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Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as func-

tions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are

investigated by using water-bag theory. The link between the water-bag formalism and fluid mod-

els that involve density, fluid velocity, pressure and higher moments is established by introducing

suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their

Hamiltonian structures are provided. In each case, we give the associated fluid closures and we dis-

cuss their Casimir invariants. We show how the method can be extended to an arbitrary number of

fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic inter-

pretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian

N-field fluid models is proposed. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4930097]

I. INTRODUCTION

Due to their high temperature, many plasmas, such as the

ones encountered in the core of tokamaks or in the magneto-

sphere, can be considered as collisionless. Consequently, they

may be well described by kinetic equations such as the

Vlasov-Maxwell system where the particle dynamics is

described by a distribution function f ðx; v; tÞ defined on a

six-dimensional phase space ðx; vÞ with x being the position

and v the velocity. It is particularly challenging to solve such

kinetic models, even using advanced numerical techniques.

In addition, a full kinetic description of the system might

provide unnecessary information, depending on the phenom-

ena under investigation. This is the justification, e.g., for

gyrokinetic theories where a strong magnetic field assump-

tion1 leads to the perpendicular component of the velocity

being replaced by the magnetic moment considered as an ad-

iabatic invariant. Similarly, anisotropy due to a strong mag-

netic field is also used to reduce the complexity of the

original kinetic problem in the double adiabatic theory.2

More generally, and ideally, reduced models obtained by

some kind of closure leads to a decrease in the complexity of

the original kinetic problem, while maintaining accuracy and

providing physical insights about the processes at work.

Consequently, fluid reductions of kinetic equations are often

sought.

Generally speaking, fluid models are obtained by projec-

ting the distribution function as follows:

f ðx; v; tÞ ’
XN

i¼0

Piðx; tÞeiðvÞ; (1)

where Piðx; tÞ is the i-th fluid moment defined as the i-th
moment of the distribution function with respect to the

velocity v, i.e.,

Piðx; tÞ ¼
ð

v� v…� v|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
i times

f ðx; v; tÞ dv;

for all i 2N and feiðvÞg is some specific fixed set of basis

functions. The dynamics of the distribution function f ðx; v; tÞ
is then given by the dynamics of the fluid moments that are

functions of the configuration space coordinate x only. This

makes fluid models, which involve quantities such as, the

density qðx; tÞ ¼ P0ðx; tÞ, the fluid velocity uðx; tÞ ¼ P1

ðx; tÞ=P0ðx; tÞ, and the pressure Pðx; tÞ ¼ P2ðx; tÞ � P2
1ðx; tÞ=

P0ðx; tÞ, convenient to interpret. Furthermore, since fluid var-

iables only depend on x at each time, they are substantially

less expensive to solve numerically than their kinetic

counterpart.

Clearly accurate reduced fluid models are desirable, but

finding effective fluid closures is a difficult and largely open

problem. Indeed, despite their strong physical relevance, a

general or optimal procedure for obtaining them for the

Vlasov equation does not exist. For example, consider the

following simple free advection equation:

@tf ¼ �v � rf ; (2)

which is the Vlasov equation with field dynamics removed.

Multiplying Eq. (2) by vn and integrating with respect to the

velocity, yields the following infinite hierarchy of moment

equations:

@tPi ¼ �r � Piþ1; (3)

for all i 2N. In order to be able to solve Eq. (3), one has to

truncate the infinite set of equations at some order N 2N.

However, because the time evolution of PN involves PNþ1, the

latter must be neglected or expressed in terms of lower order

moments, i.e., PNþ1 ¼ PNþ1ðPi�NÞ. This is the ubiquitous

closure problem for fluid reductions of kinetic equations.
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In conventional fluid closure theory a collision process

and assumption of local thermodynamic equilibrium are ba-

sic. Instead, in this article we consider Hamiltonian fluid

reductions, where we investigate closures based on whether

or not they preserve Hamiltonian structure. This allows us to

select out a subset of all possible fluid closures that preserve

the geometrical structure and this prevents the introduction

of non-physical dissipation in the resulting fluid moment sys-

tem, without requiring nearness to thermal equilibrium.

The case of two moments3 corresponds to the well-

known exact water-bag reduction, so it is not surprising that

it is Hamiltonian. However, as one increases the number of

moments, this increases the dimension of the subset Pi�N ,

and the constraints needed to preserve the Hamiltonian struc-

ture become more difficult to solve,4,5 so that eventually, it is

not possible to obtain a general analytic expression for the

closure PNþ1 ¼ PNþ1ðPi�NÞ.
The problem of deriving Hamiltonian fluid models can,

however, be tackled from different angles. Indeed, instead of

Eq. (1), other representations of the distribution function can

be used to decrease the complexity of the initial problem. In

this paper, we consider a general water-bag model,6–8 which

has also been used, e.g., in gyrokinetics.9–12 In one dimen-

sion, this projection is obtained by replacing the distribution

function with a piecewise constant function in the velocity v
such that

f ðx; v; tÞ ’
XNþ1

i¼1

aiH½v� viðx; tÞ�; (4)

where ai are constants, H denotes the Heaviside distribution,

and viðx; tÞ is a set of contour velocities. Like with the fluid

moment projection, the dynamics of the distribution function

f ðx; v; tÞ defined on phase space has been replaced by the dy-

namics of Nþ 1 fields defined on configuration space,

namely, viðx; tÞ for all 1 � i � N þ 1.

The use of the water-bag projection constitutes an exact

reduction and consequently the resulting system is intrinsi-

cally Hamiltonian.13,14 When the number of field variables

expressed in terms of fluid moments and the number of con-

tour velocities are the same, the water-bag projection is eas-

ier to handle than that of the usual fluid moments

representation; in particular, this is the case for the computa-

tion of a Poisson bracket. However, even though the contour

velocities vi are rather convenient to handle from a computa-

tional point of view, their macroscopic physical interpreta-

tion is less obvious than for the fluid moments.

