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A mechanism for explosive magnetic reconnection is investigated by analyzing the nonlinear

evolution of a collisionless tearing mode in a two-fluid model that includes the effects of electron

inertia and temperature. These effects cooperatively enable a fast reconnection by forming an X-

shaped current-vortex layer centered at the reconnection point. A high-resolution simulation of this

model for an unprecedentedly small electron skin depth de and ion-sound gyroradius qs, satisfying

de ¼ qs, shows an explosive tendency for nonlinear growth of the tearing mode, where it is newly

found that the explosive widening of the X-shaped layer occurs locally around the reconnection

point with the length of the X shape being shorter than the domain length and the wavelength of

the linear tearing mode. The reason for the onset of this locally enhanced reconnection is explained

theoretically by developing a novel nonlinear and nonequilibrium inner solution that models the

local X-shaped layer, and then matching it to an outer solution that is approximated by a linear tear-

ing eigenmode with a shorter wavelength than the domain length. This theoretical model proves

that the local reconnection can release the magnetic energy more efficiently than the global one

and the estimated scaling of the explosive growth rate agrees well with the simulation results.
VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921329]

I. INTRODUCTION

Clarification of the mechanisms of fast magnetic recon-

nections in space and laboratory plasmas is a fundamental

issue that has been tackled by plasma physicists for more than

half a century.1,2 In particular, the explosive release of mag-

netic energy, observed in solar flares, magnetospheric sub-

storms, and tokamak sawtooth collapses, indicates that the

magnetic reconnections might further accelerate through non-

linear and nonequilibrium processes. It is widely accepted that

the resistive magnetohydrodynamic (MHD) model cannot

reproduce such fast reconnection unless a locally enhanced re-

sistivity is artificially introduced.3 Since the plasmas in these

explosive events is relatively collisionless, the resistivity is

thought to be physically less important than non-collisional

microscopic effects such as electron inertia, Hall current, ion

gyroradius effects, and so on, which are all neglected in the

classical MHD model. Consequently, there has been consider-

able effort in recent years in studying a variety of two-fluid,4–7

gyro-fluid,8,9 and gyrokinetic10,11 models to understand recon-

nection in collisionless plasmas. Until now, many simulation

results12–19 have shown that collisionless reconnection tends

to accelerate into a nonlinear phase. However, the theoretical

understanding of this process is very limited.

The primary computational obstacle is that the nonlinear

acceleration phase is observed only when the magnetic

island width (or the amplitude of the tearing mode) exceeds

the microscopic scales while sufficiently smaller than the

scale of the equilibrium magnetic shear. This suggests the

importance of making the microscopic scales as small as

possible, yet affording very high spatial resolution to prolong

the acceleration phase. Consequently, it has not been clear in

previous simulations how reconnection is accelerated and

whether or not it is explosive.

The nonlinear theory for explosive magnetic reconnec-

tion has remained elusive because of the difficulty of solving

strongly nonlinear and nonequilibrium fluid motion with

multiple scales. The method of asymptotic matching has

been only applicable to linear stability of collisionless tear-

ing modes, where the island width is assumed to be much

smaller than any microscopic scale.11,20–22 In the dissipation-

less limit, recent studies take advantage of the Hamiltonian

structure26–28 of the collisionless two-fluid models.14,18,29–31

These studies show that the two-fluid effects distort the con-

servation laws (frozen-in variables) and hence permit mag-

netic reconnections with ideal fluid motion.

In the presence of only electron inertia in the two-fluid

model, an ideal fluid motion develops an elongated current

layer with Y-shaped ends, where the layer width is compara-

ble to the electron skin depth (de).
13 On the other hand, even

faster reconnections due to the formations of X-shaped cur-

rent-vortex layers are observed numerically12,14 when the

effect of electron temperature is taken into account and the

ion-sound gyro-radius (qs) is comparable to or larger than de.

This distinction between the Y and X shapes seems to be cru-

cial in determining the reconnection speed, in analogy with

that between the Sweet-Parker1 and Petschek2 models for

resistive reconnections. Although several pioneering

works13,15 have attempted theoretical explanations of the ex-

plosive growth of these nonlinear tearing modes, we note

that their predictions are not in quantitative agreement with

the high-resolution simulation results given in Ref. 25 and

the present work.
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The goal of this paper is to clarify an explosive mecha-

nism for collisionless reconnection caused by the interplay of

the effects of electron inertia and temperature. To this end,

we analyze the simple Hamiltonian two-fluid model given ex-

plicitly in Sec. II, both numerically and analytically. In previ-

ous work,25 we considered only the effect of electron inertia

and estimated an explosive growth rate by using a new varia-

tional method. This method not only gives better agreement

with simulation results than earlier work13 but also gives a

better physical interpretation because energy conservation is

properly taken into account. Here, we generalize our previous

study for the Y-shaped layer and consider an X-shaped layer.

To be more specific, we will restrict our consideration to

the case of de ¼ qs, for simplicity, and shorten the scale

de ¼ qs as much as possible in the simulations. For the first

time, we perform simulations with qs ¼ de < 0:01L and find

that the X-shaped current-vortex layer widens rather locally

around the reconnection point regardless of the size of com-

putational domain. We show theoretically that this local

X-shaped structure is nonlinearly generated because it is

optimal for releasing the magnetic energy more efficiently

than global structures.

Our variational method25 is inspired by the ideal MHD

Lagrangian theory, in which the magnetic energy is consid-

ered to be part of the potential energy of the dynamical sys-

tem (in analogy with the elastic energy of rubber bands). If a

fluid displacement continually decreases the magnetic

energy, it is likely to grow by gaining the corresponding

amount of the kinetic energy, and the most unstable displace-

ment would decrease the magnetic energy most effectively.

