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A new formulation of electromagnetic gyrokinetics that possesses Hamiltonian form is constructed. 
The new formulation replaces Poisson-like equations by hyperbolic equations for the electromagnetic 
field with the speed of light slowed to that of the gyrokinetic vacuum, thereby significantly reducing 
computational cost. An energy principle is derived using the field-theoretic noncanonical Poisson bracket 
formulation of the theory. The energy principle is used to prove stability of the thermal equilibrium state 
in a uniform background magnetic field.

© 2015 Published by Elsevier B.V.
1. Introduction

Electromagnetic gyrokinetic theory (EMGT) is a model used 
to describe the turbulent transport of particles and heat induced 
by fluctuating electric and magnetic fields in strongly magnetized 
plasmas. EMGT is, in many ways, a more utilitarian tool than the 
more-fundamental Vlasov–Maxwell kinetic theory (VMKT). How-
ever, VMKT enjoys two important advantages over existing formu-
lations of EMGT. (I) When simulated on a computer, the VMKT 
field solve is local; advancing the electromagnetic field in time at 
a given grid point only requires communication with nearby grid 
points [1]. (II) There is an energy principle for assessing the sta-
bility of Vlasov–Maxwell equilibria [2] (also see [3–7] for similar 
energy principles in other contexts.) In contrast, modern EMGT 
simulations require global Poisson-like field solves at each time 
step. This prevents EMGT simulations from scaling as favorably 
[8] as VMKT simulations when the number of processing cores 
is increased at fixed problem size. Likewise, the free energy of 
perturbations to EMGT equilibria is unknown. Thus, the basic tool 
for studying the stability of EMG equilibria by way of an energy 
principle is unavailable. The purpose of this Letter is to describe a 
new formulation of electromagnetic gyrokinetics that enjoys prop-
erties (I) and (II). The new formulation, which we will refer to as 
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the gyrokinetic Vlasov–Maxwell (GVM) system, enjoys a local field 
solve and has an energy principle, while retaining the traditional 
advantages of gyrokinetic theory.

2. The new formulation

The gyrokinetic Vlasov–Maxwell equations are given by

∂ f s

∂t
= −LV gy

s
f s (1a)

1

c

∂ D

∂t
= ∇ × H − 4π

c
J gy (1b)

1

c

∂ B

∂t
= −∇ × E (1c)

∇ · D = 4πρgy (1d)

∇ · B = 0. (1e)

f s is the gyrocenter volume form of species s, V gy
s is the gyrocen-

ter phase space velocity, LV gy
s

denotes the Lie derivative along the 
gyrocenter phase space velocity, J gy is the gyrocenter current den-
sity, ρgy is the gyrocenter charge density, E , B are the fluctuating 
electric and magnetic fields, and D , H are the auxiliary electric and 
magnetic fields. The volume form f s is defined by requiring that 
the number of particles of species s in a region of phase space U
be given by 

∫
U fs . The gyrocenter phase space velocity is specified 

by the time-dependent tensor form of Hamilton’s equations,
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iV gy
s

ω
gy
s = dKs − es E · dX, (2)

where ωgy
s is the gyrocenter symplectic form, Ks is the gyrocen-

ter kinetic energy, and dX denotes the vector line element in the 
space of gyrocenter positions. The gyrocenter symplectic form is 
the sum of the guiding center symplectic form [9,10] and the fluc-
tuating magnetic flux,

ω
gy
s = ω

gc
s − es

c
B · dS, (3)

where dS is the surface element in the space of gyrocenter posi-
tions. The gyrocenter kinetic energy is a functional of the fluctu-
ating electric and magnetic fields, and is related to the gyrocenter 
Hamiltonian by Hgy

s = Ks + esφ (an explicit expression for Ks will 
be given near the end of this Letter.) The auxiliary fields D , H are 
related to E , B by using relations that emerge from the Hamil-
tonian theory developed in [11], i.e., the constitutive relations are 
given by

D = E − 4π
δK
δE

(4)

H = B + 4π
δK
δB

, (5)

where K( f , E, B) = ∑
s

∫
f s Ks(E, B).

