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A Hamiltonian five-field gyrofluid model

I. Keramidas Charidakos, F. L. Waelbroeck, and P. J. Morrison
Institute for Fusion Studies and Department of Physics, The University of Texas at Austin, Austin,
TX 78712, USA

(Received 18 July 2015; accepted 5 November 2015; published online 23 November 2015)

A Lie-Poisson bracket is presented for a five-field gyrofluid model, thereby showing the model to

be Hamiltonian. The model includes the effects of magnetic field curvature and describes the

evolution of the electron and ion gyro-center densities, the parallel component of the ion and

electron velocities, and the ion temperature. The quasineutrality property and Ampère’s law

determine, respectively, the electrostatic potential and magnetic flux. The Casimir invariants are

presented, and shown to be associated with five Lagrangian invariants advected by distinct velocity

fields. A linear, local study of the model is conducted both with and without Landau and

diamagnetic resonant damping terms. Stability criteria and dispersion relations for the electrostatic

and the electromagnetic cases are derived and compared with their analogs for fluid and kinetic

models. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4936102]

I. INTRODUCTION

Reduced electromagnetic fluid models constitute versa-

tile tools for the study of multi-scale phenomena including in

particular, the interaction of turbulence with magnetohydro-

dynamic perturbations exhibiting meso-scale structures.1

Examples include magnetic islands,2,3 edge localized

modes,4,5 resonant magnetic perturbations,6,7 as well as fish-

bone,8 and Alfv�en modes.9,10 Irrespective of the phenom-

enon that a particular fluid model aims to describe, the

underlying system of charged particles interacting with elec-

tromagnetic fields is a Hamiltonian system and in addition to

energy and other invariants related to symmetry properties, it

may possess approximate Poincar�e or adiabatic invariants

such as wave actions. It is highly desirable that a model giv-

ing a reduced description should retain this important prop-

erty in the ideal limit. By ideal limit, we mean the limit of

the model when all dissipative terms, such as collisions,

Landau damping, and dissipative anomalous transport terms

are neglected. Thus, Hamiltonian systems conserve energy

for closed boundary conditions and the Hamiltonian formula-

tion is useful for investigating the local properties of the

dynamics that are independent of the drive.

Casting a system into its Hamiltonian form11,12 confers

several practical advantages. One of the most important is

the existence of families of invariants, called Casimir invari-

ants, which are found in noncanonical Hamiltonian systems

due to the degeneracy of the cosymplectic matrix. The func-

tional that results from the addition of the Casimirs to the

Hamiltonian has non-trivial equilibrium states as stationary

points. In the absence of a Poisson bracket, by contrast, the

existence of non-trivial equilibrium states is not guaranteed.

For example, Ref. 13 presents an example of a seemingly

reasonable fluid model that lacks physical equilibria with

closed streamlines because the equilibrium equations imply

that some fields are multiple-valued on closed streamlines.

We can also take advantage of the Hamiltonian formulation

to construct “energy principles” for the investigation of the

stability of such non-trivial equilibrium states by examining

the second variation of the aforementioned functional.14–16

Another advantage is that imposing constraints on a system

is straightforward in the Hamiltonian formalism.17 Finally,

the Hamiltonian formalism can be used to facilitate the cal-

culation of the statistical average of the zonal flow growth

rate.18

Among the several classes of fluid models, of particular

importance are the ones that retain the effects of finite ion

temperature, principally for describing instabilities with

growth rates comparable to the ion diamagnetic frequency or

modes with perpendicular wavelengths of the order of the ion

Larmor radius. On the other hand, “cold ion” models have

been shown to possess noncanonical Hamiltonian formula-

tions,19,20 the task of formulating such “hot-ion” models that

satisfy the Hamiltonian property has proven difficult. For

example, efforts to identify the Hamiltonian structure of the

four-field model of Ref. 21 were unsuccessful, even though it

conserves energy.22 The main difficulty with such models

lies in the nonlocality of the ion dynamics caused by Larmor

gyration. One way to approximate nonlocal terms is by a

Taylor-series, using k?qi as a small parameter. An example

of such a so-called FLR model was given in Ref. 23, where a

Hamiltonian four-field model is constructed, using the

“gyromap” technique to introduce finite ion temperature into

the cold ion limit of Ref. 21. Unfortunately, we are unaware

of any numerical implementation of this model, possibly

because it requires high-order derivatives and, consequently,

additional boundary conditions.

An alternative approach for constructing fluid models

with a finite ion temperature is to truncate the moment hier-

archy of the gyrokinetic equation.24–28 This leads to the use

of nonlocal averaging operators that account for the full

range of perpendicular wavelengths. The resulting models

are called gyrofluid models. Surprisingly, gyrofluid models

are more readily amenable to Hamiltonian formulations than

the FLR models. Examples of Hamiltonian electromagnetic

gyrofluid models are given in Ref. 29 for an incompressible

(three fields) and in Ref. 30 for a compressible (four fields)
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model. The four-field gyrofluid model advances the first two

moments of the distribution function for each species, or the

ion and electron densities and parallel momenta. Zacharias

et al. have shown that simulations of magnetic reconnection

using this model are in good agreement with gyrokinetic

simulations,31 and Comisso et al. have used it to bring to

light the acceleration of magnetic reconnection by nonlocal

gyrofluid effects.32 Grasso et al., by contrast, have used it to

examine the stabilizing effects of ion diamagnetic drifts on

the growth and saturation of tearing modes in inhomogene-

ous plasma.33

In the present paper, we propose a Hamiltonian five-

field electromagnetic gyrofluid model that is an extension of

the model presented in Ref. 30. The new model, like its pred-

ecessor, is a truncation of a more complete one proposed by

Snyder and Hammett, which advances six moments for the

ions and two moments for the electron dynamics.26 We note

that Scott27,28 has shown that achieving energy conservation

requires modifying several of the terms in Ref. 26 involving

higher order moments. We will likewise show that construct-

ing a Hamiltonian model requires modifying the terms

involving the higher order moments in our model. The new

model extends that in Ref. 30 by the addition of the evolution

of the ion temperature. As in the previous model, ion com-

pressibility effects and field curvature are also included,

allowing it to describe ITG, KBM, drift waves, and tearing

modes. To demonstrate the properties of the model, we pres-

ent a linear, local study of electrostatic slab ITG, and toroidal

electromagnetic ITG modes.