This argument assumes that the two-fluid effects are essen-

tial for changing the topology of magnetic field lines within

the thin boundary layer, but their impact on the global energy

balance is negligible in the limit of de; qs ! 0. By choosing

a fluid displacement as a test function that mimics the local

reconnection, we can estimate a growth rate for the displace-

ment from the kinetic energy.

In Sec. II, we first introduce a reduced two-fluid model5

that includes the effects of electron inertia and electron tem-

perature, and focus on a collisionless tearing mode that is lin-

early unstable for a magnetic shear ByðxÞ / sinð2px=LxÞ in a

doubly periodic x-y plane, where the wavenumber ky ¼
2p=Ly is related to the aspect ratio Ly=Lx of the domain. In

Sec. III, we present our numerical results on the nonlinear

evolution of this tearing mode. Explosive growth is observed

when qsD
0� 0:65 (where de ¼ qs and the tearing index D0 is

a function of Ly=Lx). We will find that the explosive growth

rate is almost independent of Ly=Lx because, in the explosive

phase, the X-shaped current-vortex layer expands locally

around the reconnection point and its characteristic length in

the y-direction is shorter than Ly. In Sec. IV, we present our

theoretical model that explains the generation of such a local

X-shaped layer. By replacing Ly with a shorter length

Kyð� LyÞ, we introduce an effective tearing index ~D
0

as a

free parameter of the external solution and connect it to a

novel inner solution that represents nonlinear evolution of an

X-shaped layer. We will show that a local reconnection Ky <
Ly can transform the magnetic energy into the kinetic energy

more efficiently than the global one Ky ¼ Ly. Using this

variational principle, we estimate a growth rate for this local

reconnection model, which is indeed explosive and agrees

with the simulation results. We finally summarize in Sec. V

II. MODEL EQUATIONS

We begin with the reduced two-fluid model given in

Refs. 5 and 6 with the assumption of cold ions

@r2/
@t
þ /;r2/
� �

þ r2w;w
� �

¼ 0; (1)

@w
@t
þ /� q2

sr2/;w
� �

� d2
e

@r2w
@t
þ /;r2w
� �� �

¼ 0; (2)

which governs the two-dimensional velocity field v ¼ ez

�r/ðx; y; tÞ and magnetic field B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0min0
p rwðx; y; tÞ

�ez þ B0ez, where the guide field B0 and mass density min0

are assumed to be constant, l0 is the magnetic permeability,

and ½f ; g� ¼ ðrf �rgÞ � ez is the Poisson bracket. Here, the

effects of electron inertia and electron temperature introduce

two microscopic scales: the electron skin depth de ¼ c=xpe

and the ion-sound gyroradius qs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
=xci, respectively

(where c is the speed of light, xpe is the electron plasma fre-

quency, xci is the ion cyclotron frequency, Te is the electron

temperature, and mi is the ion mass).

Equations (1) and (2) conserve the total energy (or the

Hamiltonian) that is given by the following energy integral:

E ¼ 1

2

ð
d2x jr/j2 þ q2

s jr2/j2 þ jrwj2 þ d2
e jr2wj2

� �
¼: EV þ ET þ EB þ EC; (3)

where EV ¼
Ð
jr/j2d2x=2 is the ion perpendicular flow

energy, ET ¼
Ð

q2
s jr2/j2d2x=2 is the electron thermal

energy, EB ¼
Ð
jrwj2d2x=2 is the magnetic energy and EC

¼
Ð

d2
e jr2wj2d2x=2 is the electron parallel flow (or current)

energy. Kuvshinov et al.29 and Cafaro et al.14 show that (1)

and (2) can be further rewritten as

@wþ
@t
þ /þ;wþ
� �

¼ 0; (4)

@w�
@t
þ /�;w�½ � ¼ 0; (5)

in terms of

w6 ¼ w� d2
er2w6qsder2/; (6)

/6 ¼ /� q2
sr2/6qsder2w: (7)

It follows that wþ and w� are frozen-in variables, whereas w
is not unless de¼ 0. Magnetic reconnection is therefore pos-

sible when de 6¼ 0 without any dissipation mechanism.

As is common with earlier works,14,15,30 we consider a

static equilibrium state

/ð0Þðx; yÞ � 0 and wð0Þðx; yÞ ¼ w0 cosðaxÞ; (8)

on a doubly periodic domain D ¼ ½�Lx=2; Lx=2� �
½�Ly=2; Ly=2� (where a ¼ 2p=Lx), which is unstable with
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respect to double tearing modes whose reconnection layers

are located at x¼ 0 and x ¼ 6Lx=2. For initial data we

assume a sufficiently small perturbation of a single har-

monic, / / sin kyy and w� wð0Þ / cos kyy, where

ky ¼ 2p=Ly. Then, the following parities:

/ðx; y; tÞ ¼ �/ð�x; y; tÞ ¼ �/ðx;�y; tÞ; (9)

wðx; y; tÞ ¼ wð�x; y; tÞ ¼ wðx;�y; tÞ (10)

are exactly preserved by Eqs. (1) and (2) for all t.32

Therefore, the origin ðx; yÞ ¼ ð0; 0Þ (and the four corner

points of D as well) is always a reconnection point. The solu-

tions to this problem are fully characterized by three parame-

ters; de=Lx; qs=Lx and the aspect ratio Ly=Lxð¼ a=kyÞ.
The linear stability of this collisionless tearing mode has

been analyzed in detail by many authors.15,18,22 For a given

wavenumber ky in the y-direction, the tearing index at the

reconnection layer x¼ 0 is calculated as

D0 ¼ 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ky=a

	 
2
q

tan
p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ky=a

	 
2
q� �

; (11)

and the tearing mode is unstable when D0 > 0, namely,

0 < ky=a ¼ Lx=Ly < 1.

