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1. Introduction

The calculation of magnetohydrodynamics (MHD) equilibria is fundamental for fusion

plasma research. Axisymmetric toroidal equilibria are described by the well-known

Grad–Shafranov (GS) equation [1–3]. Because the GS equation is an elliptic differential

equation, of the same type as Poisson’s equation, numerical methods for solving it are

well-established [4]. The extension of the GS equation to include plasma rotation has

also received attention [5–8]. The GS equation including toroidal rotation is also an

elliptic differential equation that can be solved by the same numerical methods as the

original GS equation. Other extensions such as inclusion of anisotropic pressure are

also possible. (See e.g. [9] for a review of MHD equilibrium calculations.) The inclusion

of poloidal rotation, however, can make the equilibrium equation hyperbolic [5, 6], for

which no general numerical method has been established.

The calculation of three-dimensional (3D) MHD equilibria is considerably more

involved. The existence of nested magnetic surfaces is not guaranteed generally.

Various numerical codes for the 3D MHD equilibrium have been developed. VMEC

(Variational Moment Equilibrium Code) [10, 11] may be the most used one, where

nested magnetic surfaces are assumed to exist. In VMEC the energy of the system

is minimized by the steepest descent method to obtain an equilibrium. PIES (Princeton

Iterative Equilibrium Solver) [12] is another type, where nested magnetic surfaces are

not assumed. In PIES the solution method consists of an iteration with the following

steps: (i) calculation of the pressure by magnetic field line tracing, (ii) calculation of

current density by the MHD equilibrium equation for the obtained pressure and (iii)

determination of the magnetic field by the Ampère’s law. Another code HINT (Helical

INitial value solver for Toroidal equilibria) [13] and its spawn HINT2 [14] are partly

similar to PIES. HINT2 solves the MHD evolution equation, instead of steps (ii) and

(iii) of PIES, under a fixed pressure given by step (i). Inclusion of dissipation leads to an

equilibrium. A new type of the equilibrium code is SPEC (Stepped Pressure Equilibrium

Code) [15], where an equilibrium is constructed by connecting multiple layers of Taylor

relaxed states (Beltrami fields) under continuity of the total pressure. In each layer the

plasma pressure is flat and the existence of magnetic surfaces is not assumed. IPEC

(Ideal Perturbed Equilibrium Code) [16] calculates 3D MHD equilibrium perturbatively

by adding zero-frequency, linear ideal MHD modes to an axisymmetric equilibrium. As

for inclusion of plasma rotation, an extension of HINT2 to toroidally rotating equilibrium

is on-going [17].

Magnetic island formation, effects of plasma rotation on the magnetic island, and

their interactions with externally applied magnetic fields have recently received attention

in tokamak as well as helical [18] plasma research. Also, the transition to helical

equilibria of reversed field pinch plasmas [19–21] is an interesting self-organization

phenomenon that is being investigated. Therefore, 3D MHD equilibrium codes, in

addition to nonlinear evolution codes, are of great importance. For these studies, the

existence of magnetic surfaces should not be assumed, and plasma rotation should be
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included. Moreover, it is important to characterize equilibria in a systematic way in

order to understand important physical phenomena.

The present work concerns an MHD equilibrium code of another type based on

simulated annealing (SA) [22, 23]. Originally the idea was developed for neutral fluids

and demonstrated to work for computing simple equilibria [24] (see also [25,26]). Later it

was generalized in [27] to apply to a large class of equilibria of Hamiltonian field theories

by allowing for smoothing and the enforcement of constraints that select out a broader

class equilibria. SA is based on Hamiltonian structure, and can be applied to fluid

and plasma models, in particular ideal magnetohydrodynamics (MHD), because they

are Hamiltonian in terms of noncanonical Poisson brackets involving a skew-symmetric

Poisson operator [28, 29].

For Hamiltonian systems the time evolution of the dynamical variables is

determined by the functional derivative of the Hamiltonian multiplied by a skew-

symmetric Poisson operator. The harmonic oscillator is the simplest finite-dimensional

example, for which the state variable is u = (q, p)T, with q and p being the

usual canonical coordinate and momentum, respectively, and the Hamiltonian is

H = (q2 + p2)/2 . Using ∂H/∂u = (q, p)T and skew-symmetric canonical Poisson matrix

Jc :=

(

0 1

−1 0

)

, gives the equations in the Hamiltonian form
du

dt
= Jc

∂H

∂u
. Because

of the skew-symmetry of Jc, the energy of the oscillator is conserved. In addition to

the energy conservation, for more general noncanonical Poisson brackets, with Poisson

operators J , there exist Casimir invariants arising from degeneracy. Such systems evolve

on a surface specified by its energy and the Casimir invariants in the corresponding phase

space of the dynamical variables. The magnetic and cross helicities are examples for

ideal MHD. A surface defined by constant Casimir invariants in the phase space is called

a Casimir leaf. An extremum of the energy on the Casimir leaf gives an equilibrium, a

stationary state, as first noted in the plasma literature [30] and then later for the neutral

fluid [31]. If we solve the physical evolution equation, the system follows a trajectory

with a constant energy on the Casimir leaf. However, it does not relax to an equilibrium.