The paper is organized as follows: In Section II, we give

the normalizations of our variables and present the ideal

limit of the dynamical model. In Section III, we give the

Hamiltonian formulation of the model equations by provid-

ing a conserved energy that serves as the Hamiltonian and a

Lie-Poisson bracket that satisfies the Jacobi identity. In

Section IV, we calculate the Casimir invariants of our system

and from them, in Section V we construct five “normal

fields” which are field variables in which the dynamical

equations and the bracket take a very simple form. Finally,

in Section VI we perform a local, linear study of the model

with particular emphasis on the study of the ITG and KBM

modes. We present stability criteria for both the ideal model

and a model with linear dissipation terms representing the

effects of parallel Landau damping and the drift resonance.

We investigate several well known stabilizing factors of the

instability to show qualitative agreement with kinetic

models.

II. IDEAL MODEL

We first present the ideal portion of our model by omit-

ting collisional diffusion and wave-particle interaction terms,

which will be examined in Sec. VI.

We are interested in a model that describes the destabili-

zation of the drift wave excited by the ion temperature gradi-

ent. Due to the acoustic nature of the instability, we cannot

neglect ion motion along the field lines; therefore, we keep

ion compressibility effects. Also, because we want to investi-

gate toroidal plasma with finite b, we include electromagnetic

effects. Finally, to represent the influence of toroidicity, we

allow for magnetic curvature. We consider the evolution of

the magnetic flux w, of a magnetic field B ¼ ẑ þrw� ẑ,

the ion density ni, the parallel velocity of the ion guiding cen-
ters ui ¼ ẑ � vi, the electron density ne and parallel velocity

ue ¼ ẑ � ve, the electrostatic potential / and the parallel ion

temperature Tk. We normalize these quantities in the follow-

ing way:

ni; ne;w;/; ui; ue; Tk
� �
¼ Ln

qi

n̂i

no
;
n̂e

no
;

ŵ
qiBo

;
e/̂
sTi

;
ûi

vti
;
ûe

vti
;
T̂k
Ti

 !
; (1)

where the carets denote the dimensional variables. Here no,

Bo, and Te are the background density, magnetic field, and

electron temperature, qi ¼ vti=xci is the ion Larmor radius,

where vti ¼ ðTi=miÞ
1
2 is the ion thermal speed, xci ¼ eBo=mi

is the ion cyclotron frequency, Ln ¼ no=jrnj is the density

scale-length, and s ¼ Te=Ti is the ratio of the species temper-

atures. We also normalize the independent variables accord-

ing to

t; kk; k?
� �

¼ t̂vti

Ln
; k̂kLn; k̂?qi

� �
: (2)

With these normalizations, our evolution equations are

as follows. The equations that describe the ideal evolution of

ion quantities are

dni

dt
¼ �rkui � 2ud

@

@y
ni þ Uþ Tk
� �

; (3)

d Wþ uið Þ
dt

¼ �rkTk � rkni � 4ud
@ui

@y
; (4)

dTk
dt
¼ � c� 1ð Þrkui � 2ud

@

@y
ni þ Uþ Tk
� �

; (5)

whereas the equations describing the evolution of electron

quantities are

dne

dt
¼ �rkue þ 2ud

@

@y
ne � /ð Þ; (6)

d w� lueð Þ
dt

¼ 1

s
rkne þ 2lud

@ue

@y
: (7)

In Eqs. (3)–(7), df=dt ¼ @f=@tþ ½U; f � and rkf ¼ @f=@z
� ½W; f �, with ½�; �� denoting the canonical Poisson bracket,

so that ½f ; g� ¼ ẑ � ðrf �rgÞ. Also, c is the adiabatic index,

ud ¼ Ln=R is the normalized curvature drift velocity, R is the

radius of curvature of the magnetic field, and U ¼ C1=2
o /;

W ¼ C1=2
o w are the gyro-averaged / and w. The symbol C1=2

o

refers to the gyroaveraging operator introduced in Ref. 24

and is defined by

C1=2
o n ¼ exp

1

2
r2
?

� �
I1=2
o �r2

?
� �

n; (8)

where Io is a modified Bessel function of the first kind and

the result of Eq. (8) should be interpreted in terms of its
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series expansion. At this point, we note that only the ion

guiding centers respond to the gyroaveraged value of the

electromagnetic field. Therefore, we are required to use

the gyroaveraged value of the electrostatic potential in the

E� B drift advecting the ions, whereas electrons are

advected only by the local value of their E� B drift since

we neglect the electron Larmor radius.