Consequently, there is a balance to seek between the compu-

tational simplicity of the closure provided by the water-bag

model and the physical relevance of the fluid moments.

In this article, we investigate links between the water-bag

and the fluid moment representations in order to generate new

Hamiltonian closures. Indeed, any truncation of the infinite se-

ries given by Eq. (4) is preserved by the dynamics and hence

constitutes a closure. As a consequence, the subset of all the

water-bag distribution functions is invariant. Following the

water-bag projection, we perform a fluid reduction of the dis-

tribution function to obtain a Hamiltonian fluid model. Then,

we construct a systematic procedure to obtain a fluid reduction

from the water-bag distribution function by preserving the

Hamiltonian structure of the parent kinetic model. We extend

this procedure to build general N-field Hamiltonian fluid mod-

els with N� 2 internal degrees of freedom.

In Sec. II, we provide the Hamiltonian structure of the

Vlasov-Ampère equations which constitute the parent kinetic

model. The Casimir invariants of the associated bracket are

provided. We introduce the water-bag distribution function

and give the associated Hamiltonian structure. Some proper-

ties of the system such as invariants are discussed. In Sec.

III, we establish a link between the water-bag and the fluid

models. This is done by exhibiting a peculiar set of fluid var-

iables that allows us to make explicit the fluid closure corre-

sponding to the water-bag model. We use the density and the

fluid velocity to account for the macroscopic energy of the

system and we propose suitable variables to take into

account internal degrees of freedom coming from micro-

scopic phenomena. The Hamiltonian structure of the result-

ing equations is provided and their Casimir invariants are

discussed. We also address the thermodynamic implications

of the new variables. Lastly in Sec. III D, new models are

proposed to extend the results obtained from the water-bag

model to more general distribution functions. This allows us

to construct general N-field fluid models that describe plas-

mas with N� 2 internal degrees of freedom.

II. THE HAMILTONIAN STRUCTURE OF THE VLASOV-
AMP�ERE EQUATIONS AND THE WATER-BAG MODEL

We investigate the dynamics of a one-dimensional

plasma made of electrons of unit mass and negative unit

charge evolving in a background of static ions. This simpli-

fied system contains essential difficulties of more complete

dynamics. We assume vanishing boundary conditions at in-

finity in velocity v and periodic boundary conditions in the

spatial domain of unit length. The time evolution of the dis-

tribution function of the electrons f ðx; v; tÞ and the electric

field E(x, t) is described by the one-dimensional Vlasov-

Ampère equations

@tf ¼ �v@xf þ eE@vf ; (5)

@tE ¼ �e|; (6)

where eE ¼ E�
Ð

E dx and e| ¼ j�
Ð

j dx are the fluctuating

parts of the electric field E(x, t) and the current density

jðx; tÞ ¼ �
Ð

vf ðx; v; tÞ dv, respectively. We emphasize that in

Eqs. (5) and (6), the dynamical variables are f and E. The

introduction of the fluctuating parts of the electric field and

the current density, respectively, is a consequence of the

requirement that the system be Hamiltonian.

The Vlasov-Ampère model possesses a Hamiltonian

structure for the distribution function of the electrons

f ðx; v; tÞ and the electric field E(x, t). The Poisson bracket

acting on functionals F½f ;E� is15–17

fF;Gg ¼
ð

f ½@xFf@vGf � @xGf@vFf

þfFE@vGf � fGE@vFf � dxdv; (7)

092309-2 Perin et al. Phys. Plasmas 22, 092309 (2015)
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where Ff and FE denote the functional derivative of F with

respect to the distribution function f ðx; v; tÞ and the electric

field E(x, t), respectively. Note, in Bracket (7) the fluctuating

parts of the functional derivatives of F with respect to E
result from the Dirac theory of constraints that was used to

derive this bracket,15 and this is necessary to ensure that the

bracket satisfies the Jacobi identity. Indeed, in three dimen-

sions, starting from the Vlasov-Maxwell equations, the

Vlasov-Ampère equations are obtained by imposing a con-

stant magnetic field B ¼ B0. This leads to the constraint

r� E ¼ 0. In order for this constraint to be compatible with

the dynamics, the Dirac projector P ¼ rD�1r� has to be

added into the bracket. The resulting three-dimensional

Ampère equation is @E=@t ¼ �rD�1r � j, which ensures

the consistency of this equation, meaning that r� E ¼ 0 at

all times. In one dimension, the projector becomes

PFE ¼ fFE ¼ FE �
Ð

FE dx. Bracket (7) is a Poisson bracket,

i.e., it satisfies four essential properties: it is linear in both its

arguments; it is alternating, i.e., fF;Fg ¼ 0; it satisfies the

Leibniz rule, i.e., fF;GHg ¼ fF;GgH þ GfF;Hg; it verifies

the Jacobi identity, i.e.,

fF; fG;Hgg þ fH; fF;Ggg þ fG; fH;Fgg ¼ 0;

for all functionals F, G, and H. The Hamiltonian of the sys-

tem, which corresponds to the total energy, is

H f ;E½ � ¼
ð

v2

2
f dxdvþ

ð
E2

2
dx; (8)

where the first term accounts for the kinetic energy of the

electrons and the second term corresponds to the energy of

the electric field. Bracket (7) and Hamiltonian (8) lead to

Eqs. (5) and (6) by using @tf ¼ ff ;Hg and @tE ¼ fE;Hg.
The Casimir invariants of a bracket f�; �g are particular

observables C that commute with all observable F, i.e.,

fF;Cg ¼ 0 for all functionals F. Bracket (7) possesses a

local (x-dependent) Casimir invariant given by

Cloc ¼ @xEþ
ð

f dv; (9)

which corresponds to Gauss’s law. There are also global

(x-independent) invariants. Namely,

�E ¼
ð

E dx; (10)

which expresses the fact that the mean value of the electric

field remains constant. This results from the periodic bound-

ary conditions in space and from the definition of the electric

field E ¼ �@xU where Uðx; tÞ is the electrostatic potential.