For qs > de, the analytic dispersion relation18 predicts

that the maximum growth rate occurs when

D0max � ð2p2Þ1=3d�2=3
e q�1=3

s : (12)

Since de=Lx 	 1 and qs=Lx 	 1 are usually of interest, this

D0max is often very large. If it belongs to the range LxD
0 >

100 (or ky=a ¼ Lx=Ly < 0:377) in which D0 is well approxi-

mated by

LxD
0 ’ 16L2

y=L2
x ¼ 16a2=k2

y ; (13)

we can estimate the maximum growth rate cmax at the wave

number ky;max as follows:

ky;max

a
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16

LxD0max

s
� 2:43

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

2=3
e q1=3

s

Lx

s
; (14)

cmax � 2=pð Þ1=3 ky;maxd1=3
e q2=3

s

sH
� 13:1

sH

d2=3
e q5=6

s

L
3=2
x

; (15)

where s�1
H ¼ w0a

2.

Given this background material we now turn to our nu-

merical simulations.

III. NUMERICAL RESULTS

Equations (1) and (2) are solved numerically for various

parameters using the spectral method in both the x and y
directions and 4th-order Runge-Kutta method for time evolu-

tion. The nonlinear acceleration phase is observed when the

magnetic island width becomes larger than the reconnection

layer width that is of order d2=3
e q1=3

s for the case qs 
 de. To

observe this phase for a longer period, we have performed

all simulations with de ¼ qs and narrowed the layer width

(�de ¼ qs) as much as possible. The most demanding case

de ¼ qs ¼ 0:005Lx requires 8192� 8192 grid points in

wavenumber space.

The nonlinear evolution of (1) and (2) was studied in

earlier works,14,15,30,32 and we reproduce the main features,

as shown in Figs. 1 and 2. Since wþ and w� are frozen-in

variables, their contours preserve topology as seen in Figs.

1(a) and 1(b) (where the arrows depict the fluid motions gen-

erated by /6). Then, spiky peeks of wþ and w� are formed

and their ridge lines look like the shapes of “\” and “/,”

respectively, around the origin. In light of the definition (6),

the current and vorticity distributions can be directly calcu-

lated by using w6 and shown in Figs. 2(a) and 2(b), which

exhibit an “X”-shaped current-vortex layer12,14 whose width

is of order de ¼ qs. We also note from Figs. 2(c) and 2(d)

that a relation dejr2wj ’ qsjr2/j holds inside the layer

(except at the reconnection points).

As indicated in Fig. 1(c), we denote the maximum dis-

placement of the field lines by � which is numerically meas-

ured from the displacement of the contour w¼ 0 relative to

its initial position x ¼ 6Lx=4. We have run simulations with

various combinations of Lx=Ly and qs=Lxð¼ de=LxÞ, and

investigated whether � grows explosively or not. Our results

are summarized in Fig. 3, where it should be recalled that the

tearing mode is linearly unstable at all points in this figure

since 0 < Lx=Ly < 1. The linear growth rate achieves its nu-

merical maximum at points indicated by the asterisk (*) for

each fixed qs, which agrees with the theoretical prediction

(12) [and also (14) for ky=a < 0:377]. The square symbol

(�) indicates points where exponential growth � / ect (with

the linear growth rate c) stalls before � reaches qs. On the

other hand, at the crosses (� ) and asterisks (*) the exponen-

tial growth is accelerated when � gets larger than qs. These

two regimes seem to be divided by a curve qsD
0 � 0:65.

FIG. 1. Contours of w6, w and / when � ¼ 5qs, where qs ¼ de ¼ 0:02Lx;
Ly=Lx ¼ p.
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The above mentioned tendencies are demonstrated in Fig.

4, which is a logarithmic plot of _� versus � for the case

qs=Lx ¼ 0:01. For ky=a ¼ 0:477 and 0.557, which belong to

the saturation regime qsD
0� 0:65, the current-vortex layer

spirals around the O-points as shown in Fig. 4(a) [where the

O-points are located at ðx; yÞ ¼ ð0;61:05Þ on the boundary]

and the growth of � decelerates. Although this occurs in an

early nonlinear phase � < qs in our results, we note that the

saturation mechanism is similar to the one found by Grasso

et al.,32 namely, the phase mixing of the Lagrangian (or fro-

zen-in) invariants w6 leads to a new “macroscopic” stationary

state. For the cases of ky=a ¼ 0:119, 0.239, and 0.398, which

belong to qsD
0� 0:65, we observe a transition from the expo-

nential growth _� / � to an explosive growth _� / �n (n> 1)

around � � qs, and the latter continues until the reconnection

completes at � ¼ Lx=4. We further note that, for the small

ky=a ¼ 0:119, a local X-shaped layer is generated spontane-

ously around the reconnection point and it expands faster than

the global one that originates from the linear eigenmode [see

Fig. 4(c)]. By comparing the case ky ¼ 0:119 with ky ¼ 0:239

at the same amplitude � ¼ 0:04Lx, we find that this local X-

shaped structure around the origin in Fig. 4(c) is identical to

that in Fig. 4(b). Therefore, the explosive reconnection seems

to be attributed to the fast expansion of the local X-shape with

a certain optimal size that is independent of the domain length

Ly ¼ 2p=ky. In fact, the nonlinear growth rates for

ky ¼ 0:119, 0.239, and 0.398 are eventually comparable for

�� 0:02 because the released magnetic energies are almost

the same regardless of ky.