SA uses an artificial evolution equation obtained from the Hamiltonian structure

of the physical evolution equation by ‘squaring’ the Poisson bracket, i.e. the dynamics

is given by
du

dt
= J2∂H

∂u
. For such artificial dynamics, it is easy to see that the energy

monotonically decreases, as can easily be shown for the harmonic oscillator example.

Similarly, for MHD, the energy of the system changes monotonically; however, because

of the way the artificial evolution equation is based on the Poisson bracket of the physical

system, the Casimir invariants are preserved. Because the energy extremum on a Casimir

leaf relaxes to an equilibrium state, this method can be used as a numerical method

for finding equilibria. An advantage of this method is that the stationary state is

characterized by the values of the Casimir invariants.

The original work [24–26] was effective for simple equilibria, but because of the

plurality of equilibria it did not prove effective for equilibria of interest, and needed
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to be modified. This was done in [27], where the term SA was introduce for this

method, by introducing a general symmetric bracket that allows for smoothing and the

use of Dirac theory to impose constraints. On the basis of these early studies, SA was

applied to 2D low-beta reduced MHD [32] in [22], and a method to pre-adjust values of

the Casimir invariants, by pre-adjusting initial conditions, in order to characterize the

sought equilibrium states was developed in [23].

The previous studies were performed in a 2D rectangular domain with periodic

boundary conditions in both directions, except for a few cases in [27] where layer models

were used for describing a third dimension. In the present study a 3D code is developed,

although the outer boundary of the plasma is still cylindrical. Then a stationary state

with magnetic islands with multiple helicities can be obtained if it has lower energy

than a cylindrical symmetric state. The code uses the symmetric bracket of [27] that

can effect smoothing.

The paper is organized as follows. In section 2, the setting of the problem is

explained, the SA method is summarized, with a focus on the 3D low-beta reduced

MHD example, and three types of symmetric brackets are introduced. Section 3 presents

numerical results, with the choices of the symmetric brackets examined, and a stationary

state with magnetic islands calculated. Next, section 4 contains discussion, where some

remaining issues are raised. Finally, the paper is summarized in section 5.

2. Theory

2.1. Reduced MHD system

In this study, let us consider a cylindrical plasma with minor radius a and length 2πR0.

The cylindrical coordinates are (r, θ, z), with the toroidal angle being ζ := z/R0 and

the inverse aspect ratio given by ε := a/R0. Physical quantities are normalized by the

length a, the magnetic field in the z-direction B0, the Alfvén velocity vA := B0/
√
µ0ρ0

with µ0 and ρ0 being vacuum permeability and typical mass density, respectively, and

the Alfvén time τA := a/vA. Then low-beta reduced MHD is given by

∂U

∂t
= [U, ϕ] + [ψ, J ]− ε

∂U

∂ζ
, (1)

∂ψ

∂t
= [ψ, ϕ]− ε

∂ϕ

∂ζ
, (2)

where the fluid velocity is v = ẑ × ∇ϕ, the magnetic field is B = ẑ + ∇ψ × ẑ, the

vorticity is U := △⊥ϕ, the current density is J := △⊥ψ, the Poisson bracket for two

functions f and g is [f, g] := ẑ · ∇f ×∇g, the unit vector in the z direction is denoted

by ẑ, and △⊥ is the Laplacian in the r–θ plane.
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2.2. Simulated annealing theory

Now, we briefly review the governing SA system, referring the reader to [27] for a detailed

explanation. The artificial dynamics of SA is given by

∂u

∂t
= ((u, H)), (3)

where u is a vector of the dynamical variables, H [u] is the Hamiltonian functional and

((F,G)) is the symmetric bracket for two functionals F [u] and G[u], defined by

((F,G)) :=

∫

D

d3x′
∫

D

d3x′′ {F, ui(x′)}Kij(x
′,x′′){uj(x′′), G}, (4)

where (Kij) is a definite symmetric kernel, and

{F,G} :=

∫

D

d3x′
∫

D

d3x′′
δF [u]

δui(x′)
J ij(x′,x′′)

δG[u]

δuj(x′′)
(5)

is the Poisson bracket for two functionals, with D denoting the whole domain of the

system. The quantity (J ij) is the skew-symmetric Poisson operator, and δF [u]/δu

and δG[u]/δu are the functional derivatives of F and G, respectively. The sign of the

right-hand side is taken so that energy decreases as time progresses.

