering works of Hannes Alfv�en in the

1930s, ideal magnetohydrodynamics (MHD) has established

itself as a cornerstone in fusion and astrophysical plasmas.1–3

The ubiquity of ideal MHD stems from its combination of

simplicity and (fairly) wide applicability. As MHD is a fluid

theory, it shares deep connections with ideal hydrodynamics,

including the concept of helicity conservation. Helicities are

of considerable interest as they are topological quantities,4,5

and share a close kinship with the relaxation and self-organi-

zation6,7 of plasmas. A third advantage of ideal MHD is that

it possesses elegant action principle8 and Hamiltonian9 for-

mulations, each of which has several advantages of its own.

However, despite its manifold advantages, ideal MHD is

not a perfect theory, as it fails to take into account two-fluid

effects such as electron inertia and the Hall current. To

address this issue, a plethora of fluid models has been pro-

posed such as Hall MHD,10 electron MHD,11 inertial

MHD,12 and extended MHD.13,14 Each of these models orig-

inates from the two-fluid model, which is Hamiltonian in na-

ture.15 Yet, several models in the literature have failed to

recognize the Hamiltonian nature of extended MHD, thereby

giving rise to spurious dissipation; see Ref. 12 for a discus-

sion of the same. We note that many of the extended MHD

models have been derived via an action principle formula-

tion,16 but a Hamiltonian formulation has proven elusive—it

was only very recently that a unified Hamiltonian approach

to extended MHD was proposed in Ref. 17.

Since several versions of extended MHD exist in the lit-

erature, we record here the version we shall analyze, which,

as shown first by L€ust,14 can be obtained from an asymptoti-

cally consistent ordering. The extended MHD equations are

the following: the continuity equation

@q
@t
þr � qVð Þ ¼ 0; (1)

the equation for the momentum density

q
@V

@t
þ V � rV

� �
¼ �rpþ J� B� d2

e J � r J

q

� �
; (2)

and Ohm’s law

Eþ V� B� di

q
J� B�rpeð Þ

¼ d2
e

q
@J

@t
þr � VJþ JV� di

q
JJ

� �� �
: (3)

Here, the variables q; V and J ¼ r� B serve as the total

mass density, center-of-mass velocity and the current,

respectively, written in standard Alfv�en units with de ¼ c=
ðxpeLÞ and di ¼ c=ðxpiLÞ serving as the electron and ion

skin depths normalized by a characteristic length scale L. As

usual, c is the speed of light, and xpi;e are the ion and elec-

tron plasma frequencies. In the above equations, the total

pressure p and the electron pressure pe will be assumed to be

barotropic, i.e., functions of q alone, a consequence of which

is that the electron pressure is removed from Ohm’s law

upon insertion of E into Faraday’s law. This thermodynamic

restriction can be relaxed, but it will be assumed throughout

this paper. The extended MHD system of Eqs. (1)–(3) was

shown in Ref. 12 to conserve the following total energy:

H de; B½ � ¼
ð

D

d3x
qjVj2

2
þ qU qð Þ þ

jBj2

2
þ d2

e

jr � Bj2

2q

" #
;

(4)

with U being the internal energy function and the pressure

given by p ¼ q2@U=@q. Here, the reason for displaying the

arguments ½de; B� will become clear later. Observe that the

above expression depends on de but is independent of di.

Also observe that the last term on the RHS of (2) that is
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proportional to d2
e is necessary for energy conservation,

although it is often neglected in textbook treatments (see

Ref. 12 for a detailed discussion of this issue). Two limits of

extended MHD will be of interest: the case where de¼ 0

yields the system commonly referred to as Hall MHD, while

we refer to the case where di¼ 0 as inertial MHD.

At this stage, it is helpful to recall the many advantages

of deriving physical theories via action principles and/or

Hamiltonian methods. The former represent an excellent

way of building in constraints a priori and permit a natural

analysis of symmetries and associated invariants via

Noether’s theorem; we refer the reader to Refs. 16 and

18–21 for expositions of this approach in the context of plas-

mas. The associated Hamiltonian formalism is endowed with

several advantages of its own—it enables the determination

of a special class of invariants, the Casimirs, which play a

crucial role in determining the equilibria and their stability

via the energy-Casimir method. A comprehensive discussion

of the Hamiltonian formulation is found in the works of

Refs. 9 and 22–29.