Finally, there is a family of global invariants given by

C1 ¼
ð

/ðf Þ dxdv; (11)

where /ðf Þ is any function of f. This family of Casimir

invariants arises from particle relabeling symmetry and

includes, e.g., the cases of conservation of the total mass and

the usual entropy.

The water-bag model is a particular solution of Eqs. (5)

and (6) with a piecewise constant initial condition for the

distribution function f ðx; v; tÞ

fNðx; v; tÞ ¼
XNþ1

i¼1

ai H½v� viðx; tÞ�; (12)

which can be done for any N � 1. In water-bag theory, one

is interested in approximating a smooth initial condition by a

water-bag approximation, such as that shown in Fig. 1. In

order for this distribution function to have compact support,

we further require the following constraint:

XNþ1

i¼1

ai ¼ 0:

Moreover, the velocities viðx; tÞ are supposed to be ordered

such that for all ðx; tÞ 2 ½0; 1½�Rþ we have v1ðx; tÞ < v2ðx; tÞ
< … < vNþ1ðx; tÞ. In what follows, we will refer to this distri-

bution function as an N-water-bag distribution function. A dis-

tribution function of the form of Eq. (12) is solution of Eqs.

(5) and (6), and hence its form is preserved by the dynamics,

if and only if the contour velocities viðx; tÞ satisfy6–12,18

@tvi ¼ �vi@xvi � eE; (13)

for all 1 � i � N þ 1 and

@tE ¼ �
1

2

XNþ1

i¼1

ai
ev2
i : (14)

As a consequence, solving the Vlasov equation for a water-

bag distribution function fNðx; v; tÞ is equivalent to solving

the Nþ 1 contour equations given by Eq. (13) for the contour

velocities viðx; tÞ. Coupling between the different contours is

then provided by Eq. (14).19

The water-bag model possesses a Hamiltonian struc-

ture14,20,21 inherited from the original Vlasov-Ampère equa-

tions. This means that there exist a bracket f; gWB and a

Hamiltonian H such that Eqs. (13) and (14) are obtained by

@tvi ¼ fvi;HgWB for all 1 � i � N þ 1 and @tE ¼ fE;HgWB,

respectively. For the water-bag distribution function of

FIG. 1. Sketch of a distribution function (in light red) and its water-bag

approximation (in dark blue).
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Eq. (12), the dynamical variables are the contour velocities

viðx; tÞ and the electric field E(x, t). Using the chain rule, the

functional derivative of F with respect to vi, denoted Fi, is

Fi ¼ �aiFf jv¼vi
; (15)

for all 1 � i � N þ 1. Along with Eqs. (12) and (15), this

leads to the water-bag bracket20,21

fF;GgWB ¼
XNþ1

i¼1

ð
1

ai
Fi@xGi þ Gi

fFE � Fi
fGE

� �
dx: (16)

One can show that Bracket (16) is a Poisson bracket, which

is a property inherited from the Vlasov-Ampère equations.

The Hamiltonian of the system is

H v1;…; vNþ1;E½ � ¼ 1

2

ð
� 1

3

XNþ1

i¼1

aiv
3
i þ E2

" #
dx; (17)

which is obtained from Eq. (8) by using Eq. (12).

An important feature of Bracket (16) is that it is closed.

Thus, for any number of bags N � 1, the set of the water-bag

distribution functions fN of N bags is a sub-Poisson algebra

of the Vlasov-Ampère model. This means that the Vlasov-

Ampère dynamics preserves the number of bags. In particu-

lar, the water-bag model is Hamiltonian for any number of

bags. This is particularly interesting from a numerical point

of view, e.g., as there is no nonphysical dissipation intro-

duced by the water-bag approximation even for a low order

approximation with a small number of bags.

Bracket (16) possesses several Casimir invariants. By

using Eq. (12), Eq. (9) becomes

Cloc ¼ @xE�
XNþ1

i¼1

aivi:

The global invariant given by Eq. (10) is preserved by Eq.

(7). The family of Casimir invariants given by Eq. (11) is

projected to

C1 ¼
XN

i¼1

/ðAiÞð�viþ1 � �viÞ;

where Ai ¼
Pi

k¼1 ak and

�vi ¼
ð

viðx; tÞ dx;

for all 1 � i � N þ 1. As C1 is a Casimir invariant for any

function /, this shows that the projection of the invariant

given by Eq. (11) leads to the generation of N invariants,

namely,

C1;i ¼ �viþ1 � �vi;

for all 1 � i � N. However, C1 is computed such that

½f ; dC1=df � ¼ 0 for any distribution function f, where

½g; h� ¼ @xg@vh� @xh@vg. If we now look only at water-bag

distribution functions, the requirement for C1 becomes

½f ; dC1=df � ¼ 0 for all f given by Eq. (12), and hence is less

restrictive. This leads to the creation of an additional invari-

ant, e.g., �v1. Thus, there are Nþ 1 Casimir invariants given

by �vi for all 1 � i � N þ 1, i.e., as many Casimir invariants

as the number of fields.22

III. LINK BETWEEN THE WATER-BAG MODEL AND
THE FLUID MOMENTS OF THE DISTRIBUTION
FUNCTION

The contour velocities viðx; tÞ provide immediate kinetic

theory information: they define the partitioning of the distri-

bution function in the velocity space, sorting particles into

water-bags according to their velocities. However, their

interpretation on the fluid level in terms of moments Piðx; tÞ,
given by

Piðx; tÞ ¼
ð

vif ðx; v; tÞ dv; (18)