We remark that the length of the local X-shape is not

simply related to the wavelength 2p=ky;max of the most line-

arly unstable mode. For de ¼ qs ¼ 0:005Lx and ky ¼ ky;max

¼ 0:171a, Figs. 5(a) and 5(b) give a closer look at the con-

tours of / and w, respectively, at � ¼ 3qs, and Fig. 5(c) shows

the shapes of the current layer observed at �=qs ¼ 1; 2; 3, and

5. As can be seen from Fig. 5(c), a local X-shape appears and

expands quickly in the nonlinear phase � > qs even though

this reconnection is triggered by the most linearly unstable

FIG. 2. Intensity distributions (red: positive, blue: negative) of the current

�r2w, vorticity r2/, and �der2w6qsr2/ when � ¼ 5qs, where

qs ¼ de ¼ 0:02Lx; Ly=Lx ¼ p.

FIG. 3. Parameters ky and qsð¼ deÞ that result in explosive growth (� and �)
and saturation (�). The maximum linear growth rate occurs at points � for

each qs.

FIG. 4. Logarithmic plots of the displacement � versus its time-derivative _�,
where de ¼ qs ¼ 0:01Lx, and the current distributions (a) at � ¼ 0:002Lx for

ky=a ¼ 0:477, (b) at � ¼ 0:04Lx for ky=a ¼ 0:239 and (c) at � ¼ 0:04Lx for

ky=a ¼ 0:119.
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tearing mode ky ¼ ky;max. Under the same conditions, the evo-

lution of the energies EV;T;B;C defined by (3) is shown in Fig.

6 (where the total energy conservation E ¼ E0 ¼ const. is sat-

isfied numerically with sufficient accuracy). In the linear

phase �	 qs ¼ 0:005Lx, the magnetic energy EB is trans-

formed into EV, ET, and EC at different but comparable rates.

However, in the nonlinear phase � > qs, we note that the mag-

netic energy is exclusively transformed into the ion flow

energy EV and the energy balance dEV þ dEB ’ 0 is satisfied

approximately. Since dET and dEC are negligible, we infer

that the nonlinear dynamics is dominantly governed by the

ideal MHD equation (de; qs ! 0). This fact motivates us to

regard K :¼ EV and W :¼ EB as the kinetic and potential

energies, respectively, according to the MHD Lagrangian

theory.

IV. THEORETICAL MODEL

In this section, we develop a theoretical model to explain

the explosive growth of � in the nonlinear phase de ¼ qs

	 �	 Lx=4. The current-vortex layers are obviously the

boundary layers caused by the two-fluid effects and their width

should be of order de ¼ qs. The ideal MHD equations, (1) and

(2) with de ¼ qs ¼ 0, would be satisfied approximately outside

the boundary layers. Moreover, we also assume that / and w
are continuous across the boundary layers, because EC ¼Ð

d2
e jr2wj2d2x=2 and ET ¼

Ð
q2

s jr2/j2d2x=2 are negligible in

the energy conservation (Fig. 6) in the limit of de; qs ! 0.

Note that rw and r/ may be discontinuous across the layer

because it is a current-vortex layer.

Based on these assumptions, we consider a family of

virtual displacements that generates a local X-shaped cur-

rent-vortex layer, and then seek the displacement that

decreases the magnetic (or potential) energy most effec-

tively. Our reconnection model is illustrated in Fig. 7, where

we show only the first quadrant around the origin owing to

the parity (10). In Fig. 7, the magnetic field lines are assumed

to be piecewise-linear and the dashed line denotes the bound-

ary layer (i.e., the upper right part of the X-shape).

We will mainly focus on the three regions: (i) boundary

layer, (ii) inner solution with an X-shaped layer, and (iii)

external solution. These regions are characterized by four pa-

rameters Ky; r; lx; ly as follows. First, the position of the

boundary layer is specified by (lx, ly). Second, the displace-

ment of the field line that is about to reconnect at the origin

is denoted by r, which can be also regarded as the half width

of the local island. Finally, to allow for local reconnection,

we introduce the “wavelength” Ky of the displacement at

x ¼ Lx=4, which may be smaller than the wavelength Lyð¼
2p=kyÞ of the linear tearing mode. We will assume the fol-

lowing orderings among these parameters:

de ¼ qs 	 � � r	 Lx=4; lx < r	 ly � Ky=4 � Ly=4:

(16)

A. Matching conditions across the boundary layer

First, we focus on a neighborhood of (i) the boundary

layer and introduce a local coordinate system (X, Y) in the

FIG. 5. Contours of (a) / and (b) w at � ¼ 0:015Lx ¼ 3qs and (c) current

distributions at �=qs ¼ 1; 2; 3; 5, where de ¼ qs ¼ 0:005Lx; ky=a
¼ ky;max=a ¼ 0:171.