Our goal in this paper is twofold in nature. First, we

shall demonstrate that Hall, inertial, and the full extended

MHD models possess a common underlying structure. We

use this commonality to derive Casimir invariants, such as

the helicities, through simpler means. After establishing the

correspondences between variants of extended MHD in

Sections II and III, we prove the Jacobi identity for Hall

MHD in detail in Section IV. Our work serves as a comple-

ment of Ref. 17, where the Hamiltonian structure of

extended MHD was analyzed in detail.

II. ON THE SIMILARITIES AND EQUIVALENCES OF
EXTENDED MHD MODELS

In this section, we analyze Hall MHD and demonstrate

its equivalence with inertial MHD and extended MHD. We

exploit this equivalence to determine the helicities, which

are Casimir invariants, of these models in a straightforward

manner.

A. Hall MHD structure

As noted in Sec. I, Hall MHD is obtained from extended

MHD by setting de¼ 0. In Hall MHD, it is assumed that the

two species drift with different velocities (as opposed to

ideal MHD), but it is assumed that the electrons are inertia-

less (akin to ideal MHD). We commence our analysis with

the Hall MHD bracket expressed as

fF;GgHMHD ¼ �
ð

D

d3x

(
Fqr � GV þ FV � rGq½ �

� r � Vð Þ
q

� FV � GVð Þ
" #

� B

q
� FV � r� GBð Þ � GV � r� FBð Þð Þ

� �

þ di
B

q
� r � FBð Þ � r � GBð Þð Þ

� �)
; (5)

where FV :¼ dF=dV, etc., represent the functional deriva-

tives with respect to the corresponding variables.

Specifically, Fw ¼ dF=dw represents the functional deriva-

tive with respect to w, defined via

dF wþ �dw½ �
d�

����
�¼0

¼:
dF

dw
; dw

� �
: (6)

Before proceeding further, it is worth bearing in mind that

the limit di ! 0 leads to the ideal MHD bracket first given in

Ref. 9

fF;GgMHD :¼�
ð

D

d3x

 
Fqr �GV�Gqr �FV

þr�V

q
�GV�FVþ

B

q
� FV �rGB�GV � rFB½ �

þB � rFV

q
�GV�r

GV

q
�FV

� �!
: (7)

This bracket with the Hamiltonian H½0; B� of (4) gives

the system in the form @Z=@t ¼ fZ;HgHMHD
, where Z ¼

ðq;V;BÞ denotes the observables of the model. For conven-

ience, we re-express (5) as

fF;GgHMHD ¼ fF;GgMHD þ fF;GgHall; (8)

where fF;GgMHD
is the ideal MHD bracket given by (7)

and fF;GgHall
is the Hall term of (5) that involves the ion

skin depth di, first given in Refs. 17 and 30. We note in

passing that an earlier, and alternative, noncanonical

bracket for Hall MHD that uses a redundant variable was

analyzed in Refs. 31 and 32.

Because fF;GgHall
only depends on functional deriva-

tives with respect to B an immediate consequence is that any
Casimir of ideal MHD that is independent of B will auto-

matically be a Casimir of Hall MHD, but it is not necessarily

true for B-dependent Casimirs, such as the magnetic and

cross helicities. However, observe that the magnetic helicity

C1 ¼
ð

D

d3x A � B ; (9)

a Casimir of ideal MHD also satisfies fF; C1gHall ¼ 0. Thus,

it is indeed true that (9) is also a Casimir of Hall MHD. A

simple calculation shows that the cross helicity
Ð

Dd3x v � B is

not a Casimir of (5).