Following [11] the system above constitutes an infinite-dimen-
sional Hamiltonian system with dynamical variables f , D , and B , 
and Hamiltonian functional given by

H( f , D, B) = K( f , Ê, B) +
∫

P̂ · Ê d3 X

+ 1

8π

∫ (
Ê · Ê + B · B

)
d3 X, (6)

where Ê = Ê( f , D, B) is the electric field operator defined implic-
itly by the equation

D = Ê( f , D, B) − 4π
δK
δE

( f , Ê( f , D, B), B), (7)

and P̂ = P̂ ( f , D, B) is the gyrocenter polarization operator given 
by

P̂ ( f , D, B) = 1

4π
(D − Ê( f , D, B)). (8)

The noncanonical Poisson bracket is given by

[F,G] =
Ns∑

s=1

∫
Bgy

s

(
d

δF
δ f s

− 4πes
δF
δD

· dX,d
δG
δ f s

− 4πes
δG
δD

· dX

)
f s

+ 4πc

∫ (
δF
δD

· ∇ × δG
δB

− δG
δD

· ∇ × δF
δB

)
d3 X . (9)

Here Bgy
s is the gyrocenter Poisson tensor, which is defined as 

follows. If za is a coordinate system on the gyrocenter phase 
space and α, β are 1-forms on the same space, Bgy

s (α, β) =
αaβb{za, zb}gy

s , where {·, ·}gy
s is the gyrocenter Poisson bracket. Note 

that a Poisson bracket for electrostatic gyrokinetics was given in 
Ref. [12]. The complexity of that bracket should be contrasted with 
the relative simplicity of the bracket given here for electromagnetic 
gyrokinetics. This bracket, which has a form akin to that of [11], is 
to our knowledge the first demonstration of Hamiltonian structure 
for any electromagnetic gyrokinetic theory.
3. Origins and comparisons

We arrived at this electromagnetic gyrokinetic system by modi-
fying the standard variational derivation of electromagnetic gyroki-
netics [13–16,12]. In the standard approach, a gyrokinetic system 
Lagrangian is constructed by adding a gauge-dependent [17] net 
gyrocenter Lagrangian to a non-relativistic limit (known as the 
Darwin limit) of the free Maxwell field Lagrangian. Applying ap-
propriate variations to the system Lagrangian then produces the 
standard equations of EMGT. Roughly speaking, adopting a gy-
rocenter Lagrangian instead of a particle Lagrangian amounts to 
dropping terms from the particle equations of motion. Likewise, 
adopting the Darwin approximation amounts to dropping terms 
from Maxwell’s equations. We modified this approach by adding 
a manifestly gauge invariant net gyrocenter Lagrangian [18] to 
the full free Maxwell field Lagrangian to produce the system La-
grangian. Thus, in the modified approach, fewer terms are dropped 
from Maxwell’s equations. While dropping these terms as in the 
standard approach would be justified (using the assumption of 
non-relativistic particles), doing so is not necessary. We therefore 
conclude that the GVM equations are no less accurate than stan-
dard EMGT.

4. Computational benefits

The usual argument for invoking the Darwin approximation in 
EMGT is that doing so eliminates light waves. This may seem to be 
an especially compelling argument from a computational point of 
view. After all, the presence of traveling waves with phase velocity 
c leads to a very restrictive CFL condition for explicit integration 
schemes. Therefore, avoiding the Darwin approximation as we have 
done may appear objectionable in a practical sense.

On the other hand, this numerical argument supporting the 
Darwin approximation is not as strong as it appears. As is evi-
dent from the form of the GVM equations given above, avoiding 
the Darwin approximation does not lead to Maxwell’s equations, 
but Maxwell’s equations in a polarized and magnetized medium. 
Therefore, the light waves supported by these equations do not 
travel at the speed of light in vacuum.