Equations (3)–(7) are closed by the parallel component

of Ampère’s law

2

sbe

r2
?w ¼ �j ¼ �C1=2

o ui þ ue; (9)

with j ¼ ẑ � J being the z-component of the current density,

and by the quasineutrality condition

ne ¼ C1=2
o ni þ ðCo � 1Þ/; (10)

with Co ¼ ðC1=2
o Þ

2
. Here, C1=2

o ni is the gyrophase-

independent part of the real space ion particle density and

the ðCo � 1Þ/ term comes from the gyrophase-dependent

part of the distribution function. It represents the ion polar-

ization density due to the variation of the electric field

around a gyro-orbit. We leave be unrestricted so that we can

describe both “inertial” (be � l) and “kinetic” (be � l)

Alfv�en waves. Since our only temperature equation involves

the parallel temperature, from now on we will drop the sub-

script from Tk.
It is interesting to compare the model presented in

Equations (3)–(7) to the one obtained from the models of

Refs. 26–28 by discarding all the terms involving high-order

moments and associated terms. By “associated” terms, we

mean, for example, that discarding T? requires that one also

discard terms involving the gyroaveraging operator J1, since

the latter terms result from the effects on gyroaveraged quan-

tities of the variations in the perpendicular temperature.

The link between T? and J1 is reflected in the fact that for

energy conservation, J1 terms must appear together with T?,

as noted in Refs. 27 and 28. The omission of the terms con-

taining J1 denotes, in effect, that we neglect rJ0. Compared

to such a truncated model, the Hamiltonian model in

Eqs. (3)–(7) lacks any trapped particle effects (terms propor-

tional to rkB in Refs. 26–28) and has a less accurate treat-

ment of the FLR terms (due to the omission of the J1 terms).

The two models also differ in the coefficients of the various

curvature terms. In the continuity equation, for example, the

argument of the curvature operator in the truncated version

of the model of Refs. 26–28 is Uþ pk=2, while that in our

model is Uþ pk. This difference is necessary in order for

the five-field model to conserve energy. In fact, we note that

the curvature terms in Eqs. (3), (5), and (6) are the same as

the ones found in the corresponding equations of the FLR

fluid model of Ref. 34, which evolves three ion moments,

as we do, and conserves energy. Finally, we note that the fac-

tor of four in front of the curvature term in the momentum

equation, Eq. (4), does match the corresponding term in

Refs. 26–28, despite the fact that for the four-field model

of Ref. 30, satisfying the Jacobi identity required halving

this factor. The conclusion of these observations is that

constructing Hamiltonian models requires modifying the

truncated moment expansions, but that the correct terms are

recovered as one increases the order of the model.

III. THE HAMILTONIAN FORM

The system described in Sec. II conserves the following

energy:

H ¼ 1

2

ð
D

d2x

�
n2

e

s
þ n2

i þ
1

c� 1
T2 þ lu2

e þ u2
i

þ 2

sbe

jrwj2 þ Uni � /ne

�
; (11)

where D denotes the spatial domain of interest and the

boundary conditions are such that surface terms vanish. The

successive terms of the functional of Eq. (11) represent,

respectively, the electron and (two terms) ion thermal ener-

gies, the parallel component of the electron and ion kinetic

energies, the magnetic energy and the electrostatic energies

of ions and electrons. Taking the energy functional as the

Hamiltonian of our 5-field model, we can write the set of

equations in a noncanonical12 Hamiltonian form

@ni

@t
¼ ni;H
� �

; i ¼ 1;…; 5; (12)

with ni being the field variables and f�; �g being a non-

canonical Poisson bracket. We employ the dynamical variables

ni;Mi; ne;Me; T, where Mi ¼ C1=2
o wþ ui is the canonical ion

momentum and Me ¼ w� lue, the electron one. Additionally,

we define ~ni ¼ ni � 2udx; ~ne ¼ ne � 2udx, and ~T ¼ T � 2udx
for convenience. In these variables, the bracket given by

fF;Gg ¼
ð

d3xð�~nið½Fni
;Gni
� þ ½FMi

;GMi
�

þ ½FT ;GT �Þ �Mið½FMi
;Gni
� þ ½Fni

;GMi
�

þ ð½FT ;GMi
� þ ½FMi

;GT �ÞÞ
� ~Tð½Fni

;GT � þ ½FT ;Gni
� þ ½FMi

;GMi
�Þ

þ ~neð½Fne
;Gne
� þ l½FMe

;GMe
�Þ

þMeð½FMe
;Gne
� þ ½Fne

;GMe
�Þ

� ðFMi
@zGni

� GMi
@zFni

Þ
� ðFT@zGMi � GT@zFMiÞ
þ ðFMe

@zGne
� GMe

@zFne
ÞÞ; (13)

satisfies the formulation of Eq. (12) for Eqs. (3)–(7), is bilin-

ear, antisymmetric, and satisfies the Jacobi identity. In the

above bracket, we have taken c¼ 2 because this is the only

value of the adiabatic index that allows the bracket to satisfy

the Jacobi identity, as shown by a direct proof of the Jacobi

identity using the techniques of Ref. 11. The Jacobi for this

case will become evident in Sec. V.

IV. CASIMIR INVARIANTS

One of the most important properties of noncanonical

Hamiltonian systems is the existence of Casimir invariants,

that is, constants of motion for any choice of Hamiltonian. A
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Casimir invariant C thus needs to satisfy the relation

fF;Cg ¼ 0 for any field F. Here, we will set @z ¼ 0. The

generalization is straightforward.