The search for a second helicity led us to introduce a

new magnetic variable given by

Bi ¼ Bþ dir� V: (10)

Upon effecting the functional chain rule, we obtain our first

remarkable identity when (5) is re-expressed in terms of Bi

f ~F; ~GgHMHD½di; B� � fF;GgHMHD½�di;Bi�

¼ fF;GgMHD½Bi� � fF;GgHall½Bi�; (11)

where the displayed arguments di and Bi indicate that the re-

spective components of (11) are the same as (8) except that
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di and B are replaced by �di and Bi, respectively. The equiv-

alence can be shown by inserting the following chain rule

formulas (see, e.g., Ref. 22) into the left hand side of (11):

~FB ¼ FBi
and ~FV ¼ FV þ dir� FBi

; (12)

where we are assuming that F½Bi;V; q� ¼ ~F½B;V; q�. In the

above expression(s), observe that the tildes are used to

denote the functionals (and the bracket) in terms of the

“original” variables, i.e., B; V, and q.

Following the line of reasoning leading to (9), we con-

clude that

C2 ¼
ð

D

d3xA i �Bi ¼ ðAþ diVÞ � ðBþ dir� VÞ (13)

is a Casimir of Hall MHD. Again, this follows because it is a

Casimir of ideal MHD, now with B replaced by Bi, and it

also satisfies fF; C2gHall½Bi� ¼ 0.

In summary, the transformation B! Bi exhibits two

very special properties:

• We see that it preserves the form of the Hall MHD

bracket, i.e., it is evident that (8) and (11) are identical to

one another upon carrying out this transformation, apart

from the change in sign, viz., di ! �di.
• It allows us to quickly determine the second Casimir of

Hall MHD, without going through the conventional proce-

dure of solving a set of constraint equations. In fact, we

see that (9) and (13) possess the same form. Note that in

light of the Casimir C1 of (9), the second Casimir can be

viewed as a sum of the fluid helicity and cross helicity.

Thus, it is evident that such transformations play a cru-

cial role, both in exposing the symmetries of the system and

in determining the Casimirs. In Section III, we shall explore

this issue in greater detail.

B. Hall MHD and inertial MHD

Both ideal MHD and Hall MHD assume that the elec-

trons are inertialess, i.e., this is done by taking the limit

me=mi ! 0 everywhere. However, there are several regimes

where electron inertia effects may be of considerable impor-

tance, such as reconnection.33 To address this issue, a new

variant of MHD, dubbed inertial MHD, was studied in Ref.

12 and the Hamiltonian and Action Principle (HAP) formu-

lation of two-dimensional inertial MHD was presented in

Ref. 20.

We now turn our attention to inertial MHD, whose non-

canonical bracket is given by

fF;GgIMHD de; B?½ � ¼ fF;GgMHD
B?½ �

þ d2
e

ð
D

d3x

�
r� V

q
� r � FB?ð Þð

� r � GB?ð ÞÞ
�
; (14)

where fF;GgMHD½B?� is the ideal MHD bracket (7) with B

replaced by B?, where the latter variable given by

B? ¼ Bþ d2
e r�

r� B

q

� �
; (15)

and represents the “inertial” magnetic field employed in Ref.

20. The variable B? is approximately the curl of the electron

canonical momentum, which has been used in many contexts

(e.g., Refs. 34 and 35). The Hamiltonian for this model is

H½de; B�, as given by (4), which can also be written as

H de; B?½ � ¼
ð

D

d3x
qjVj2

2
þ qU qð Þ þ

B � B?

2

� �
; (16)

where B is treated as dependent on B?.

Now consider the transformation to a new variable

Be ¼ B? � der� V; (17)

and re-express our bracket in terms of it. Upon doing so, we

find an interesting result

f ~F; ~GgIMHD de; B?½ � � fF;GgIMHD de;Be½ �

¼ fF;GgMHD Be½ � � 2de

ð
D

d3x

� Be

q
� r � FBeð Þ � r � GBeð Þð Þ

� �
;

(18)

where, akin to (11) and the discussion afterwards, the equiv-

alence is established by the functional chain rule. The second

term in the above bracket for inertial MHD can be compared

against the last term in (5)—we see that the two are identical

when di is replaced by 2de and B is replaced by Be in the lat-

ter expression. Thus, we arrive at our second remarkable

identity

f ~F; ~GgIMHD½de; B?� � fF;GgHMHD½2de;Be�: (19)