It is well known [19] that the dielectric constant resulting from 
gyrocenter polarization is large, which implies that the speed of 
light is much smaller than c in a gyrokinetic plasma (this is con-
sistent with the notion of a so-called “gyrokinetic vacuum.”) Using 
the long-wavelength limit of the gyrokinetic dielectric function, 
ω2

pi/ω
2
ci , as a rough approximation, we find that light waves in the 

GVM equations propagate at the Alfvén speed. Thus, the CFL con-
straint imposed by light waves in the GVM equations is not nearly 
as strict as the usual argument might suggest.1

An even stronger case can be made for the computational via-
bility of this new formulation of electromagnetic gyrokinetics. We 
first make the following simple observation. A familiar calculation 
shows that if ∇ · D = 4πρgy and ∇ · B = 0 at t = 0, then these equa-
tions will also be satisfied for all subsequent times. This means 
that the evolution of the magnetic field and the auxiliary electric 
field is completely determined by the Ampère equation and the 
Faraday equation. Interestingly, it can be shown that this property 
arises as a direct consequence of employing a gauge-invariant gy-
rocenter Lagrangian; the quantity ∇ · D − 4πρgy is the conserved 
quantity associated with gauge symmetry by Noether’s theorem.

1 Strictly speaking, it is only light waves that travel perpendicular to the mag-
netic field that experience a reduced propagation speed. Those that travel along the 
magnetic field lines may still travel near the speed of light in vacuum. However, the 
numerical grids appropriate for gyrokinetic simulations are significantly elongated 
along the field lines, which substantially reduces the parallel CFL condition.
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Now suppose the Ampère and Faraday equations were used to 
advance D and B in time on a computer. Employing a simple ex-
plicit scheme, the following steps would have to be taken at each 
time step. (1) Using the constitutive relations, compute E and H
from the known values of D and B . (2) Compute ∇ × H and ∇ × E . 
(3) Using a finite difference approximation for the partial time 
derivative, solve for the new D and B .

Steps (2) and (3) clearly require only local operations, and so 
represent nearly embarrassingly parallel computations. Again in-
voking the long wavelength limit, step (1) can also be seen to be 
local. In this limit, there is a simple algebraic relationship between 
D and E (see Ref. [20], for example) that can be inverted analyti-
cally. Thus, the entire field solve step in an explicit time marching 
scheme for the GVM equations is nearly embarrassingly parallel. 
Such a field solve is preferable to the nonlocal Poisson-like solves 
necessary in conventional EMGT, especially when performing par-
allel simulations with very few particles per processing core.

5. Theoretical benefits

We will now turn from numerical benefits offered by the GVM 
equations in order to discuss their analytical benefits. First, we 
mention the system’s conservative properties. An immediate con-
sequence of the GVM Poisson bracket structure is conservation of 
the Hamiltonian functional (this follows from antisymmetry of the 
bracket.) It is also not difficult to show that there is a conserved 
momentum functional for each rotation or translation symmetry 
of the background magnetic field. Finally, there is a large family 
of conserved functionals given by the Poisson bracket’s Casimirs. 
These are functionals C that Poisson commute with every other 
functional, i.e. ∀F , [C, F ] = 0. Systems of gyrokinetic equations 
(electromagnetic or electrostatic) with exact energy and momen-
tum conservation laws can also be derived using the standard 
variational approach [21,13–15,18,12]. Indeed, this was the main 
motivation for developing the standard variational formulations of 
gyrokinetics. However, variational approaches do not readily pro-
duce the Casimir invariants (nor has it been shown that the usual 
variational formulations of EMGT possess Poisson brackets and 
Casimir invariants at all.)

Many of the GVM bracket’s Casimirs are given as follows. Let


s = − 1

3!ω
gy
s ∧ ω

gy
s ∧ ω

gy
s (10)

be the Liouville volume form defined by the gyrocenter symplectic 
form and introduce the gyrocenter distribution function, Fs , where

f s = Fs
s, (11)

then

Ch =
Ns∑

s=1

∫
T Q

hs(Fs)
s (12)

is a Casimir for each function of a single real variable hs . Moreover, 
any functional of ∇ · D − 4πρgy is a Casimir, which is one way of 
seeing that Eq. (1d) is satisfied in the Hamiltonian formulation of 
the GVM equations.

Another advantage the Poisson bracket formulation of the GVM 
equations provides, which a variational formulation does not, is 
immediate access to the theory of dynamically accessible varia-
tions [2] (see also [5,7]). Suppose we perturb a GVM equilibrium 
by switching on a small time-dependent term in the Hamiltonian, 
i.e. H →H+ δHt , where δHt is a time-dependent functional that 
is non-zero only in a brief interval of time after t = 0. Using the 
Poisson bracket, we can give an energy principle for assessing the 
stability of this perturbation in the limit where the kick caused by 
switching on δHt is infinitesimal.