Assuming a Casimir functional Cðni;Mi; T; ne;MeÞ and

applying the condition fnj;Cg ¼ 0 with n1 ¼ ni; n2 ¼ Mi;
n3 ¼ T; n4 ¼ ne; n5 ¼ Me gives the following:

½ni � 2udx;Cni
� þ ½Mi;CMi

� þ ½T � 2udx;CT � ¼ 0; (14)

½ni � 2udx;CMi
� þ ½Mi;Cni

� þ ½T � 2udx;CMi
� þ ½Mi;CT � ¼ 0;

(15)

½ni � 2udx;CT � þ ½T � 2udx;Cni
� þ ½Mi;CMi

� ¼ 0; (16)

½ne � 2udx;Cne
� þ ½Me;CMe

� ¼ 0; (17)

l½ne � 2udx;CMe
� þ ½Me;Cne

� ¼ 0: (18)

For the rest of this section, we employ the previously

defined variables ~ni; ~ne; ~T . In addition, we observe that

F~n ¼ Fn. From (14) and (18), we retrieve no information

since they are automatically satisfied for any choice of C.

However, from (15) we get

½~ni;Mi�ðCMiMi
� Cnini

� CTni
Þ þ ½Mi; ~T �ðCniT � CMiMi

þ CTTÞ
þ½~ni; ~T �ðCMiT � CMi;ni

Þ ¼ 0 ; (19)

from (16) we get

½~ni; ~T �ðCTT � Cnini
Þ þ ½ ~T ;Mi�ðCni;Mi

� CMiTÞ
þ½~ni;Mi�ðCTMi

� CMini
Þ ¼ 0 ; (20)

and from (17) we get

½~ne;Me�ðlCMeMe
� Cnene

Þ ¼ 0: (21)

Accordingly, we have the following set of equations:

CMiMi
� Cnini

� CTni
¼ 0; (22)

CMiMi
� CniT � CTT ¼ 0; (23)

CTMi
� CMini

¼ 0; (24)

CTT � Cnini
¼ 0; (25)

lCMeMe
� Cnene

¼ 0; (26)

which must be satisfied by any Casimir invariant.

We start from Eq. (24) and integrate it with respect to Mi

to find Cni
¼ CT þ f ð~ni; ~TÞ. By using the method of character-

istics on this result, we infer that the solution has the form

C ¼ hgð ~T þ ~ni;MiÞ þ f ð~ni; ~TÞi, where the hi symbol implies

an integral over the volume of interest. Subsequently, we sub-

stitute this form of the Casimir into (25) to obtain the wave

equation @2
ni
ðf þ gÞ � @2

Tðf þ gÞ ¼ 0 and by application of the

method of characteristics, we recover the other characteristic

direction, C ¼ hgð ~T þ ~ni;MiÞ þ f ð~ni � ~TÞi. Finally, employ-

ing (22) we arrive at the wave equation @2
Mi

g� 2@2
niþTg ¼ 0.

Invoking the method of characteristics once more, we derive

the following general form for the Casimir invariants corre-

sponding to the ion piece of the bracket:

Ci ¼
ð

d2x g6ð ~T þ ~ni6
ffiffiffi
2
p

MiÞ þ f ð~ni � ~TÞ: (27)

For the Casimir invariants that correspond to the elec-

tron part of the bracket, we need only solve (26) to obtain

Ce ¼
ð

d2x h6ðMe6
ffiffiffi
l
p

~neÞ: (28)

Thus, a general family of Casimir invariants is given by

Cðni;Mi; T; ne;MeÞ ¼
ð

d2x g6ð ~T þ ~ni6
ffiffiffi
2
p

MiÞ

þ f ð~ni � ~TÞ þ h6ðMe6
ffiffiffi
l
p

~neÞ ; (29)

where g6; f and h6 are arbitrary functions.

V. NORMAL FIELDS

The general form of the Casimir (29) suggests the intro-

duction of a new set of variables which are called “normal

fields” (see, e.g., Refs. 20, 35, and 36)

V i;6 ¼ ~T þ ~ni6
ffiffiffi
2
p

Mi; (30)

V i;f ¼ ~ni � ~T ; (31)

Ve;6 ¼ Me6
ffiffiffi
l
p

~ne: (32)

We claim that if we express the equations of motion (3)–(7)

and the bracket of (13) in terms of these fields, they will take a

simple form. To do so, the following chain rule expressions for

functional derivatives in terms of these new fields are required:

Fni
¼ FVi;þ þ FVi;f

þ FVi;� ; (33)

FTk ¼ FVi;þ þ FVi;� � FVi;f
; (34)

FMi
¼

ffiffiffi
2
p
ðFVi;þ � FVi;�Þ; (35)

FMe
¼ FVe;þ þ FVe;� ; (36)

Fne
¼ ffiffiffi

l
p ðFVe;þ � FVe;�Þ: (37)

Using (33)–(37) the Poisson bracket of (13) becomes

fF;Gg ¼ �2hV i;f ½FVi;f
;GVi;f

�
þ 2ðV i;þ½FVi;þ ;GV i;þ � þ V i;�½FV i;� ;GVi;� �Þ
� ffiffiffi

l
p ðVe;þ½FVe;þ ;GVe;þ� � Ve;�½FVe;� ;GVe;� �Þ
þ 2

ffiffiffi
2
p
ðFVi;þ@zGVi;þ � FVi;�@zGVi;�Þ

� ffiffiffi
l
p ðFVe;þ@zGVe;þ � FVe;�@zGVe;�Þi: (38)

This simple form of the bracket is called a direct product,35

and its form immediately ensures the Jacobi identity. Since

the inner brackets satisfy the Jacobi identity, so do their

sums which constitute the larger bracket of Eq. (13).