FIG. 6. Changes of energies EV ;EB;EC and ET versus �, where de ¼ qs

¼ 0:005Lx; ky=a ¼ ky;max=a ¼ 0:171.
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frame moving with the boundary layer, so that the X and Y
directions are, respectively, normal and tangent to the layer

(see Fig. 8). Let the inner region of the boundary layer be

�d < X < d, where d � de ¼ qs. In this coordinate system,

the velocity v and the Alfv�en velocity b ¼ B=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
are

assumed to be uniform outside the layer. Using the continu-

ities of w and / across the layer, we assign linear functions

w ¼ wc � b
ðdÞ
t X þ bnY;

/ ¼ /c þ vðdÞt X � vnY;

(
(17)

on the down-stream side (X < �d) and

w ¼ wc � b
ðuÞ
t X þ bnY;

/ ¼ /c þ vðuÞt X � vnY;

(
(18)

on the up-stream side (X > d), where all coefficients depend

only on time. The discontinuities of the tangential compo-

nents, b
ðdÞ
t 6¼ b

ðuÞ
t and vðdÞt 6¼ vðuÞt , indicate the presence of a

current-vortex layer within ½�d; d�.
Since we have assumed that @twþ ½/;w� ¼ 0 holds out-

side the layer, ½/;w� must be also continuous, namely,

vðdÞt bn � vnb
ðdÞ
t ¼ vðuÞt bn � vnb

ðuÞ
t ; (19)

is one of the matching conditions between (17) and (18).

Moreover, the conservation laws of w6 require that w�
has a spiky peek within the boundary layer whereas wþ does

not [see Figs. 1(a) and 1(b)]. Since wþ ’ w holds, we find a

relation

der2w ’ qsr2/ on ½�d; d�; (20)

which specifies the ratio between a current peak (�r2w) and

a vorticity peak (r2/) inside the layer. We have already

noticed this relation in Fig. 2. By integrating these current

and vorticity distributions over ½�d; d�, we obtain another

matching condition

�qsðv
ðuÞ
t � vðdÞt Þ ¼ deðbðuÞt � b

ðdÞ
t Þ: (21)

When the boundary layer is moving at a speed Vn in the

X direction, the condition (19) is transformed to

vðdÞt bn � ðvn � VnÞbðdÞt ¼ vðuÞt bn � ðvn � VnÞbðuÞt ; (22)

in the rest frame, and the condition (21) is unchanged. Since

these conditions also yield

qsðvn � VnÞ ¼ �debn; (23)

we need to impose at least two matching conditions among

(21), (22), and (23).

B. Modeling of the X-shaped boundary layer

Next, we consider (ii) the inner solution that contains

the X-shaped boundary layer. The detailed sketch of this

region is given in Fig. 9, where the displacement map

ðx0; y0Þ 7! ðx; yÞ on the up-stream side (i.e., the right side of

the boundary layer) is simply modeled by

x ¼ x0 þ
r
ly

y0 � lyð Þ and y ¼ y0: (24)

This displacement map fully determines w and / on the

up-stream side as follows. Since r	 Lx=4 is assumed in

(16), we expand the equilibrium flux function

w 0ð Þ x; yð Þ ¼ w0 cos axð Þ ¼ w0 1� a2

2
x2

� �
þ O x3ð Þ; (25)

and neglect Oðx3Þ in this region ½0; r�. Except on the bound-

ary layer, the magnetic flux w is frozen into the displacement

and hence becomesFIG. 8. Neighborhood of the current-vortex layer.

FIG. 7. Local reconnection model.
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w uð Þ x; y; tð Þ ¼ w 0ð Þ x0; y0ð Þ ¼ w0 � w0

a2

2
x� r

ly
y� lyð Þ

� �2

;

(26)

on the up-stream side. By regarding the parameters

rðtÞ; lxðtÞ; lyðtÞ as functions of time, the time derivative of

the displacement map gives the stream function

/ uð Þ x; y; tð Þ ¼ � _sy
y2

2
þ _ry; (27)

where sy ¼ r=ly, and the parity /ðx; 0; tÞ ¼ 0 has been used

as the boundary condition.

Now, let us consider a magnetic field line that is labeled

by its initial position x¼ x0 (where lx < x0 < r). When this

field line is displaced by the map, it intersects with the

boundary layer at

�x; �yð Þ ¼ r� x0

r� lx
lx;

r� x0

r� lx
ly

� �
: (28)

The tangent and normal unit vectors to the boundary

layer are respectively given by t ¼ ðlx; lyÞ=jlj and

n ¼ ðly;�lxÞ=jlj, where jlj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2
x þ l2

y

q
. Therefore, the nor-

mal and tangent components at ð�x; �yÞ are calculated as

follows:

b uð Þ
n ¼ s�1

H r� lxð Þ x0

jlj > 0ð Þ; (29)

b
uð Þ

t ¼ s�1
H

lx

ly
rþ ly

� �
x0

jlj > 0ð Þ; (30)

v uð Þ
n ¼

ly

jlj
_sy�y � _rÞ < 0ð Þ;
	

(31)

v uð Þ
t ¼

lx

jlj
_sy�y � _rÞ < 0ð Þ;
	

(32)

where s�1
H :¼ w0a

2.

Next, we consider the down-stream side, on which the

magnetic field lines are again approximated by straight lines

as shown in Fig. 9. Since the displacement map is area-

preserving, the same field line that passes through ð�x; �yÞ is

found to be

y ¼ ly

lx

2lx � r
lx

xþ r� x0

� �
; (33)

by equating the areas of the two gray triangles in Fig. 9.