In other words, the inertial MHD bracket is equivalent to the

Hall MHD bracket when the transformations di ! 2de and

B! Be are applied to the latter. As a result, we are led to a

series of important conclusions:

• As the inertial and Hall MHD brackets are identical under

a change of variables (and constants), proving the Jacobi

identity for one of them constitutes an automatic proof of

the other.
• The Casimirs of inertial MHD are easily obtained from the

equivalent Casimirs for Hall MHD, i.e., the following two

helicities emerge:

CI ¼
ð

D

d3x ðA? � deVÞ � ðB? � der� VÞ; (20)

CII ¼
ð

D

d3x ðA? þ deVÞ � ðB? þ der� VÞ; (21)

where B? ¼ r� A? and the RHS is determined via (15).

Observe that (21) follows from (13) upon using the rela-

tion (19) and the subsequent discussion.
• By taking the difference of (21) and (20), we obtain a

Casimir:
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CIII ¼
ð

D

d3x V � B?; (22)

which is identical to the cross-helicity invariant of ideal

MHD, after performing the transformation B! B?. The

existence of this invariant was documented in Ref. 20.

We observe that (21) and (22) were previously obtained as

the Casimirs for inertial MHD in Ref. 17, and it is thus evi-

dent that inertial MHD has not one, but two Casimirs (helic-

ities) of the form
Ð

Dd3x P � ðr � PÞ, as seen from (20) and

(21). As a result, this allows us to emphasize a rather unique

feature of inertial MHD:

• One can interpret inertial MHD as consisting of two helic-

ities akin to the magnetic (or fluid) helicity, cementing its

similarity to Hall MHD and the 2-fluid models.15

• Alternatively, we can view inertial MHD as being

endowed with one Casimir resembling the magnetic helic-

ity and the other akin to the cross helicity. Such a feature

renders it analogous to ideal MHD, which possesses simi-

lar features.9

To summarize thus far, we have shown an unusual cor-

respondence between Hall MHD (inertialess, finite Hall

drift) and inertial MHD (finite electron inertia, no Hall drift)

by showing that the two brackets are equivalent under a suit-

able set of transformations. We shall explore their origin in

more depth in Section III.

C. Extended MHD Casimirs and interrelations

Hitherto, we have discussed models that separately

incorporate the Hall drift and finite electron inertia.

Extended MHD combines these effects together, giving rise

to a more complete model. The noncanonical bracket for this

model is

fF;GgXMHD½di; de; B?� ¼ fF;GgIMHD½de; B?�

þ fF;GgHall½di; B?�; (23)

where the second term on the RHS denotes the Hall term

with B replaced by B?, and the latter variable was defined in

(15). This bracket together with the Hamiltonian H½de; B?� of

(16) generates extended MHD.

It is evident that a clear pattern has emerged:

(1) The Jacobi identity for the Hall bracket can be proven in

a simple manner as it represents the sum of two compo-

nents, one of which already satisfies the Jacobi identity

(the ideal MHD component). The details are provided in

Sec. IV.

(2) The Jacobi identity for inertial MHD automatically fol-

lows as per the discussion in Section II B.

(3) It is easy to see from (23) that the extended MHD

bracket will then be composed of a component (inertial

MHD) that already satisfies the Jacobi identity, apart

from a second component that represents the Hall contri-

bution. As a result, the calculation mirrors the proof of

the Jacobi identity for Hall MHD, and the similarities are

manifest upon inspecting (8) and (23).

Since we have argued that each of the extended MHD

models shares a degree of commonality, it also follows

that extended MHD must possess two helicities akin to

the magnetic helicity (in form), and that they should

involve the variables B? and V. Thus, we seek Casimirs of

the form

CXMHD ¼
ð

D

d3x ðVþ kA?Þ � ðr � Vþ kB?Þ; (24)

and determine k by demanding that fF; CXMHDgXMHD ¼ 0 for

all F. This leads to the following quadratic equation for k:

d2
ek

2 þ dik� 1 ¼ 0; (25)

whose solutions are

k ¼ �di6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

i þ 4d2
e

p
2d2

e

; (26)

and these invariants were obtained in Ref. 17. We reiterate

the importance of recognizing the existence of two helicities

akin to the fluid (or magnetic) helicity, since this is a feature

that the extended MHD models inherit from the parent two-

fluid model.