for all i 2N, is not so clear. This relationship is given ex-

plicitly by inserting Eq. (12) into Eq. (18), yielding

Pi x; tð Þ ¼
�1

iþ 1

XNþ1

k¼1

akviþ1
k x; tð Þ; (19)

for all i 2N. Our strategy is to use the information provided

by the water-bag model to build Hamiltonian models for the

fluid moments Piðx; tÞ. Indeed, as stated in Sec. II, the water-

bag model possesses a Hamiltonian structure. As a conse-

quence, by expressing the contour velocities with respect to

the fluid moments we can obtain particular fluid models with

an arbitrary number of moments. We believe that this is a

useful strategy because constructing general fluid models

can be technically very challenging.5 The closures provided

by the water-bag models provide insight for building more

general fluid models.

A. The single water-bag model

First consider the case of a single water-bag in order to

illustrate our approach, which will be generalized to an arbi-

trary number of water-bags corresponding to an arbitrary

number of fluid moments. This simple model constitutes a

good illustration of our strategy. If we consider a single

water-bag, or equivalently two contour velocities, the distri-

bution function simply reads

f1ðx; v; tÞ ¼ H½v� v1ðx; tÞ� �H½v� v2ðx; tÞ�;

where we have set a1 ¼ 1 defining unit height to the water-

bag. Using Eq. (19), the first two moments of the distribution

function are

P0 ¼ v2 � v1 and P1 ¼
v2

2 � v2
1

2
;

which upon inversion yield

v1 ¼
P1

P0

� P0

2
and v2 ¼

P1

P0

þ P0

2
:
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Defining the density q ¼ P0 and the fluid velocity u ¼ P1=
P0, we obtain the fluid variables

v1 ¼ u� q
2

and v2 ¼ uþ q
2
:

As a consequence, we are able to express the contour veloc-

ities with respect to the usual fluid moments. In terms of these

fluid variables, the water-bag bracket given by Eq. (16) is

fF;Gg1 ¼
ð
½Gu@xFq � Fu@xGq þ Gu

fFE � Fu
fGE � dx;

where now Fq and Fu denote the functional derivative of F
with respect to q and u, respectively. This bracket, which

corresponds to the cold-plasma bracket,17 is closed, a prop-

erty inherited from the original water-bag bracket given by

Eq. (16). In terms of the variables q, u, and E, Hamiltonian

(17) becomes

H q; u;E½ � ¼
ð

1

2
qu2 þ qU qð Þ þ

E2

2

� �
dx;

where UðqÞ ¼ q2=24 is the specific internal energy of the

system. The pressure is defined by the usual thermodynamic

relation PðqÞ ¼ q2@U=@q ¼ q3=12. The reduced moments,

defined by

Si x; tð Þ ¼
1

qiþ1

ð
v� uð Þif x; v; tð Þ dv; (20)

for all i � 2, appear to be suitable variables to describe the

Poisson structure of the fluid equations resulting from the

Vlasov-Ampère model.5 With this definition, the second

order reduced moment reads S2 ¼ P=q3, which eventually

leads to S2 ¼ 1=12, i.e., S2 is constant. (Note, throughout the

article we will express the Si in 1=ai
1 units for all i � 2.)

In terms of the reduced moments, the Hamiltonian of

the system reads

H q; u;E½ � ¼ 1

2

ð
qu2 þ q3S2 þ E2
� �

dx ;

and the equations of motion are

@tq ¼ fq;Hg1 ¼ �@xðquÞ; (21)

@tu ¼ fu;Hg1 ¼ �u@xu� 1

q
@x q3S2

� �
� eE; (22)

@tE ¼ fE;Hg1 ¼ fqu: (23)

These are the equations for a barotropic fluid undergoing an

adiabatic process. Indeed, the relationship between the pres-

sure P and the density q is such that P=q3 ¼ S2 ¼ 1=12 is a

constant. This is the characteristic isentropic equation of

state of an ideal gas with one degree of freedom. The local

Casimir invariant given by Eq. (9) is preserved and is

Cloc ¼ @xEþ q: (24)

In addition, the system have three global invariants: the

mean value of the electric field given by Eq. (10) and

�q ¼
ð

q dx; (25)

�u ¼
ð

u dx: (26)

The first invariant is conservation of total mass, which results

from the fact that the system is isolated. This Casimir invari-

ant results from the projection of Eq. (11). As for the electric

field, the last Casimir invariant corresponds to conservation

of the mean value of the velocity. As noted, this additional

invariant arises from the closure procedure.

B. Two water-bag model: Introduction
of the thermodynamical variables

Now consider the case of two water-bags, in order to

characterize more precisely the closure provided by the

water-bag model and its relation to the fluid moments.

Indeed, there exists an infinite number of Hamiltonian fluid

models with three moments.4 By using the reduced moments

defined by Eq. (20), Hamiltonian models for the variables q,

u, and S2 are such that S3 is an arbitrary function of S2. Two

water-bags means we have three contour velocities or, equiv-

alently, three fluid moments, which provides a particular

example of the more general closure S3 ¼ S3ðS2Þ. Such a dis-

tribution function, whose expression is given by Eq. (12)

with N¼ 2, is represented in Fig. 2. By using Eq. (19), the

first three moments of the distribution function are

P0 ¼ v3 � v1 þ a2 v3 � v2ð Þ;

P1 ¼
v2

3 � v2
1

2
þ a2

v2
3 � v2

2

2
;

P2 ¼
v3

3 � v3
1

3
þ a2

v3
3 � v3

2

3
:

FIG. 2. Upper panel: sketch of a double water-bag distribution function.