Using the fact that the value of w is again wð0Þðx0; y0Þ on this

field line, a straightforward calculation results in

w dð Þ x; y; tð Þ ¼ s�1
H

lx

ly
ry� lx

ly

y2

2
þ 2lx � r

lx
xy

 !
þ s�1

H

2lx � r
lx

� �rx� 2lx � r
lx

x2

2

� �
þ w0 � s�1

H

r2

2
: (34)

The field line (33) also moves in time because of the time de-

pendence of lx, ly, and r. By imposing the boundary condi-

tion /ð0; y; tÞ ¼ 0 on the y axis, the associated

incompressible flow can be determined uniquely as

/ dð Þ x; yð Þ ¼ �
_sy � 2 _b

b
x2

2
�

_b
b

xyþ _r
b

x; (35)

where b ¼ lx=ly. We thus obtain, at ð�x; �yÞ

b dð Þ
t ¼ s�1

H

l2
x

ly
þ 2lx � r

lx
ly

 !
x0

jlj ; (36)

v dð Þ
t ¼

lx

jlj

" 
jlj2

l2x
_b �

l2
y

l2
x

_sy

!
�y þ

l2y
l2x

_r

#
; (37)

and confirm that bðdÞn ¼ bðuÞn and vðdÞn ¼ vðuÞn are indeed

satisfied.

The speed Vn for movement of the boundary layer at

ð�x; �yÞ is calculated by using the angle h between the bound-

ary layer and the y axis (tan h ¼ lx=ly)

Vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2 þ �y2

q
_h ¼ ly
jlj

_b�y: (38)

Now, we are ready to impose the matching conditions

on these up- and down-stream solutions. It is interesting to

note that the matching condition (22) is already satisfied

because we have taken the continuities of w and / into

account in the above construction. The matching condition

(21) at ð�x; �yÞ gives

_f
r� x0

f
� _r ¼ �s�1

H x0f; (39)

where f :¼ sy � b ¼ ðr� lxÞ=ly. This condition must be sat-

isfied for all points ð�x; �yÞ on the boundary layer (that is, for

all x0 2 ½lx; r�), which requires both _fr ¼ _rf and _f ¼ s�1
H f2

to be satisfied. The former gives a constant of motion

r
f
¼ r

r� lx
ly ¼ ly0 ¼ const:; (40)

FIG. 9. First quadrant of the X-shaped boundary layer.
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and the latter gives an evolution equation

_r ¼ 1

ly0sH
r2: (41)

Although the constant ly0ð> 0Þ is still unknown unless lx and

ly are specified, the displacement r turns out to grow explo-

sively due to the presence of the X-shaped boundary layer.

These parameters lx, ly, and ly0 will be determined later when

this inner solution is matched with the external solution and

the global energy balance is taken into account.

C. External solution

Now consider (iii), the external solution of Fig. 7. Even

though we discuss the nonlinear phase, the displacement r
(or the island half-width) must be small r	 Lx=4 as well as

the growth rate _r=r	 s�1
H in comparison with the equilib-

rium space-time scale. Therefore, we expect the external so-

lution to be similar to the well-known eigenfunction of the

linear tearing mode. This treatment for the external solution

is commonly used in Rutherford’s theory,23,24 while we

introduce the arbitrary wavelength Kyð< LyÞ of the linear

tearing mode in this work. Namely, the displacement in the x
direction is given by nðx; yÞ ¼ �n̂ðxÞ cosð2py=KyÞ for y 2
½0;Ky=4� where the eigenfunction

n̂ xð Þ ¼ �
cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Lx=Ky

	 
2
q

ajxj � p
2

	 
� �
sin ax

; (42)

is normalized so as to satisfy n̂ðLx=4Þ ¼ �1 and

n̂ð�Lx=4Þ ¼ 1. Taylor expansion of n̂ around x¼ 0 on the

positive side (x> 0) gives

n̂ xð Þ ¼ � 2

~D
0
x
þ 1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Lx=Ky

	 
2
q

� cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Lx=Ky

	 
2
q

p
2

� �
þ O xð Þ; (43)

where the tearing index ~D
0
for the wavelength Ky is

~D
0 ¼ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Lx=Ky

	 
2
q

tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Lx=Ky

	 
2
q

p
2

� �
: (44)

Since the dependence of n̂ on Ky is complicated, we again

restrict the range of ~D
0
to the large D0 regime

~D
0
> D0c :¼ 100=Lx ðor Ky=Lx > 2:5Þ; (45)

as we have done in the linear theory. Then, we can use the

following approximations:

n̂ xð Þ ’ �1� 2

~D
0
x
þ O xð Þ; (46)

~D
0 ’ 16

K2
y

L3
x

: (47)

The critical value D0c ¼ 100=Lx is, of course, specific to the

equilibrium state (8).

This external solution is matched to the inner solution

by

�r ¼ �n̂ rð Þ ¼ �� 1þ 2

~D
0
r

� �
þ O �rð Þ; (48)

which gives, by neglecting Oð�rÞ,

r ¼ �
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

�~D
0

s

2
: (49)

Note that r is larger than � as illustrated in Fig. 7. Since the

displacement map is area-preserving, we determine ly by the

relation

rly ¼ �
Ky

4
: (50)

D. Energy balance

In linear tearing mode theory, the released magnetic

energy via reconnection is estimated by

dW ¼ ��2 Ly

2
ŵ

dŵ
dx


x¼a

x¼�a

; (51)

in terms of the perturbed flux function ŵ ¼ �ðdwð0Þ=dxÞn̂
¼ s�1

H xn̂, where 2að	 LxÞ is the width of the boundary layer

at x¼ 0 (see Appendix A of Ref. 25). This is true if the

eigenfunction ŵðxÞ is smoothed out and flattened within the

layer ½�a; a� by some sort of nonideal MHD effects.