Having expressed the bracket in terms of the normal

fields, we can now write down the equations of motion that

these fields satisfy, viz.,

@V i;6

@t
þ Ai;6;V i;6

	 

6

ffiffiffi
2
p

@zAi;6 ¼ 0; (39)
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@Ve;6

@t
þ Ae;6;Ve;6

	 

7

ffiffiffi
l
p

@zAe;6 ¼ 0; (40)

@V i;f

@t
þ Ai;f ;V i;f

	 

¼ 0; (41)

where

Ai;6 ¼ Uþ ni þ T6
ffiffiffi
2
p

ui; (42)

Ai;f ¼ Uþ ni � T; (43)

Ae;6 ¼ 6
ne

s
� /

� �
þ l

3
2ue; (44)

are stream-functions that simply convect the fields Vs;6=f .

The latter are therefore Lagrangian conserved quantities.

Note that in a turbulent system, equipartition results in the

flattening of the profiles of Lagrangian invariants.37

VI. LINEAR STUDY

In this section, we linearize (3)–(7) and the two closure

relations (9) and (10) about an inhomogeneous equilibrium

configuration. Then, after deriving the dispersion relation, we

study the linear stability of the ITG mode. We assume that

the densities and temperature vary linearly in the x direction,

i.e., that these quantities have the form f ¼ x=Lf þ df with

df ¼ f̂ expðik � x� ixtÞ. This may be interpreted as a local

study, in the WKB sense, for modes satisfying k?L? � 1

and kkLk � 1, where L? and Lk represent equilibrium scale-

lengths. Our purpose is to obtain some physical understand-

ing of our model and see how accurately it can describe

the various modes of interest. Next, we assume Ueq ¼ 0 and

rweq � ẑ ¼ Boyŷ with Boy ¼ � @w
@x a constant and ui;eq ¼ 0.

We note that in Fourier space, the operator Co is CoðbÞ
¼ e�bIoðbÞ, where b ¼ k2

?q
2
i (or b � k2

? in our normalized

units). Even though we mentioned that the model is

Hamiltonian only for the choice c¼ 2, in the following we

keep c general to investigate its effect on the behavior of the

modes and we subsequently set c¼ 2, to recover the results

for our model.

Moreover, we add two dissipative terms to Eq. (5) that

are related to the parallel and toroidal resonances. Therefore,

from now on, we make the distinction between the non-

dissipative, i.e., Hamiltonian, gyrofluid model, and the one

where dissipation terms are included.

Parameters v and � of the added dissipative terms are

tuned so that the response function of a gyrofluid model

matches the kinetic one in the slab and the toroidal limits,

respectively. Their values have been computed in Refs. 38

and 39 and found to be v ¼ 2ffiffi
p
p and � ¼ 2:019. Although the

v value is exact, the numerical value of � has not been calcu-

lated for the particular model we are presenting but for a

similar gyrofluid model. Nevertheless, we will adopt it. The

reason is that here, we are mainly concerned with the non-

dissipative, Hamiltonian part of the model and the addition

of the dissipative terms is not intended to enhance the accu-

racy of the results, but merely to show the reader that such a

modification is indeed possible. Correct treatment of dissipa-

tion would require the proper study of the response function

of a kinetic model containing the same physics and the nu-

merical minimization of the error in matching it with the

response function obtained by (3)–(7). Such a study is

beyond the goals of this paper.

The linearization of the equations of motion and the clo-

sure relations in Fourier space results in the following system

of equations:

�xn̂i ¼ x	C
1=2
0 ðbÞ/̂ � kyBoyûi

�2x	�ðn̂i þ C1=2
0 ðbÞ/̂ þ T̂Þ � kzûi; (45)

�xðC1=2
0 ðbÞŵ þ ûiÞ ¼ �kyBoyT̂ � x	giC

1=2
0 ðbÞŵ

� kyBoyC
1=2
0 ðbÞ/̂ � kyBoyn̂i

�x	C
1=2
0 ðbÞŵ � 4x	�ûi

� kzn̂i � kzT̂ � kzC
1=2
0 ðbÞ/̂; (46)

�xT̂ ¼ x	giC
1=2
0 ðbÞ/̂ � ðc� 1ÞkyBoyûi

�2x	�ðn̂i þ C1=2
0 ðbÞ/̂ þ T̂Þ

�ðc� 1Þkzûi þ 2i�jx	j�T̂
þivjkkjT̂ ; (47)

�xn̂e ¼ x	rn/̂ � kyBoyûe þ 2x	�
n̂e

s
� /̂

� �
� kzûe; (48)

�x ŵ � lûe

� �
¼ �kyBoy/̂ þ

x	rn

s
ŵ þ ky

s
Boyn̂e

þ 2x	�lûe � kz/̂ þ
kz

s
n̂e; (49)

n̂e ¼ C1=2
0 ðbÞn̂i þ ðC0ðbÞ � 1Þ/̂; (50)

2

sbe

k2
?ŵ ¼ �ûe þ C1=2

0 bð Þûi: (51)

Note that C1=2
0 ðbÞBoy ¼ Boy and, to be clear, recall the

ion and electron density and parallel temperature gradients

vary linearly, i.e., ni ¼ x=Lni
; ne ¼ x=Lne

, and T ¼ x=LT . We

simplify the result by setting kk ¼ kz þ Boyky and by defin-

ing the parameters gi ¼ Lni
=LT ; � ¼ udLni

, and rn ¼ Lni
=Lne

.

Also, x̂	 ¼ ðcTe=eBoÞðk̂y=LnÞ is the usual diamagnetic fre-

quency. In dimensionless variables it is expressed as

x	 ¼ sutiky=Ln.