Lower panel: plot of S3 as a function of S2 for a double water-bag distribu-

tion function corresponding to the upper panel and for different values of a2

(given by the colorbar).
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Unlike the single water-bag case, expressing the contour

velocities with respect to the fluid moments with two water-

bags is more complicated. This is partially due to the fact

that P2 involves cubic terms in the contour velocities vi. This

issue becomes more acute as the number of water-bags

increases. A first step toward the fluid representation can be

easily done by using the following variable:

n1 ¼
v2 � v1

v3 � v1 þ a2 v3 � v2ð Þ
;

along with the density q, the fluid velocity u, and the electric

field E as used in the single water-bag model. In this case,

qn1 simply corresponds to the density of the particles con-

tained in the first bag of unit height. We see that
Ð

qn1 dx,

i.e., the total number of particles in the first bag, is a Casimir

invariant of Eq. (16), hence is a constant of motion. The con-

tour velocities can be expressed explicitly with respect to

these variables as follows:

v1 ¼ uþ q
2

a2n1 n1 � 2ð Þ � 1

1þ a2

;

v2 ¼ uþ q
2

n1 a2n1 þ 2ð Þ � 1

1þ a2

;

v3 ¼ uþ q
2

a2n2
1 þ 1

1þ a2

:

Expressed in terms of the variables ðq; u; n1;EÞ, Bracket (16)

takes the particularly simple form

fF;Gg2 ¼
ð �

Gu@xFq � Fu@xGq þ Gu
fFE � Fu

fGE

� 1

q
F1Gu � G1Fuð Þ@xn1 þ

1þ a2

a2

F1

q
@x

G1

q

� ��
dx;

(27)

where F1 denotes the functional derivative of F with respect

to n1. Bracket (27) is closed which is, as in the single water-

bag model, a property inherited from the original water-bag

bracket given by Eq. (16). In terms of the variables q, u, n1,

and E, Hamiltonian (17) becomes

H q; u; n1;E½ � ¼ 1

2

ð
qu2 þ q3S2 n1ð Þ þ E2
h i

dx; (28)

where

S2 n1ð Þ ¼
1þ 6a2n2

1 þ 4a2 a2 � 1ð Þn3
1 � 3a2

2n4
1

12 1þ a2ð Þ2
: (29)

This shows that S2 is a function of n1 only. The specific inter-

nal energy now becomes Uðq; n1Þ ¼ q2S2ðn1Þ=2. As a conse-

quence, in addition of the pressure defined as the

thermodynamic conjugate variable of the density through the

relation P ¼ q2@U=@q, we can define some potential l1 as

the conjugate variable of n1, such that l1 ¼ q2S02ðn1Þ=2. This

shows that more accurate fluid models are obtained by intro-

ducing more information on the thermodynamic properties

of the system through internal degrees of freedom. Bracket

(27) and Hamiltonian (28) lead to Eqs. (21)–(23) and the fol-

lowing additional equation:

@tn1 ¼ fn1;Hg2 ¼ �u@xn1 þ
1þ a2

a2 q
@x

q2

2
S02 n1ð Þ

� �
:

The first term of this equation is an advection term, while the

second is a flow term resulting from the potential

l1 ¼ q2S02ðn1Þ=2. Indeed, analogously to the pressure P that

drives a force �@xP in Eq. (22), here l1 drives a flow @xl1.

Along with the Casimir invariants given by Eqs. (24),

(10), and (25), the two water-bag model has the following

global invariants:

qn1 ¼
ð

qn1 dx; (30)

C2 ¼
ð

uþ a2

2 1þ a2ð Þ qn2
1

� �
dx: (31)

The Casimir invariant given by Eq. (30) is inherited from the

original Vlasov-Ampère model and amounts to conservation

of the total entropy. Indeed, in statistical physics, the entropy

of a system is related to its number of microstates. Here the

microstates are given by the amount of particles in each bags.

The invariant given by Eq. (31) is a new conserved quantity

and is generated by the reduction procedure. Noting that Eq.

(29) defines a bijection g : n1 2 ½0; 1� 7! S2 ¼ gðn1Þ 2 Rþ
such that we can write n1 ¼ jðS2Þ where j ¼ g�1, the previ-

ous invariants become

qj S2ð Þ ¼
ð

qj S2ð Þ dx;

C2 ¼
ð

uþ a2

2 1þ a2ð Þ qj2 S2ð Þ
� �

dx:

Therefore, we see that the two water-bag model is a particu-

lar case of the more general three moments fluid model.4

As stated previously, the two water-bag model is closed.

Thus, we expect the associated fluid model to be closed too,

and the fourth reduced moment S3 to be a function of S2

only. In what follows, we choose a2 � 0. This corresponds

to a configuration in which the second bag is taller than the

first, as depicted in Fig. 2. The case a2 < 0 is equivalent

through the symmetry v! �v and n1 ! 1� n1. By using

the definition of the third order reduced moment given by

Eq. (20) with i¼ 3, we find

S3 ¼ �
a2 n1 � 1ð Þ2n2

1 1þ a2n1ð Þ2

4 1þ a2ð Þ3
:

Since S3 is a function of n1 only and n1 ¼ jðS2Þ, we see that

S3 is a function of S2 only, i.e., S3 ¼ S3ðS2Þ as expected. This

relation was expected because it was shown in Ref. 4 that it

is the case for general Hamiltonian closures with three fluid

moments obtained from the Vlasov equation. The fraction of

particles in the first water-bag parametrizes the curve

n1 7!½S2ðn1Þ; S3ðn1Þ�. This result corresponds to a closure for

the heat flux q ¼ q4S3=2 as a function of the density q and

the pressure P ¼ q3S2. We do not give the explicit relation-

ship between S2 and S3 here because it does not provide

much information. However, the dependence of S3 on S2 is
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plotted in Fig. 2 for different values of a2. We observe that

as a2 ! 0, we have S2 ! 1=12 and S3 ! 0. This is consist-

ent with the results of Sec. III A. Indeed, for a2 ¼ 0 the two

water-bags have the same heights and, as a consequence,

merge into one such that we recover the values of the fluid

moments corresponding to a single water-bag model.