For the nonlinear phase in question, we simply replace a
by r (and Ly by Ky) because the flux function w is flattened

within ½�r; r� by the formation of a magnetic island. This

idea is similar to the finite-amplitude generalization of D0

which is made by White et al.24 for the purpose of introduc-

ing a saturation phase to Rutherford’s theory. In either case,

the island width 2r grows as far as ŵdŵ=dxjx¼þr
x¼�r > 0. Using

the Taylor expansion (46) and the relation (50), we obtain

dW ¼ ��2 Ky

2
ŵ

dŵ
dx


x¼r

x¼�r

¼ �4lys
�2
H r3: (52)

We remark that the magnetic energy in the area ½0; r� �
½0; ly� at the equilibrium state (t¼ 0) is also of the order of

lys�2
H r3. Since this area is mapped to the internal region of

the magnetic island after the displacement, we can expect a

corresponding decrease in the total magnetic energy, which

agrees with the estimation (52).

In order to satisfy the energy conservation dK þ dW ¼ 0,

the kinetic energy is required to satisfy dK / lyr3. To be con-

cise, let us assume ly ¼ const., a priori because this assump-

tion turns out to yield the desired scaling dK / r3 as follows.

Since the kinetic energy is mostly concentrated on the

down-stream side due to the outflow from the X-shaped vor-

tex layer, we use /ðdÞ in (35) and the orderings ly � lx and

ly � r to estimate the kinetic energy in the down-stream

region as
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ðly

0

dy

ð lx
ly

y

0

dx
jr/j2

2
¼ 1þ l2

x

6r2

� �
_r2

2

l3
y

2lx

� 1þ O lx=ly

	 

þ O r=ly

	 
� �
’ _r2

2

l3
y

2lx
; (53)

where we have neglected l2
x=6r2 in the last expression since

lx=r ¼ 1� ly=ly0 is now constant and less than unity. The

same estimate is more easily obtained as follows. Consider the

flow passing through the box ½0; lx� � ½0; ly�. Since the inflow

velocity into the box is at most _r, the outflow velocity, say, �vy,

is roughly determined by the incompressibility condition

_rly ¼ �vylx; (54)

where �vy � _r owing to ly � lx. The kinetic energy density

�v2
y=2 multiplied by the area lxly=2 reproduces the same esti-

mate as (53).

In fact, the outflow also exists over the area ½0; lx� �
½ly; Ly=2� in Fig. 7 and there are eight equivalent areas in the

whole domain according to the parity. Therefore, a plausible

estimate of the total kinetic energy is

dK ¼ 8
�v2

y

2

lxly
2
þ lx

Ly

2
� ly

� �� �
¼ 2

_r2l2y
lx

Ly � lyð Þ

¼ 2
r3l2

y

l2
y0s

2
H

Ly � ly

1� ly=ly0

; (55)

where the evolution equation (41) for r has been used. Since

this dK is proportional to r3, we can impose the energy con-

servation law dK þ dW ¼ 0, which determines ly0 with

respect to ly

ly0

ly
¼

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Ly

ly
� 1

s

2
: (56)

Given this ly0, the rate of decrease in the magnetic energy

@t dWð Þ
dW

¼ 3r
ly0sH

(57)

indicates that the shorter the length ly, the faster the magnetic

energy decreases. Thus, the local reconnection (i.e., the local

X-shape) develops faster than the global one.

However, there is a lower bound for ly since this argu-

ment is based on the assumption D0c <
~D
0 � D0, for which

the approximation ~D
0 ¼ 16K2

y=L3
x (and D0 ¼ 16L2

y=L3
x) is

valid. Using (49) and (50) with this approximation, ly can be

regarded as a function of � and ~D
0

ly

Lx
¼ 1

8

ffiffiffiffiffiffiffiffiffi
Lx

~D
0

q

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

�~D
0

s ¼: F �; ~D
0

� �
; (58)

and hence ly=Lx should lie between Fð�;D0cÞ and Fð�;D0Þ as

shown in Fig. 10.

E. Scaling of the explosive growth

By rewriting (58) as

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

�~D
0

s0
@

1
A ffiffiffiffiffiffiffi

8

�~D
0

s
¼ Lx

ly

ffiffiffiffiffi
Lx

8�

r
; (59)

this relation is found to have two kinds of scaling depending

on whether its right hand side is much smaller or larger than

unity.

First, when ly=Lx �
ffiffiffiffiffiffiffiffiffiffiffiffi
Lx=8�

p
, the relation reduces to

8

�~D
0 ¼

L3
x

32l2
y�
	 1: (60)

Since r ’ � in this case, we obtain the same explosive

growth as (41)

_� ¼ �2

sHly0

; (61)

in terms of the displacement � at x ¼ Lx=4. We refer this

scaling as kink-type because ~D
0

is so large that the external

solution is similar to the kink mode (r ’ �; ly ’ Ky=4).

On the other hand, when ly=Lx 	
ffiffiffiffiffiffiffiffiffiffiffiffi
Lx=8�

p
, the relation

(59) reduces to

8

�~D
0 ¼

ffiffiffiffiffiffiffiffi
L3

x

8l2y�

s
� 1: (62)

By noting that

r ’ �

2

ffiffiffiffiffiffiffi
8

�~D
0

s
¼ �

3=4

2

L3
x

8l2
y

 !1=4

; (63)

the explosive growth (41) becomes

FIG. 10. Range of ly corresponding to D
0

c <
~D
0 � D0 for the case of

ky=a ¼ Lx=Ly ¼ 0:171.
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_� ¼ �7=4

sHly0

2

3

L3
x

8l2
y

 !1=4

: (64)

We refer this scaling as tearing-type because ~D
0

is so small

that the external solution is similar to the tearing mode

(r > �; ly < Ky=4).