A. Electrostatic dispersion relation

The electrostatic limit, which is applicable for low-b
conditions,40 leads to a cubic dispersion relation that offers

the opportunity of comparing analytic solutions of the gyro-

fluid model to kinetic results. To make contact with well-

known analytic results for the slab branch of the ITG mode,

we also neglect toroidal effects. That is, we drop all toroidal

terms of Eqs. (45)–(49), set ŵ ¼ 0, and study the slab, elec-

trostatic ITG modes, where the drive is due to the coupling

of the parallel transit of particles with the temperature gradi-

ent. We notice that in this case, the electron and ion fields

are decoupled so we only use the ion field of Eqs. (45)–(47),

along with the quasineutrality condition of (51) and the elec-

tron adiabatic response ne 
 /=s. After straightforward
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manipulations, we obtain a dispersion relation with real part

given by

1

s
þ 1� Co bð Þ

� �
x3 þ ck2

k Co bð Þ c� 1

c
� 1

s
� 1

� �
x

�Co bð Þx	x2 þ Co bð Þk2
kx	 c� 1ð Þ � gið Þ ¼ 0; (52)

and imaginary part by

kk
1þ 1� Co bð Þð Þs

s
x2 þ Co bð Þx	x�

k2
k 1þ sð Þ

s

 !
¼ 0:

(53)

A simple picture of the dynamics of the ITG instability,

as determined by, e.g., (52), is given in Ref. 41, a picture

that will be helpful for interpreting our results. A basic sce-

nario for the development of the instability can start with a

density perturbation, which is confined to variation along the

field line because the E�B velocity across the field lines is

incompressible. Electrons respond adiabatically to this ion

density perturbation in order to maintain quasineutrality and

in doing so set up an electrostatic potential. This potential

perturbation then leads to an E�B drift that injects cool ions

into the compressed (increased density) region, thereby low-
ering the pressure. That is, the plasma exhibits negative com-

pressibility. The resulting lowered pressure then draws ions

along the field lines by generating a uk. Since the whole pic-

ture develops in time and moves perpendicular to both the

magnetic field and the temperature gradient, the ions that

move parallel to the field line, prompted by the lowered pres-

sure, end up increasing the initial density perturbation.

In Eq. (52), we can infer two stability criteria. The first

one comes from neglecting the dissipative terms, hence hav-

ing just the real part of the dispersion relation and by

demanding the third-order polynomial to have only real

roots. This is done by setting the cubic discriminant equal to

zero and by that deriving a quadratic equation in gi. To

investigate the case of finite k?, we obtain the stability crite-

rion by making no approximation on CoðbÞ. The result is

shown in Fig. 1 where gcrit (the root of the quadratic equation

mentioned above) has been plotted as a function of b for

various values of kk. The curves depicted in Fig. 1 are quali-

tatively similar to those reported in Ref. 42 where a kinetic

model was used.

The second stability criterion we deduce concerns the

case of perturbations with very long parallel wavelengths

and comes from setting the imaginary part of the dispersion

relation equal to zero, solving for x under the condition

kk ¼ 0, and eliminating it from Eq. (52). With this procedure

we find

gGF
crit ¼ c� 1: (54)

Observe the critical value depends on the adiabatic index.

The kinetic result for this limiting case is provided in Ref. 43

and is given by

gKIN
crit ¼

2

1þ 2b 1� I1 bð Þ
Io bð Þ

 ! ; (55)

with I1ðbÞ and I0ðbÞ being modified Bessel functions of the

first kind. Note that the adiabatic index in the exact moment

equation for the evolution of the parallel temperature is 3. In

Fig. 2, we plot this relation and the corresponding fluid approx-

imation of it and we notice that our gyrofluid model has the

correct asymptotic behavior for perturbations with very small

perpendicular wavelengths provided c¼ 2. However, had we

chosen c¼ 3, we would have gotten the correct asymptotic

behavior for very large perpendicular wavelengths, at the cost

of a non-Hamiltonian model. Moreover, the choice c ¼ 5=3

gives gcrit ¼ 2=3, the result for the fluid model of Ref. 42.

The reason behind this discrepancy stems from the fact

that our model lacks an equation for the evolution of the per-

pendicular temperature. Therefore, all assumptions about the

correlation of T? and Tk are made by the choice of c (with

c¼ 3 meaning T? and Tk are uncorrelated and c ¼ 5=3

meaning T? ¼ Tk) and remain fixed throughout the dynam-

ics. Despite this obvious inflexibility of the gyrofluid model,

it is evident from Fig. 2 that it still remains far superior com-

pared to its FLR counterpart.

It is helpful to study the “fluid” limit of Eq. (52), which is

obtained by setting CoðbÞ ¼ 1 corresponding to b¼ 0. This is

the limit of very long perpendicular wavelengths compared to

the gyroradius. Figure 3 shows the stability criterion in this

FIG. 1. Stability criterion with finite k? as given by b. Here kk ranges from

0.05 to 1.0.

FIG. 2. Comparison of critical g between kinetic, fluid, and gyrofluid results

for the case kk ¼ 0.
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fluid limit for three different values of c, results that were pre-

viously obtained in Ref. 42 for c ¼ 5=3, where a heuristic

explanation was for given for the gcrit limiting value for very

long kk.
To conclude with the electrostatic slab case, we investi-

gated the growth rate as a function of s. The condition s < 1

or, in other words, Ti>Te is a well-known stabilizing factor

for ITG, which is of particular importance for the hot-ion

cores of tokamaks.44–46 Indeed, the behavior we found was

the expected one.