In fact, we can recover these two helicities by following

the same spirit of variable transformations introduced previ-

ously. Hence, we introduce the variable

Bk ¼ B? þ k�1r� V; (27)

where k satisfies (25). Upon doing so, we find our last

remarkable identity:

f ~F; ~GgXMHD½di; de; B?� � fF;GgHMHD½di � 2k�1; Bk�; (28)

where the RHS indicates that the extended MHD bracket is

equivalent to the Hall MHD bracket, when the latter is sub-

jected to the swaps di ! di � 2k�1 and B! Bk. One must

bear in mind that there are two such variable transforma-

tions since there are two choices for Bk which stem from

(25)—the quadratic equation for k. We find that these two

variable transformations naturally allow us to determine

the two helicities of the model. We recover (24) success-

fully, thereby affirming the power of these variable trans-

formations. Furthermore, we conclude from (28) that our

proof of the Jacobi identity for Hall MHD automatically

ensures that the extended MHD bracket also satisfies the

same property.

In summary, we have established the remarkable result

that a proof of the Jacobi identity for the Hall bracket suffi-

ces to establish the validity of the inertial and extended

MHD brackets as well. This proof is given in detail in

Sec. IV.

III. THE LAGRANGIAN ORIGIN OF THE EQUIVALENCE
BETWEEN THE EXTENDED MHD MODELS

In this section, we shall briefly explore the origin of

the helicities derived in Section II, and comment on the

equivalences between the various extended MHD models.
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In order to do so, we appeal to the Lagrangian picture of

fluid models, which envisions the fluid as a continuum col-

lection of particles. In this picture, laws are built in a priori
through the imposition of suitable geometric constraints;

we refer the reader to Refs. 8, 16, 18, and 20 for further

details. An extensive treatment will be given in a future

publication.

In ideal MHD, we know that flux is frozen-in, and this

translates into a local statement of flux conservation on the

Lagrangian level. When one works out the algebra, it is

shown that the magnetic induction equation of ideal MHD is

just the Lie-dragging of a 2-form - the magnetic field B � dS.

Alternatively, one can interpret it, in 3D, as the Lie-dragging

of a vector density.19,21 Now, let us take a step back and con-

sider two-fluid theory, where one can define a canonical mo-

mentum P ¼ msvs þ qsA for each species. It is evident that

A represents the electromagnetic component of the canonical

momentum, whilst vs gives rise to the kinetic component.

Next, suppose that we consider a scenario where the kinetic

momentum is much “smaller” than its electromagnetic coun-

terpart—this is achieved especially in the case of electrons,

owing to their lower mass. In such an event, we see that the

canonical momentum reduces to A (up to proportionality

factors) and we can interpret B as a certain limit of r�P.

In ideal MHD, which is a pure one-fluid theory, it is easy

to view B as being Lie-dragged by the center-of-mass veloc-

ity V.

Now, we shall proceed in the same heuristic manner,

through the incorporation of two-fluid effects. First, let us

suppose that the electrons are inertialess, but not the ions. As

a consequence, one finds that the center-of-mass velocity V

and the ion velocity virtually coincide. The corresponding

canonical momenta, after suitable normalization, reduce to B

and Bi, respectively, after rewriting them in terms of one-

fluid variables. Following the analogy outlined above, we

can choose to Lie-drag them as 2-forms, akin to the magnetic

field in ideal MHD. Next, the question arises: by which ve-

locity must we Lie-drag these variables? The answer is intui-

tive: we choose to Lie-drag them by the velocity of the

corresponding species. After some manipulation, it is easy to

show that the resulting equations are equivalent to those of

Hall MHD.