Moreover, as a2 increases, the solution tends rapidly toward

an equilibrium obtained with a2 ! þ1.

In summary, the two water-bag model can be conveniently

described by using appropriate fluid variables: the density q
and the fluid velocity u are natural fluid quantities that take into

account, in particular, through the definition of the kinetic

energy K ¼
Ð

qu2=2 dx, the macroscopic energy of the system.

The internal effects are described by the internal energy. Using

the partitioning of the number of particles into two bags as the

internal degree of freedom of the system, we can define the spe-

cific internal energy as Uðq; n1Þ ¼ q2S2ðn1Þ=2. The two

water-bag model corresponds to a system with one internal

degree of freedom described by n1.

C. Three water-bag model

In this section, we demonstrate the usefulness of the new

thermodynamical variables for linking the water-bag and fluid

models by considering the three water-bag distribution func-

tion, whose expression is given by Eq. (12) for N¼ 3. A three

water-bag model is equivalent to a Hamiltonian fluid model

with four fluid moments. Even though a particular closure

based on dimensional analysis has been previously found for

such fluid models,5 there is currently no general Hamiltonian

closure for fluid models with four moments. Finding all the clo-

sures is difficult because it requires solving non-linear partial

differential equations obtained from the Jacobi identity. We

show here, by using the thermodynamic variables, that the

water-bag distribution function with three water-bags is another,

parameter-dependent closure for fluid models with four

moments. This solution is simpler to compute than the general

closure, and gives us some useful information. Different three

water-bag distribution functions are depicted in Figs. 3–5.

Following the procedure of Sec. III B, we introduce the

thermodynamic variable

n2 ¼
1þ a2ð Þ v3 � v2ð Þ

v4 � v1 þ a2 v4 � v2ð Þ þ a3 v4 � v3ð Þ
;

in addition to q, u, n1, and E used in the two water-bag model.

Here qn2 corresponds to the density of the particles contained

in the second bag. The expressions of the contour velocities in

terms of these variables are given by Eq. (34) and will not be

detailed here. Expressed in terms of the variables

ðq; u; n1; n2;EÞ, Bracket (16) takes the particularly simple form

fF;Gg3 ¼
ð �

Gu@xFq � Fu@xGq þ Gu
fFE � Fu

fGE

� 1

q
FiGu � GiFuð Þ@xni þ bik

Fi

q
@x

Gk

q

� ��
dx;

(32)

where Fi denotes the functional derivative with respect to ni

for i 2 f1; 2g and where the summation over repeated

indices from 1 to 2 is assumed. Here b is a constant 2� 2

symmetric matrix given by

b ¼ 1þ a2ð Þ
a2a3

a3 �a3

�a3 1þ a2ð Þ a2 þ a3ð Þ

� �
:

In terms of the variables q, u, n1, n2, and E, Hamiltonian (17)

becomes

FIG. 3. Upper panel: sketch of a three water-bags distribution function

whose typology exhibits a bell-shape. Lower panel: colormap of S4 as a

function of S2 and S3 for ða2; a3Þ ¼ ð2;�1:75Þ corresponding to a distribu-

tion function given by the upper panel.

FIG. 4. Upper panel: sketch of a three water-bags distribution function

whose typology exhibits a hole. Lower panel: colormap of S4 as a function

of S2 and S3 for ða2; a3Þ ¼ ð�0:15; 0:9Þ corresponding to a distribution func-

tion given by the upper panel.
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H q; u; n1; n2;E½ � ¼ 1

2

ð
qu2 þ q3S2 n1; n2ð Þ þ E2
h i

dx; (33)

where S2ðn1; n2Þ is given by Eq. (37). As in the two water-

bag model, we can define the thermodynamic potential

l ¼ @U=@n ¼ q2ð@S2=@nÞ=2. Analogously to multi-

components systems, the variables ni act as internal degrees

of freedom that characterize the model through a partitioning

of the particles with respect to their energy or, equivalently,

their temperature. Indeed, it is expected that a system like

the collisionless Vlasov-Ampère system should not thermal-

ize and as a consequence is described by more than one tem-

perature. Bracket (32) and Hamiltonian (33) lead to Eqs.

(21)–(23), and in addition the following equations:

@tni ¼ fni;Hg3 ¼ �u@xni þ
1

q
bik@x

q2

2

@S2

@nk

� �
;

for i 2 f1; 2g, where summation over repeated indices form

1 to 2 is assumed. These equations exhibit an advection term

and a driving term through the existence of a potential

l ¼ q2ð@S2=@nÞ=2.

Along with the Casimir invariants given by Eqs. (24), (10),

(25), and (30), Bracket (32) has the following global invariants:

qn2 ¼
ð

qn2 dx;

C2 ¼
ð

uþ q
2

a2n2
1

1þ a2ð Þ þ
a3 n1 þ n2ð Þ2

1þ a2ð Þ 1þ a2 þ a3ð Þ

" #( )
dx :

Thus, as for the other models, we have as many global

Casimir invariants as dynamical variables. Moreover, there

is some generalized velocity which is a common feature of

all fluid models derived from Vlasov-Ampère equations.