B. Electromagnetic dispersion relation

To be applicable to the higher plasma pressure achieved

by auxiliary or alpha-particle heating, the theory must include

the electromagnetic effect. In fact, this effect becomes impor-

tant at surprisingly low-b because of other small parameters

in the problem. It is well known that increasing b stabilizes

ITG modes,47 but leads to the onset of kinetic ballooning

modes, also known as the Alfv�enic ITG modes (AITG).48 For

toroidal ITG modes, the drive comes from the coupling of

curvature and rB-drift terms with the temperature gradient,

so that we must now keep the toroidal curvature terms. It can

be easily seen that, to lowest order, the electromagnetic effect

is stabilizing. The electromagnetic perturbation creates a

small component of B that is perpendicular to both the back-

ground magnetic field and the pressure gradient. This compo-

nent then leads to the development of a force on the ions,

parallel to the field lines that oppose the attraction from the

pressure lowering of ITG.

In the remainder of this section, we follow the analysis

of Kim, Horton, and Dong47 and compare our gyrofluid

results with their local kinetic ones. We note, however, that

complete agreement cannot be expected since Kim et al. has

one extra parameter, namely, ge. We also note that the eigen-

frequencies for the model in Ref. 26 lie within a few percent

of the kinetic results, so that comparing our model to the

kinetic results is effectively equivalent to comparing it to the

Snyder and Hammett model.

Because the dispersion relation becomes unwieldy and

does not provide much physical insight, we refrain from dis-

playing it here. Instead, we solve it numerically and present

the results. Figure 4 shows the normalized growth rates for

(a) the ideal and (b) the “Landau” versions of our model as

a function of b when gi ¼ 2:5; b¼ 0:5; kk ¼ 0:1; �¼ 0:2;
rn ¼ 1, and s¼1. We also provide the kinetic and fluid

model results from Ref. 47 for comparison. By the “Landau”

version we mean of course the Hamiltonian model aug-

mented by dissipative terms modeling the damping caused

by the wave-particle interactions. From Fig. 4(a), it becomes

immediately clear that the nonlocal treatment of the ion

response in the gyrofluid model reproduces the main qualita-

tive features of the kinetic result much better than the fluid

model. Compared to the fluid result, the gyrofluid one gives

stronger stabilization of the ITG modes and lower thresholds

for the excitation of KBMs. This is related to the toroidal res-

onance. In both Figs. 4(a) and 4(b), we observe the close

connection between the stabilization of the ITG mode and

the excitation of the Kinetic Ballooning mode in accordance

with what kinetic theory predicts. The addition of dissipative

terms makes the curves shift closer to the kinetic result,

although we remark that at low growth rates the agreement is

less satisfactory.

Here, we pause to explain an interesting effect, the

destabilization due to the addition of dissipation of two pre-

viously marginally stable modes (c¼ 0). For example, for

the GF model it is seen in Fig. 4(a) that without dissipation

the KBM becomes unstable at b 
 0:010, while in Fig. 4(b)

it is seen for the same case with dissipation that this mode is

destabilized for all values of b. A similar shift from stability

to instability can be observed upon comparing these figures

for the ITG mode, which is seen in Fig. 4(a) to transition to

FIG. 3. Stability criterion at the “fluid” limit with s¼ 1 for different values

of the adiabatic index.

FIG. 4. Normalized growth rate vs. b for gi ¼ 2:5; b ¼ 0:5; kk ¼ 0:1; � ¼ 0:2;
rn ¼ 1, and s¼ 1. Toroidal ITG is the black line while KBM is the red.
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instability at a somewhat smaller value of b. To understand

these transitions consider Fig. 5, where we plot the real parts

of the frequencies versus b for four modes of the GF model

without dissipation. In this figure, the two upper most modes

are marginally stable for small values of b, then as b
approaches the transition value near 0.010 they collide and

produce instability. This bifurcation, which is standard in

Hamiltonian systems, is called the Hamiltonian Hopf (or

Kre K%n) bifurcation.12,49 Observe the same bifurcation occurs

when two marginally stable modes collide as b is decreased

to a value near to the KBM transition but closer to 0.009,

producing the unstable ITG mode. (After the transitions there

are also damped modes that are not shown in the figures.)

The dissipative destabilization observed in Fig. 4(b) is a

generic feature of Hamiltonians systems with negative

energy modes (NEMs). Indeed, in Hamiltonian systems,

whenever a Hamiltonian Hopf bifurcation occurs, one of the

modes must be a NEM, and such modes have the property of

getting destabilized with the addition of dissipation (see,

e.g., Ref. 50 for a Hamiltonian version of the classical

Kelvin-Tait theorem51). One could perform a calculation like

those of Refs. 20 and 52, where the modal eigenvector is

inserted into the perturbation energy in order to show explic-

itly that it is an NEM and then show the dissipative terms

remove energy from this mode, but such a calculation is

outside the scope of the present paper. (A similar situation

happens when energy is added to a positive energy mode.)

Also note the previously unstable ITG and KBM modes of

Fig. 4(a) become less unstable at the onset of dissipation, as

is shown in Fig. 4(b) due to the fact that it becomes harder

for a mode to grow when there is less available energy in the

system, which is consistent with this scenario.

We reiterate that the purpose of our model is to improve

the nonlinear fidelity of fluid models. From that perspective,

we view the quality of agreement in Fig. 4 as adequate.

In Fig. 6, we display the dependence of the growth rates

of the ITG and KBM modes on kk for various values of b for

the model augmented with the dissipative terms, with all

other parameters remaining the same as in Fig. 4. Values of

b are in the range of 0:000� 0:012. We observe that the sta-

bilization through the electromagnetic effect becomes more

efficient with decreasing kk. Further, we see again the near

simultaneous stabilization of ITG and destabilization of

KBM as was noted above.