The boundary line ly=Lx ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Lx=8�

p
between the kink-

type and tearing-type regimes is also drawn in Fig. 10. Since

the magnetic energy is released more effectively for the

smaller ly, the fastest reconnection occurs near the lower

bound ly=Lx ¼ 0:4 � 0:6. Figure 11 shows that the tearing-

type scaling (64) for ly=Lx ¼ 0:4; 0:5, and 0.6 agrees well

with the simulation results. For comparison, we also draw

the kink-type scaling (61) with ly ¼ 1:4Lx ’ Ly=4 as a global

reconnection model, which is indeed slower than the simula-

tion results. We can confirm that the stream lines in Fig. 5(a)

are more like the tearing-type (r > �; ly < Ky=4). Although

the current layers in Fig. 5(c) are actually curved, they are

locally regarded as straight lines around the origin as in Fig.

7 and seem to have the length ly=Lx ’ 0:5. Note that the

same ly=Lx ’ 0:5 is also observed in Figs. 4(b) and 4(c) since

this ly=Lx is determined independently of Ly and de ¼ qs as

shown in (58).

V. SUMMARY

We have investigated the nonlinear evolution of a colli-

sionless tearing mode that can grow explosively with the for-

mation of an X-shaped current-vortex layer due to the

coexistence of electron inertia and temperature effects,

where we have assumed de ¼ qs for simplicity.

For the equilibrium state given in (8) and the wavenum-

ber ky ¼ 2p=Ly, the tearing mode is linearly unstable when

the tearing index D0 (which is a function of Ly=Lx) is posi-

tive. The simulation results show that explosive growth

occurs when D0� 0:65=qs. More specifically, the amplitude

� of the displacement at x ¼ 6Lx=4 exceeds qs and then

grows explosively; _� / �n, n> 1. By observing this explo-

sive phase in detail for de ¼ qs < 0:01, we find that the X-

shaped layer widens locally around the reconnection point

FIG. 11. Logarithmic plot of the displacement � versus its time-derivative _� for de ¼ qs ¼ 0:005Lx, ky=a ¼ 0:171. Dotted lines are theoretically derived from

the kink-type scaling (61) with ly=Lx ¼ 1:4 and the tearing-type scaling (64) with ly=Lx ¼ 0:4; 0:5; 0:6.
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and its length scale (’ 2ly) seems to be unrelated to the

wavelength Ly (and D0 as well) of the linear eigenmode.

To explain this locally enhanced reconnection, we have

developed a theoretical model in which the magnetic flux w
is assumed to be conserved (like ideal MHD) except within

the thin X-shaped layer. Namely, the two-fluid conservation

laws (4) and (5) are invoked only within the layer to obtain

the matching conditions across it. The external solution is

approximated by a linear tearing eigenmode that has a

shorter wavenumber Ky than Ly and a smaller tearing index
~D
0

than D0. We have restricted our consideration to the range

D0cð¼ 100=LxÞ < ~D
0 � D0 (or 2:5Lx < Ky < Ly), in which a

simple expression ~D
0 ¼ 16K2

y=L3
x holds and the length of the

local X-shape (’ 2ly) is related to ~D
0

by (58). As shown in

Fig. 10, we have found that there are two kinds of scaling

depending on whether the external solution is kink-type or

tearing-type. The faster reconnection is theoretically pre-

dicted at the shorter ly, namely, at the lower bound of this

range, ly ’ 0:5Lx, ~D
0 ’ D0c, and Ky ’ 2:5Lx, which belongs

to the tearing-type regime. The simulation results indeed

agree with the tearing-type scaling with the explosive growth

rate _� / �7=4 and they corroborate other properties predicted

by this local reconnection model.

In comparison with the classical Petschek reconnection

model2 in which the X-shaped boundary layer is composed

of stationary slow-mode shocks, our model suggests that

the X-shaped current-vortex layer is kinematically generated

by ideal, incompressible, and accelerated fluid motion in

accordance with the two-fluid conservation laws and the

energy conservation. The explosive growth rate (64) with

ly ’ 0:5Lx is moreover independent of the microscopic scale

de ¼ qs and hence reaches the Alfv�en speed _� � L2
x=ðsHly0Þ

at the fully reconnected stage � � Lx=4. This is faster than

the explosive growth _� � kyd1=2
e �3=2=sH that is caused by the

Y-shaped layer in the presence of only electron inertia (see

our previous work25).

The two-field equations (1) and (2) can be derived from

gyrokinetic and gyro-fluid equations by taking the fluid

moments and then neglecting the ion pressure and electron

and ion gyroradii.18,19 This fact suggests our present results

are a barebones model for fast reconnection, but further gener-

alizations including the case de 6¼ qs are suggested for future

work. The existence of more than one microscopic scale gives

rise to nested boundary layers, as already known from the lin-

ear analysis. The nonlinear evolution of such nested boundary

layers would be more complicated than that of the single

boundary layer (de ¼ qs) we have discussed. Nevertheless, if

the outermost layer is sufficiently thinner than the island width

and the energy balance is dominated by ideal MHD, we

expect a similar X-shaped layer and explosive growth, since it

is unlikely that any other structure can exist that is more effi-

cient for releasing magnetic energy. Unfortunately, present

computational resources are not enough to observe the explo-

sive phase for a sufficiently long period in the presence of the

nested bounded layers. For example, when de 	 qs, linear

analysis indicates that the innermost layer width �d4=3
e q�1=3

s

is even narrower than de and demands more computational

grids. Further advancements in computational performance

and technique will be essential for studies of explosive recon-

nections in more general collisionless plasma models.
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