Next, suppose that we include the effects of electron

inertia. The curls of the canonical momenta (canonical vor-

ticities), when written in terms of the one-fluid variables, are

closely connected to B?6der� V, and the latter are the var-

iables that appear in (21) and (20), respectively. Following

the same prescription, we can choose to Lie-drag these quan-

tities. We choose to Lie-drag the two variables presented

above, related to the canonical vorticities, by suitable flow

velocities, V6der� B=q, which are determined via a care-

ful manipulation of the inertial MHD equations; the ensuing

flow velocities are nearly identical to the species’ velocities

for this model. It is found, after some algebraic simplifica-

tion, that the resulting equations are equivalent to those of in-

ertial MHD. The generalization to extended MHD is not

entirely straightforward, but it can be done by using the vari-

ables from (24) as Lie-dragged 2-forms, and noting that each

is Lie-dragged by the effective velocity of the corresponding

species.

Thus, we see that our preceding analysis establishes two

very important points. First, the equations for extended

MHD can be viewed as the natural manifestation of underly-

ing (Lagrangian) geometric constraints. Second, we see that

the variables Bi; Be, etc., introduced earlier, and the helic-

ities of the models, are also “natural”—they emerge from the

unifying concept that all extended MHD models possess two

Lie-dragged 2-forms (which share close connections with

the canonical momenta). In both these aspects, we see that

the Lagrangian picture of extended MHD presents a compel-

ling argument as to why the variable transformations of

Section II are not arbitrary, and, more importantly, it empha-

sizes the underlying geometric nature of the extended MHD

models. The latter is all the more useful as it further serves

to emphasize the existence of a unifying structure for the

extended MHD models. The details of this intuitive picture

are not trivial and, as noted above, will be given in a future

publication.

IV. JACOBI IDENTITY FOR HALL MHD

In this section, we present a detailed proof of the Jacobi

identity for the noncanonical Hall MHD bracket. The trans-

formations discussed in Sections II and III ensure the Jacobi

identity for other versions of extended MHD.

In the absence of the Hall term, we see that (5) reduces

to the ideal MHD bracket, first obtained in Ref. 9, and given

by (7), which is known to satisfy Jacobi identity on its

own.9,22 To reduce clutter, we will use the convention

throughout that the r operator acts only on the variable im-

mediately following it and dyadics will be written as

follows:

B � rFv

q
� Gv ¼ Bi @i

Fj
v

q

 !
Gj

v: (29)

A. Hall-Hall Jacobi identity

Introduction of the Hall current lead to the additional

Hall term given in (8),

fF;GgHall :¼ �di

ð
D

d3x
B

q
� r � FBð Þ � r � GBð Þ½ �; (30)

consequently demonstrating that the Hall MHD bracket satis-

fies Jacobi is important since it is closely connected to the

rest of the extended MHD models, as discussed previously.

The Jacobi identity involves proving that cyclical permuta-

tions of any functionals F, G, H vanish, i.e., we require

0 ¼ ffF;Gg;Hg þ ffG;Hg;Fg þ ffH;Fg;Gg
� ffF;Gg;Hg þ “

F;G;H
: (31)

Here, f; g :¼ f; gMHD þ f; gHall
. Because we already know

that (7) satisfies Jacobi and according to the bilinearity of

Poisson brackets, the general proof splits into two pieces
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ffF;GgMHD;HgHall þ ffF;GgHall;HgMHD þ “
F;G;H

¼ 0;

(32)

and

ffF;GgHall;HgHall þ “
F;G;H

¼ 0: (33)

This split occurs since (32) involves terms that are linear in

di, whilst (33) is quadratic in di. We introduce the cosym-

plectic operator J which depends on the field variables u in

general. It is known that Poisson brackets can be formally

written in the form

F;Gf g :¼
�

dF

du

����J dG

du

�
: (34)

The outer brackets in both (32) and (33) require evaluation

of the variational derivatives of the inner bracket with

respect to the field variables:

d

d�
F;Gf g uþ �du½ �

��
�¼0

:¼
�

d
du

F;Gf gjdu

�

¼
�

d2F

dudu
du

����J dG

du

�

þ
�

dF

du

����J d2G

dudu
du

�

þ
�

dF

du

���� dJ

du
duð Þ dG

du

�
: (35)

Proving the Jacobi identity for noncanonical Poisson brack-

ets is aided by a theorem proven in Ref. 22, which states that

the contributions from first two terms of the above expres-

sion vanish upon cyclic permutation when plugged in the

outer bracket. Thus, we can neglect second variations that

appear throughout the following calculations. Since the outer

Hall bracket only involves variations with respect to B, it is

enough to consider

d
dB
fF;GgHall ¼ �di r� FBð Þ � r � GBð Þ ¼ �di FA � GA;