For large values of kk the mode is stabilized by the large

parallel ion transit term.46,53,54 Intuitively, we can understand

that the mode is limited by the fact that an appreciable initial

density perturbation cannot be created within an arbitrarily

small length scale. Even before this limit is reached, though,

the negative compressibility mentioned above is proportional

to the ratio of the ion diamagnetic to the sound frequency

(xpi=kkcs), so that coupling to the sound wave acts as a

source of stabilization. On the other hand, the initial density

and potential perturbations, as well as the resulting pressure

lowering, are all proportional to kk. Therefore, a finite kk is

needed to overcome the stabilizing effect of curvature and b.

Thus, the mode becomes most unstable at some intermediate

value. We remark that in practice a complete treatment of the

effect of kk requires a nonlocal approach since kkLk � 1 nor-

mally applies, so that the WKB approach is insufficient.

In Fig. 7, we illustrate the behavior of the growth rate

versus k? for various values of b, with the same parameters

as those of the previous figures. We notice that the peak

growth rate occurs around k? 
 0:65 and does not change

much with b. Furthermore, the stabilizing effect of b is

almost uniform for wavenumber values higher than this.

This could be attributed to a very high phase velocity of the

wave, which leaves few particles with the right thermal

speed to resonate with it. For smaller wavenumbers, how-

ever, the stabilization due to b becomes ineffective. This is

because in this region the parallel ion transit term becomes

significantly larger than the curvature term and becomes the

dominant stabilizing effect. Another important stabilizing

FIG. 6. Growth rates of the ITG-KBM modes as a function of the parallel

wavenumber for the gyrofluid model with dissipative terms.

FIG. 7. Growth rates of the ITG-KBM modes as a function of the perpendic-

ular wavenumber for the gyrofluid model with dissipative terms.FIG. 5. Real frequency vs. b. All parameters are the same as in Fig. 4.
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effect at high k? comes from FLR physics. For example, the

ions respond to the gyroaveraged electrostatic field, thereby

reducing the effective E�B velocity.

In Figs. 8 and 9, we compare the Hamiltonian model

augmented by dissipative terms and the kinetic result from

Ref. 47. Both figures suggest some common features: again,

the qualitative similarity between the Hamiltonian and the ki-

netic curves is evident. However, there is a quantitative dis-

parity since the Hamiltonian result is roughly three times

higher than the kinetic one at the peak value of c. This devia-

tion seems to be corrected by taking into account the dissipa-

tive terms which lowers the results to at most 30% off from

the kinetic ones at peak growth rate. This amendment,

though, does not come without its own problems, namely, the

erratic behavior of the dissipative model at low values of c.

VII. CONCLUSIONS

We presented a Hamiltonian, five-field, electromagnetic

gyrofluid model that evolves three moments for the ions

(density, parallel momentum, and parallel temperature) and

two moments for the electrons. We gave the Hamiltonian

formulation of the model by providing a suitable

Hamiltonian and a Lie-Poisson bracket that satisfies the

Jacobi identity. For this system, we found the families of

Casimir invariants and, from them, we defined five normal

fields in terms of which the equations of motion and the

bracket take their simplest form.

To evaluate the physical fidelity of the model, we per-

formed a local, linear study of the dispersion relation. We

began by comparing the electrostatic dispersion relation with

known analytic results for a slab ITG mode. We found that

the critical gi for the onset of instability is unity for all k?.

This is very close to the kinetic result for perpendicular wave-

lengths comparable to and greater than the ion gyroradius,

but it is only half of the exact value (two) for long wave-

lengths. Ordinary fluid models, by contrast, yield good agree-

ment at long wavelength but predict negative values of gi;crit

at moderate and short wavelengths. By ordinary fluid models,

we refer here to those that are derived from the Braginskii

model and other long wavelength expansion procedures.

We subsequently examined the electromagnetic proper-

ties of the model, including toroidal curvature, by comparing

the dependence of the growth rate on well known stabilizing

factors and comparing them with the local kinetic result of

Ref. 47. We found good qualitative agreement although the

two models cannot be directly compared since the latter

includes the effects of the electron temperature gradient. We

leave for future work the task of including in the model an

electron temperature evolution equation in a manner that pre-

serves the Hamiltonian character.

Given the wide availability of several high-quality gyro-

kinetic (GK) codes that have been verified and validated in a

broad array of contexts, it is appropriate to reflect on the

value of gyrofluid (GF) models. Due to its nature as a trun-

cated moment expansion of the GK model, a GF model such

as the one presented here cannot aspire to compete with the

latter in any but three domains: speed, ease of use, and by vir-

tue of the first two, ability to generate physical insight. The

success of the TGLF code55–57 demonstrates that there is a

strong demand for an agile quasilinear GF code to understand

and interpret experimental observations of turbulent trans-

port. The motivation for the development of the Hamiltonian

GF model presented here is similar but different: it is to pro-

vide an equally agile tool to investigate multi-scale nonlinear
problems such as those listed in the Introduction. In this con-

text, the linear accuracy of the model is of secondary impor-

tance compared to assuring the proper conservation laws and

providing a qualitatively correct picture of the nonlinear

energy transfers. It is worth noting, in this context, that a

Poisson bracket for a gyrokinetic model, demonstrating its

Hamiltonian nature, has only recently been constructed58

using the newly developed technique of gauge-free lifting.59

Uncertainty quantification (UQ) provides another appli-

cation for reduced models that is worth mentioning. The

large number of inputs to gyrokinetic codes makes compre-

hensive UQ impractical, but the existence of a reduced

model opens up new avenues for charting model sensitivities

and subsequently using Bayesian inference with a smaller

number of runs of the GK code to selectively refine the pre-

dictions and reduce the error bars.
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