The Hamiltonian structure for low-beta reduced MHD, as was first given in [33,34],

has u := (u1, u2)T where u1 = U and u2 = ψ, and the Hamiltonian

H [u] :=

∫

D

d3x
1

2

{

∣

∣∇⊥(△−1
⊥
U)
∣

∣

2
+ |∇ψ|2

}

, (6)

with D being the whole domain of the cylindrical plasma. The first and the second

terms of the the integrand of (6) are the kinetic energy Ek and magnetic energy Em,

respectively, and the skew-symmetric Poisson operator is given by

(J ij(x′,x′′)) = δ3(x′ − x
′′)

(

−[U(x′′), ] −[ψ(x′′), ] + ε ∂
∂ζ′′

−[ψ(x′′), ] + ε ∂
∂ζ′′

0

)

. (7)

In order to write down the evolution equation of the SA, we need to calculate the

Poisson bracket between the dynamical variables, and between the dynamical variable

and the Hamiltonian. The functional derivative of H [u] is straightforward:

δH [u]

δu
=

(

−ϕ
−J

)

. (8)

The functional derivatives of U and ψ can be obtained by considering the functionals

U(x) =

∫

D

d3x′ U(x′)δ3(x− x
′), (9)

ψ(x) =

∫

D

d3x′ ψ(x′)δ3(x− x
′), (10)

where δ3(x) is the Dirac’s delta function in three-dimensional space, and its explicit

form is δ3(x) = δ(r)δ(θ)δ(ζ) ε/r since d3x = drdθdζ r/ε. The functional derivatives of
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U(x) and ψ(x) are

δU(x)

δu
=

(

δ3(x− x
′)

0

)

, (11)

δψ(x)

δu
=

(

0

δ3(x− x
′)

)

, (12)

whence we obtain

{U(x), U(x′)} = [U(x′), δ3(x− x
′)], (13)

{U(x), ψ(x′)} = [ψ(x′), δ3(x− x
′)]− ε

∂δ3(x− x
′)

∂ζ ′
, (14)

{ψ(x), U(x′)} = [ψ(x′), δ3(x− x
′)]− ε

∂δ3(x− x
′)

∂ζ ′
, (15)

{ψ(x), ψ(x′)} = 0, (16)

{U(x′′), H} = [U(x′′), ϕ(x′′)] + [ψ(x′′), J(x′′)]− ε
∂J(x′′)

∂ζ ′′
, (17)

{ψ(x′′), H} = [ψ(x′′), ϕ(x′′)]− ε
∂ϕ(x′′)

∂ζ ′′
. (18)

These confirm that the physical evolution equations are written as
∂u

∂t
= {u, H}. (19)

Using the above Poisson brackets, the symmetric brackets are obtained as

((U,H)) = [U(x), ϕ̃(x)] + [ψ(x), J̃(x)]− ε
∂J̃(x)

∂ζ
, (20)

((ψ,H)) = [ψ(x), ϕ̃(x)]− ε
∂ϕ̃(x)

∂ζ
, (21)

where

ϕ̃(x) =

∫

D

d3x′′
(

KUU(x,x
′′)fU(x′′) +KUψ(x,x

′′)fψ(x′′)
)

, (22)

J̃(x) =

∫

D

d3x′′
(

KψU(x,x
′′)fU(x′′) +Kψψ(x,x

′′)fψ(x′′)
)

, (23)

and

(Kij(x
′,x′′)) =

(

KUU(x
′,x′′) KUψ(x

′,x′′)

KψU(x
′,x′′) Kψψ(x

′,x′′)

)

, (24)

with fU and fψ being defined by the right-hand sides of the physical evolution equation

multiplied by the negative sign as

fU(x) := −
(

[U(x), ϕ(x)] + [ψ(x), J(x)]− ε
∂J(x)

∂ζ

)

, (25)

fψ(x) := −
(

[ψ(x), ϕ(x)]− ε
∂ϕ(x)

∂ζ

)

. (26)

Observe, U and ψ are advected by ϕ̃ and J̃ in SA, instead of ϕ and J in the physical

dynamics. A variety of artificial dynamics can be generated by different choices of the

kernel (Kij).
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2.3. Casimir invariants