(36)

where the equalities above are modulo the second variations

that have been dropped and in the second equality, we have

introduced the shorthand

FA ¼ r� FB : (37)

From (37), it follows that r � FA ¼ 0. Substituting (36) into

the Hall-Hall part of the Jacobi relation (33) gives

d2
i

ð
D

d3x B � r 1

2q2

� �
� FA � GA½ �

�

þ 1

q2
r� FA � GA½ �

�
� HA: (38)

Using the vector identities such as X� ðY� ZÞ ¼ Y ðX � ZÞ
�Z ðX � YÞ and r� ðX� YÞ ¼ r � ðY X� X YÞ, collecting

similar terms together, permuting, and integrating by parts,

we arrive at

ffF;GgHall;HgHall þ “
F;G;H

¼ d2
i

ð
D

d3x q�2ðFA � GAÞ � ðHA � rÞBþ “
F;G;H

¼ d2
i

ð
D

d3x q�2 �ijkFj
A Gk

AHl
A@lB

i þ “
F;G;H

¼ d2
i

ð
D

d3x q�2 FA � ðGA � HAÞ dl
i@lB

i þ “
F;G;H

; (39)

where the last step becomes apparent when we explicitly

write down the other two permutations and use the antisym-

metry of Levi-Civita tensor �ijk in addition to the identity

�ijk�
ljk ¼ 2dl

i. Finally, upon invoking the identity r � B ¼ 0,

we see that the Hall term of the bracket (5) alone satisfies the

Jacobi identity.

B. Hall-MHD Jacobi identity

We observe that this part is harder to tackle, owing to the

greater complexity of the resultant expression. First consider

the first term of (32). As described in Section IV A, the outer

Hall bracket (30) necessitates only the explicit variational

derivatives with respect to B. Hence, we only need to consider

such variations of the inner MHD bracket (7)

d
dB
fF;GgMHD ¼ �Fv

q
� rGB þ

Gv

q
� rFB

�rFv

q
� GB þr

Gv

q
� FB þ � � � ; (40)

and we have suppressed the implicit second-order variations,

as they do not contribute to the Jacobi identity. After substi-

tution into the outer Hall bracket, we get

ffF;GgMHD;HgHall þ “
F;G;H

¼ �di

ð
D

B

q
�
�
r�

�
Fv

q
� rGB �

Gv

q
� rFB

þrFv

q
� GB �r

Gv

q
� FB

�
� r� HBð Þ

�
þ “

F;G;H
;

(41)

which upon using the vector identities r�rf ¼ 0 and X�
r� Y ¼ rY � X� X � rY simplifies to the following

expression:

ffF;GgMHD;HgHall ¼ �di

ð
D

d3x
B

q

� r � Fv � GA � Gv � FA

q
� HA

� �
:

(42)

Now consider the second term of (32). The outer MHD

bracket of this term requires evaluation of variations with

respect to both B and q. We already have the first one from

(36), while the second yields
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d
dq
fF;GgHall ¼ di

B

q2
� FA � GAð Þ : (43)

Upon substituting (36) and (43) into the second term of (32),

we end up with

�di

ð
D

d3x
B

q2
� FA � GAð Þr � Hv þ

B

q

� r � FA � GA

q

� �
� Hv

� �
þ “

F;G;H
: (44)

Upon combining (42) and (44), we have

J ¼ �di

ð
d3x

B

q2
� FA � GAð Þr � Hv

�

þB

q
� r � FA � GA

q

� �
� Hv

� �

þB

q
� r � Fv � GA � Gv � FA

q

� �
� HA

� ��
þ “

F;G;H
¼ J 1 þ J 2 þ J 3; (45)

where J i’s represent the three contributions arising from

(44) and (42), respectively. Applying the vector identities

mentioned previously, and recollecting that variations with

respect to A are divergence-free, the third term can be

manipulated to yield

J 3 ¼ di

ð
D

d3x
B

q
� HA � GA � r

Fv

q
�r � Fv

GA

q

�

�Fv � r
GA

q
�FA � r

Gv

q
þr � Gv

FA

q
þ Gv � r

FA

q

�

¼ �di

ð
D

d3x

�
� 2B

q2
� FA � GAð Þr � Hv

� B � FA �GAð ÞHv � r
1

q2

� �
�B � Hv

q2
� r

� �
FA � GAð Þ

þ B

q
� FA � GA � rð Þ � GA � FA � rð Þ½ �Hv

q

�
: (46)