By using Eq. (37), we can express S2, S3, and S4 as functions

of n1 and n2. For any (a2, a3), these functions define a unique

two-dimensional manifold ½S2ðn1; n2Þ; S3ðn1; n2Þ; S4ðn1; n2Þ�.
There are mainly three configurations of interest for the

distribution function, with other typologies obtained by using

different symmetries. The first configuration has

0 < �a3 < a2. This bell-shaped configuration is shown in

Fig. 3. The second configuration has 0 < �a2 < a3 and cor-

responds to a case in which the second bag is the smallest.

Such a typology exhibits a “hole” in the distribution function

shown in Fig. 4. The last typology has a2 > 0 and a3 > 0

and corresponds to a configuration with the third bag taller

than the second, which is taller than the first. Such a typol-

ogy is shown in Fig. 5. In Figs. 3–5 we plot S4 as a function

of S2 and S3 for the three configurations.

Observe, despite the change in distribution function

typology, which result in a change in the typology of the

manifolds defined by the closure, S4 always increases as S2

increases. Moreover, for a configuration as depicted in Fig.

5, the sign of S3 is fixed, whereas it may vary for the other

configurations depending on the respective widths of the

water-bags. The same computation can be performed for

higher order moments. In particular, a Hamiltonian fluid

model for four moments requires closures on the fourth and

fifth order moments, respectively, namely, S4 and S5.5

D. N water-bag model

The method presented in Subsections III A–III C can be

extended to an arbitrary number of water-bags with a corre-

sponding arbitrary number of fluid moments. This is impor-

tant because by increasing the number of water-bags we

increase the accuracy of the description, allowing for more

refined kinetic effects. This is consistent with the fact that

the water-bag models come from a discretization of the dis-

tribution function in velocity space. An analogy can be made

with vibrations of structures.23 In these systems, the fre-

quency spectrum is continuous. However, these models can

be accurately described by a finite number of coupled springs

with a discrete spectrum as long as the number of springs is

sufficiently high. Thus by increasing the number of water-

bags, yet keeping it finite, we can recover kinetic information

about the system within the framework of a fluid description.

Considering N bags, we define the following variables:

q ¼ �
XNþ1

i¼1

aivi;

u ¼

XNþ1

i¼1

aiv
2
i

2
XNþ1

k¼1

akvk

;

nl ¼ �
vlþ1 � vlð Þ

Xl

i¼1

ai

XNþ1

k¼1

akvk

;

FIG. 5. Upper panel: sketch of a three water-bags distribution function

whose typology exhibits a monotonic increase. Lower panel: colormap of S4

as a function of S2 and S3 for ða2; a3Þ ¼ ð0:25; 2Þ corresponding to a distri-

bution function given by the upper panel.
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for all 1 � l � N � 1. In this case, qni corresponds to the

density of the particles contained in the i-th bag for

1 � i � N � 1. We see that
Ð

qni dx, i.e., the number of par-

ticles in the i-th bag, is a Casimir invariant of Eq. (16). The

contour velocities can be expressed explicitly with respect to

these variables such that

vi ¼ uþ qWi; (34)

for all 1 � i � N þ 1 and where

WNþ1 ¼
1

2

XN

i¼1

ai

a2
Nþ1

1�
XN�1

k¼1

nk � aNþ1

XN�1

k¼i

nk

Ak

" #2

;

and

Wm ¼ WNþ1 þ
1

aNþ1

1�
XN�1

k¼1

nk � aNþ1

XN�1

k¼m

nk

Ak

" #
;

for all 1 � m � N. Expressed in terms of the variables

ðq; u; n1;…; nN�1;EÞ, Bracket (16) takes the particularly

simple form given by

fF;GgN ¼
ð �

Gu@xFq � Fu@xGq þ Gu
fFE � Fu

fGE

� 1

q
FiGu � GiFuð Þ@xni þ bik

Fi

q
@x

Gk

q

� ��
dx;

(35)

where Fi denotes the functional derivative with respect to ni

for 1 � i � N � 1 and where the summation over repeated

indices from 1 to N� 1 is again assumed. Here b is a con-

stant tridiagonal ðN � 1Þ � ðN � 1Þ symmetric matrix given

by

b ¼

k1 �k1 0 … 0

�k1 k1 þ k2 �k2 … 0

0 �k2 k2 þ k3 … 0

..

. ..
. ..

. . .
. ..

.

0 0 0 … kN�1

0BBBBBB@

1CCCCCCA;

where

ki ¼

Xi

k¼1

ak

Xiþ1

l¼1

al

aiþ1

:

Bracket (35) can be further simplified. Indeed, noting that b
is symmetric, hence diagonalizable, we introduce the

variables

�i ¼
Xi

k¼1

nk;

for 1 � i � N � 1. The quantity
Ð

q�i dx corresponds to the

cumulative number of particles in the i first bags. Eventually,

Eq. (35) takes the even simpler form

fF;GgN ¼
ð �

Gu@xFq � Fu@xGq þ Gu
fFE � Fu

fGE

� 1

q
FiGu � GiFuð Þ@x�i þ ki

Fi

q
@x

Gi

q

� ��
dx;