Before examining the choice of (Kij), let us introduce the Casimir invariants. A Casimir

invariant of the system is defined as a functional C[u] that satisfies

{C, F} = 0 (27)

for any functional F [u]. If we write δC[u]/δu = (C1, C2)
T and δF [u]/δu = (F1, F2)

T,

then

{C, F} =

∫

D

d3x′
∫

D

d3x′′ δ3(x′ − x
′′)

(

C1(x
′)

(

−[U(x′′), F1(x
′′)]− [ψ(x′′), F2(x

′′)] + ε
∂F2(x

′′)

∂ζ ′′

)

+C2(x
′)

(

−[ψ(x′′), F1(x
′′)] + ε

∂F1(x
′′)

∂ζ ′′

))

=

∫

D

d3x′
(

C1(x
′)

(

−[U(x′), F1(x
′)]− [ψ(x′), F2(x

′)] + ε
∂F2(x

′)

∂ζ ′

)

+C2(x
′)

(

−[ψ(x′), F1(x
′)] + ε

∂F1(x
′)

∂ζ ′

))

=

∫

D

d3x′
(

F1(x
′)

(

−[C1(x
′), U(x′)]− [C2(x

′), ψ(x′)]− ε
∂C2(x

′)

∂ζ ′

)

+F2(x
′)

(

−[C1(x
′), ψ(x′)]− ε

∂C1(x
′)

∂ζ ′

))

, (28)

where the last equality follows upon integration by parts. In order to satisfy {C, F} = 0

for any F1 and F2, C1 and C2 must satisfy

[C1(x), U(x)] + [C2(x), ψ(x)] + ε
∂C2(x)

∂ζ
= 0, (29)

[C1(x), ψ(x)] + ε
∂C1(x)

∂ζ
= 0. (30)

Choosing C1 = 0 and C2 = 1, yields C =

∫

D

d3xψ(x) =: Cm, while choosing C1 = 1

and C2 = 0, yields C =

∫

D

d3xU(x) =: Cv. (See [33] for a discussion of how these are

remnants of the helicity and cross helicity.) The accuracy of a numerical simulation can

be tested by monitoring the conservation of Cm and Cv.

2.4. Cross helicity

Another conserved quantity of ideal MHD is a cross helicity, which is defined by

Cc :=

∫

D

d3xv ·B (31)

=

∫

D

d3xUψ. (32)



Simulated annealing for three-dimensional low-beta reduced MHD 8

The functional derivative of Cc is given by

δCc

δu
=

(

ψ

U

)

. (33)

Then, [C1(x), U(x)]+[C2(x), ψ(x)] = 0 and [C1(x), ψ(x)] = 0 in (29) and (30), however,

ζ-derivative terms remains finite generally. When F [u] is taken to be H [u], F1 = −ϕ
and F2 = −J , and we can show that

{Cc, H} =

∫

D

d3x′
(

ϕ(x′)ε
∂U(x′)

∂ζ ′
+ J(x′)ε

∂ψ(x′)

∂ζ ′

)

= −1

2

∫

D

d3x′
∂

∂ζ ′
(

|∇⊥ϕ|2 + |∇⊥ψ|2
)

= 0 (34)

by integration by parts under appropriate boundary conditions. Therefore, the cross

helicity Cc is also conserved by the SA as well as the physical dynamics.

2.5. Choices for the symmetric kernel

In subsection 2.2, we obtained a general form of ϕ̃ and J̃ in (22) and (23). Here we

introduce three choices for (Kij). First, let us set the off-diagonal terms of (Kij) to zero

in this paper. Then, we may use the definition

h̃(x) =

∫

D

d3x′′K(x,x′′)f(x′′), (35)

with h̃ chosen to be ϕ̃ or J̃ , K to be KUU or Kψψ, and f to be fU or fψ, respectively.

For our first choice of smoothing we consider

(Kij(x,x
′′)) =

(

αUU δ
3(x− x

′′) 0

0 αψψ δ
3(x− x

′′)

)

, (36)

where αUU > 0 and αψψ > 0 are constants that scale the resulting advection fields ϕ̃

and J̃ . Then it is straightforward to obtain h̃(x) = αf(x); namely,

ϕ̃(x) = αUUf
U(x), (37)

J̃(x) = αψψf
ψ(x), (38)

where α represents αUU or αψψ, respectively, and similarly for h̃ etc. These advection

fields are the right-hand sides of the physical evolution equations (1) and (2) multiplied

by −αUU and −αψψ, respectively. We refer to this version of smoothing as “SA-1”.