Here, as before, we have permuted F, G, H. When (46) is

combined with J 1, this results in

J 1 þ J 3 ¼ di

ð
D

d3x r � Hv

q2
FA � GAð Þ

� �
� B

�

�B

q
� FA � GA � rð Þ � GA � FA � rð Þ½ �Hv

q

�
:

(47)

The second term of (45) can be rewritten as

J 2 ¼ �di

ð
D

d3x
Hv

q
� r FA � GA

q

� �
� B

�

�B � r FA � GA

q

� �
� Hv

q

�
: (48)

Upon using (47) and (48), we can condense (45) into

J ¼ di

ð
D

d3x B � FA � GA

q

� �
r � Hv

q

� � 

�B � r Hv

q

� �
� FA � GA

q

� �

�B

q
� FA � GA � rð Þ � GA � FA � rð Þ½ �Hv

q

�
: (49)

The second term has been integrated by parts, and use has

been made of r � B ¼ 0 to obtain (49). Without further per-

mutations of F, G, and H, it can be shown that the first two

and the last two terms collapse into

J ¼ di

ð
D

d3x
B

q
� FA � GAð Þ � rð Þ � Hv

q

� ��

�B

q
� FA � GAð Þ � rð Þ � Hv

q

� ��
� 0 : (50)

This follows immediately by the application of Lemma 2

from the Appendix of Ref. 36. As a result, we see that the

Hall-MHD Jacobi identity is satisfied.

Hence, from the results derived in Sections IV A and

IV B, we conclude that the Hall MHD bracket (5) satisfies the

Jacobi identity, thereby rendering it a valid noncanonical

Poisson bracket. In turn, this ensures the validity of the inertial

MHD bracket and, by invoking the identity (28), it follows that

the extended MHD bracket also satisfies the Jacobi identity.

V. CONCLUSION

The construction of valid noncanonical Poisson brackets

for arbitrary field theories can be challenging, owing to two

reasons. Most brackets are constructed through guesswork,

and this is a difficult task when confronted with a complex

model. Second, the task of proving the Jacobi identity is an

onerous one, involving a high degree of tedious algebra.

In this paper, we have bypassed some of these difficulties

for extended MHD noncanonical Poisson brackets by primar-

ily appealing to the commonality in the structure of the differ-

ent extended MHD models. In Section II, we showed that

certain variable transformations left the form of Hall MHD

unchanged, and enabled us to extract the Casimirs (helicities)

of the model. In the same spirit, we proved the existence of

remarkable changes of variables that highlighted the exis-

tence of a common bracket for inertial, Hall, and extended

MHD. We also commented on the high degree of overlap

between these models, and extended MHD in its entirety.

In Section III, we briefly appealed to the Lagrangian for-

mulation of fluid models to intuitively trace the origin of these

variable transformations and the emergence of two fluid-like

helicities for all extended MHD models, leaving the full anal-

ysis for a future publication. We argued that each of these

models could be endowed with suitable Lie-dragged 2-forms

(and their corresponding flow velocities), which gave rise to

the correct dynamical equations, and ensured the conservation

of helicities. Thus, we demonstrated that the commonality of

the extended MHD models is a natural consequence of the

underlying geometric constraints. We believe that this consti-

tutes an excellent example of the synergy between geometry
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and physics, and one that will be exploited for further use in

subsequent works.

Finally, we returned to Hall MHD and presented a

detailed proof to show that its bracket, exemplified by (5),

satisfies the Jacobi identity. As we established that the

extended MHD models are closely connected to each other,

we believe that this proof will help clarify and corroborate

the results derived in Ref. 17.
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