(36)

where Fi denotes the functional derivative of F with respect

to �i for 1 � i � N � 1 and where summation over repeated

indices from 1 to N� 1 is assumed. The Hamiltonian associ-

ated with this model is given by

H q; u; �1;…; �N�1;E½ �

¼ 1

2

ð
qu2 þ q3S2 �1;…; �N�1ð Þ þ E2
h i

dx;

where the reduced moments can be computed from Eq. (20)

and are given by

Si x; tð Þ ¼ �
1

iþ 1ð Þqiþ1

XNþ1

k¼1

ak vk x; tð Þ � u x; tð Þ½ �iþ1;

for all i � 2. By using Eq. (34), this eventually becomes

Si ¼
�1

iþ 1ð Þ
XNþ1

k¼1

akn
iþ1
k �1;…; �N�1ð Þ; (37)

where

nNþ1 ¼
1

2

XN

i¼1

ai

a2
Nþ1

1� �N�1 � aNþ1

XN�1

k¼i

�k � �k�1

Ak

" #2

;

nm ¼ nNþ1 þ
1

aNþ1

1� �N�1 � aNþ1

XN�1

k¼m

�k � �k�1

Ak

" #
;

for all m such that 2 � m � N � 1. This shows that the

reduced moments Si are functions of the thermodynamic var-

iables �i only. The equations of motion of the system are

given by Eqs. (21)–(23) and

@t�i ¼ f�i;HgN ¼ �u@x�i þ
ki

q
@x

q2

2

@S2

@�i

� �
;

for all 1 � i � N � 1. Along with the Casimir invariants

given by Eqs. (24), (10), and (25), the N water-bag model

has the following global invariants:

q�i ¼
ð

q�i dx;

C2 ¼
ð

uþ q
2

XN

k¼1

ak

a2
Nþ1

�N�1 þ aNþ1

XN�1

l¼k

�l � �l�1

Al

" #2
0@ 1A dx;

for all 1 � i � N � 1.

The closure provided by the N water-bag model is not

straightforward. Indeed, the closure is such that

SNþ1 ¼ SNþ1ðS2;…; SNÞ, which defines an N� 1-dimen-

sional manifold in RN parametrized by ð�1;…; �N�1Þ.
However, one can apply the tools developed throughout the
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article to visualize such a manifold. Indeed, consider, e.g., a

three water-bag distribution function as shown in Fig. 5 and

consider all the distribution functions (three in this example)

obtained by combining two of these bags. These are shown

in Fig. 6. We see that the edges of the manifold defined by

the four fluid moment closure S4 ¼ S4ðS2; S3Þ correspond to

the closures of the three fluid moments models associated

with every combination of two water-bags of the initial three

water-bags distribution function. Analogously, the projec-

tions on the ðS2; S3; S4Þ space of the edges of the manifold

defined by the closure SNþ1 ¼ SNþ1ðS2;…; SNÞ in the

ðS2; S3;…; SNþ1Þ space correspond to the closure of the three

fluid moment models associated with every combination of

two water-bags of the initial N water-bag distribution

function.

We illustrate the above edge description with the follow-

ing example. Consider a Maxwellian distribution approxi-

mated with a 27 water-bag distribution function as shown in

Fig. 7. The corresponding fluid closure is such that

S28 ¼ S28ðS2;…; S27Þ.5 The projection of this high dimen-

sional manifold on the ðS2; S3; S4Þ space is depicted in Fig. 7.

Consequently, we see that the information about the whole

system is given by all the possible couplings between two

different water-bags. This makes the study of systems with a

high number of fields easier as it eventually reduces to the

study of coupled subsystems with three fields.

Inserting arbitrary functions in front of the terms

ðFi=qÞ@xðGi=qÞ in (36) may allow us to extend this bracket

to more general Poisson brackets of the form

fF;Gg ¼
ð (

Gu@xFq � Fu@xCq þ Gu
fFE

�Fu
fGE �

1

q
FiGu � GiFuð Þ@x�i

þri �ið Þ
Fi

q
@x

Gi

q

� �
� Gi

q
@x

Fi

q

� �" #)
dx; (38)

where the ri are arbitrary functions. In addition, we consider

Hamiltonians of the general form

H ¼ 1

2

ð
qu2 þ q3S2 �1;…; �N�1ð Þ þ E2
h i

dx;

where now the dependence of S2 on �i is arbitrary. The

choice of the unknown functions ri and the reduced moment

S2ð�1;…; �N�1Þ should be based on physical arguments. As

an example, we expect homogeneous initial conditions (i.e.,

q ¼ q0, u¼ 0 and �i ¼ �i0) to be linearly stable. This leads

to constraints on ri and S2ð�1;…; �N�1Þ. It is possible show,

e.g., that the two water-bag closure is always stable with

respect to a homogeneous equilibrium. Along with the ones

given by Eqs. (25) and (10), the global Casimir invariants of

the extended water-bag bracket given by Eq. (38) are

qjl ¼
ð

qjl dx;

C2 ¼
ð

uþ q
4

XN�1

l¼1

j2
l

 !
dx;

where j0l ¼ 1=
ffiffiffiffi
rl
p

for all 1 � l � N � 1.24 We also notice

that Brackets (38) for N¼ 2 are the most general Poisson

brackets with three moments.4 Whether or not this is the

case for any N is an open question.

IV. SUMMARY

In summary, we exhibited a method for constructing

Hamiltonian fluid models with an arbitrary number of fluid

moments from the Vlasov-Ampère system. This construction

relies on the Hamiltonian structure of the water-bag repre-

sentation of a distribution function. We introduced suitable

fluid variables, based on thermodynamic considerations, to

replace the less meaningful contour velocities. The density

and the fluid velocity were used to describe macroscopic

FIG. 6. Closures of the two water-bags model that define the projection of

the edges of the closure of the three water-bags model.

FIG. 7. Upper panel: sketch of a bell-shaped water-bag distribution function

with 27 bags. Lower panel: projection of the edges of the manifold defining

the closure for the distribution function given by the upper panel.
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phenomena, while the partitioning of the particles into the

different bags was used to define internal degrees of freedom

in the system, accounting for microscopic effects. By using

these variables, we were able to link the water-bag and fluid

models and to make explicit the corresponding closures. We

showed that, for an arbitrary number of water-bags, the gen-

eral associated closure can be constructed from knowledge

of the couplings between all the other water-bags. Based on

these results, we proposed a general N field fluid model to

describe plasmas with N� 2 internal degrees of freedom.
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