In this limit, and accounting for the fact that the perturbation 
is generated by altering the Hamiltonian, we find that the per-
turbed distribution function, auxiliary electric field, and magnetic 
field must have the form

δ f s = −Lξs f s (13)

δD = −4π J (ξ, f ) + 4πc ∇ × β (14)

δB = −4πc ∇ × α, (15)

where α, β are arbitrary vector fields on configuration space, the 
phase space fluid displacement vector ξs is determined by Hamil-
ton’s equations,

iξsω
gy
s = dχs + 4πesα · dX, (16)

with χs an arbitrary function on gyrocenter phase space, and 
J (ξ, f ) is the gyrocenter current density generated by fiducial gy-

rocenters with phase space velocity ξs and distribution f s . Appeal-
ing to the general theory of dynamically accessible variations (see 
e.g. [5]), our perturbation will be stable if the free energy functional
δ2 F (α, β, χ) is positive whenever δ f s , δD , and δB are not each 
zero. The free energy functional is defined by

δ2 F (α,β,χ) = 1

2
[[H, S], S], (17)

where the functional S = ∑
s

∫
χs f s + ∫

α · D d3 X + ∫
β · B d3 X . 

Physically, δ2 F is the second-order change in the energy func-
tional H produced by our perturbation. In fact, δ2 F functions as 
the (conserved) Hamiltonian of the linearized GVM equations.

We find that δ2 F can be written in the form

δ2 F =
∑

s

∫ (
1

2
ω

gy
s (V gy

s , ξs)δ f s + δKs δ f s

+ es

2c
δB · (V gy

s )X × (ξs)X f s

)

+ 1

8π

∫ (
δD · δE + δB · δH

)
d3 X . (18)

Here X in a subscript denotes the X-component of a velocity field 
on phase space. The variations δKs , δE , and δH are given by

δKs = δKs

δE
[δE] + δKs

δB
[δB] (19)

δE = ε−1[δD] + η[δB] (20)

δH = η†[δD] + μ−1[δB], (21)

where the linear operators ε, μ, and η are given by (cf. [11])

ε = 1 − 4π
δ2K
δEδE

(22)

μ−1 = 1 + 4π
δ2K

δBδB
+ (4π)2 δ2K

δEδB
ε−1 δ2K

δBδE
(23)

η = 4πε−1 δ2K
δBδE

. (24)

In principle, an energy principle for electrostatic gyrokinetics anal-
ogous to this one could be derived using the Poisson bracket 
given in Ref. [12]. However, the authors of that reference deemed 
the electrostatic gyrokinetic Poisson bracket too complicated to be 
practically useful, and so did not attempt deriving an expression 
for δ2 F .
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We have used this expression for δ2 F to prove that, in the long 
wavelength limit, the thermal equilibrium state in a uniform back-
ground magnetic field is stable. In this case, the gyrocenter kinetic 
energy is given by

K = 1

2
mv2‖ + ωc J − 1

2
mc2

(
v‖
c

B⊥
Bo

+ E × b̂

Bo

)2

, (25)

where J is the gyroaction, ωc is the signed gyrofrequency, B⊥ =
B − b̂b̂ · B , and Bo is the magnitude of the background mag-
netic field. This expression agrees with that given by Krommes in 
Ref. [22] in the absence of magnetic fluctuations. The linear re-
sponse functions ε−1, μ−1, η are therefore given by the constant 
matrices

ε = 1 + 4πc2

v2
A

(1 − b̂b̂) (26)

μ−1 = 1 − 4πβ(1 − b̂b̂) (27)

η = 0, (28)

where β = ∑
s

msns〈v2‖〉s

B2
o

is the plasma β and 〈·〉s denotes the ve-

locity space average. Using these expressions and the assumption 
of thermal equilibrium, a straightforward, but tedious calculation 
leads to the following form for δ2 F ,

δ2 F =
∑

s

∫
1

2T

(
Lξs Hos − T

δB‖
Bo

)2

f s

+ 1

8π

∫
δD · ε−1 · δD d3 X

+ 1

8π

∫
δB⊥ · μ−1 · δB⊥d3 X

+ 1

8π

∫
(1 − 4πnT /B2

o)δB2‖ d3 X, (29)

where n = ∑
s ns is the total gyrocenter number density. As long 

as 4πβ and 4πnT /B2
o are each less than 1, a condition that is 

generally satisfied, δ2 F is manifestly non-negative, which implies 
linear stability.

6. Concluding remarks

The Hamiltonian formulation of the GVM system given in this 
Letter is completely determined by two key quantities, the gy-
rocenter kinetic energy Ks , and the guiding center symplectic 
form ω

gc
s . Suppressing species labels, the gyrocenter kinetic energy 

is given explicitly to second order in the amplitude of the fluctu-
ating fields, εδ , by

K (E, B) = Hgc − εδ 〈�〉 + ε2
δ Bgy(〈δ�〉 ,d 〈�〉)

+ 1

2
ε2
δ

〈
Bgy

s

(
LR [δ�̃ − dI(�̃)], [δ�̃ − dI(�̃)]

)〉
, (30)

where R is the infinitesimal generator of gyrophase rotations times 
the local gyrofrequency, I is the inverse of the Lie derivative LR , 
angle brackets denote gyroangle averaging, and Q̃ = Q − 〈Q 〉. In 
standard guiding center coordinates, LR = ωc

∂
∂θ

, where θ is the gy-
rophase, which means I amounts to an antiderivative in gyrophase. 
It can be shown that the second-order gyrocenter kinetic energy 
has the same general form as Eq. (129) in Ref. [16]. The relevant 
correspondences between our symbols and those of Ref. [16] are 
� ↔ −K1, Bgyab ↔ J ab

o , δ� ↔ ��, and LRδ� ↔ LR(�̄1 + �1).
From this expression, it is clear that the gyrocenter kinetic en-

ergy is determined by the three quantities Hgc, �, and δ�. Hgc

denotes the guiding center Hamiltonian truncated at some desired 
order in ρ/L. The function � and the 1-form δ� are defined in 
terms of any choice of the guiding center Lie generators as follows. 
Decompose the guiding center transformation τgc : T Q → T Q as 
τgc = τ2 ◦ τ1, where

τ1 = exp(G1) (31)

τ2 = · · · ◦ exp(G3) ◦ exp(G2) ≡ exp(Ḡ2), (32)

and the Gk are the guiding center Lie generators. The leading-order 
guiding center transformation, τ1, must be handled carefully in gy-
rokinetics because the fluctuating fields are allowed to have short 
perpendicular wave lengths. The 1-form

δ� = −e

c
(exp(−LḠ2

)iG1 U (LG1) + iḠ2
U (LḠ2

))B · dS, (33)

where the function U (x) = e−x/2 sinh(x/2)/(x/2), represents the 
perturbation to the guiding center Lagrange 1-form produced by 
the fluctuating electromagnetic fields. The function

δH = e(exp(−LḠ2
)iG1 U (LG1) + iḠ2

U (LḠ2
))E · dX (34)

represents the perturbation to the guiding center kinetic energy 
caused by the same fields. The function

� = δ�(V gy
o ) − δH, (35)

where V gy
o is the unperturbed gyrocenter phase space velocity.

The Hamiltonian structure of the GVM equations reproduces 
that of the Vlasov–Maxwell system [23–25] under the substitutions

K → 1

2
mv2 (36)

ωgc → m dxi ∧ dvi . (37)

It is also interesting to compare [·, ·] to the bracket given in 
Ref. [11]. The only significant difference comes from the manner 
in which the inductive electric field is built into the kinetic equa-
tion.

Finally, we note two possible directions for future research. 
(1) It may be useful to identify a Poisson bracket for electro-
magnetic gyrokinetics in the Darwin approximation, i.e. stan-
dard EMGT. The gyrokinetic Vlasov–Darwin equations are some-
times also referred to as the gyrokinetic Vlasov–Poisson–Ampère 
equations [13]. A Hamiltonian formulation of the non-gyrokinetic 
Vlasov–Darwin equations has already been given in Ref. [26]. (2) It 
seems likely that the bracket and Hamiltonian given in this Letter 
will provide the Hamiltonian structure for the oscillation center 
Vlasov–Maxwell equations with appropriate substitutions for K
and ωgc. If this were true, then the benefits that our bracket brings 
to electromagnetic gyrokinetics could be extended to certain kinds 
of laser-plasma interactions.
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