The second choice of smoothing introduced in this paper is

(Kij(x,x
′′)) =

(

αUU ε δ(r − r′′)gθζ(θ, ζ, θ
′′, ζ ′′)/r 0

0 αψψ ε δ(r − r′′)gθζ(θ, ζ, θ
′′, ζ ′′)/r

)

, (39)

where δ(r − r′′) is a Dirac’s delta function in r, and gθζ is defined by
(

∂2

∂θ2
+

∂2

∂ζ2

)

gθζ(θ, ζ, θ
′′, ζ ′′) = −δ(θ − θ′′)δ(ζ − ζ ′′), (40)
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i.e., gθζ is a Green’s function in the θ–ζ plane. Now, if we Fourier expand h̃(x) in θ and

ζ as

h̃(x) =
∑

m,n

h̃m/n(r)e
i(mθ+nζ), (41)

then the Fourier coefficients are given by

h̃m/n(r) =
1

(2π)2

∮

dθ

∮

dζ h̃(x)e−i(mθ+nζ)

=
1

(2π)2

∮

dθ

∮

dζ

∫

D

d3x′′K(x,x′′)f(x′′)e−i(mθ+nζ)

=

∫

D

d3x′′ f(x′′)
1

(2π)2

∮

dθ

∮

dζ K(x,x′′)e−i(mθ+nζ)

=

∫

D

d3x′′ f(x′′)Km/n(r,x
′′). (42)

By Fourier transforming (40) in θ and ζ to obtain the Fourier expansion coefficients of

gθζ, and we obtain

Km/n(r,x
′′) = δ(r − r′′)

α ε

(2π)2(m2 + n2) r
e−i(mθ′′+nζ′′). (43)

Then

h̃m/n(r) =
α ε

m2 + n2
fm/n(r) , (44)

which gives the advection fields ϕ̃ and J̃ . The symmetric bracket with this smoothing

has the effect of reducing short-wave-length components of the advection fields in the

θ–ζ plane, and is similar to the one introduced for 2D vortex dynamics [27] and 2D

low-beta reduced MHD [22,23]. We refer to this version of smoothing as “SA-2”. .

Lastly, consider our third choice for smoothing,

(Kij(x,x
′′)) =

(

αUU g(x,x
′′) 0

0 αψψ g(x,x
′′)

)

, (45)

where

△ g(x,x′′) := −δ3(x− x
′′), (46)

i.e., each diagonal component of the symmetric kernel is proportional to the Green’s

function in 3D. If we Fourier expand g in θ, ζ , θ′′ and ζ ′′ as

g(x,x′′) =
∑

m,n

∑

m′′,n′′

gm/n,m′′/n′′(r, r′′)ei(mθ+nζ)ei(m
′′θ′′+n′′ζ′′), (47)

we can express (46) as

1

r

∂

∂r

(

r
∂

∂r

(

gm/n,−m/−n(r, r
′′)
)

)

+

(

m2

r2
+ ε2n2

)

gm/n,−m/−n(r, r
′′) =

−ε
(2π)2r

δ(r−r′′).(48)

Here gm/n,−m/−n(r, r
′′) means gm/n,m′′/n′′(r, r′′) with m′′ = −m and n′′ = −n. For a given

r′′, we can solve the homogeneous equation to obtain the solutions in both 0 ≤ r < r′′

and r′′ < r ≤ 1 regions. These are actually linear combinations of the modified Bessel
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functions. In order to determine the coefficients of the linear combination, we require

the continuity of gm/n,−m/−n and the jump condition

r
∂gm/n,−m/−n(r, r

′′)

∂r

∣

∣

∣

∣

r′′+0

r′′−0

= −ε (49)

at r = r′′. The jump condition (49) is obtained by integrating (48) from r′′−0 to r′′+0.

By using this symmetric kernel, we obtain

h̃m/n(r) = α
(2π)2

ε

∫ 1

0

dr′′ gm/n,−m/−n(r, r
′′)fm/n(r

′′). (50)

This version of smoothing can effect not only the behavior in the θ–ζ plane but also in

the r direction. We refer to this version of smoothing as “SA-3”.

3. Numerical results

Consider now our numerical results obtined from a code developed for solving the

artificial evolution equation (3). The code imposes regularity of physical quantities at

r = 0 and ϕ = ψ = 0 at the plasma boundary. The pseudo-spectral method is adopted

in θ and ζ , which allows for multiple helicities, while a second-order finite difference

method is used in r. For time advancement, fourth-order Runge–Kutta with step-size

control is used. Starting from an initial condition, the artificial evolution equation is

solved and, in accordance with theory, the energy of the system decreases monotonically.

When the relative change rates of both kinetic and magnetic energy, |dEk/dt|/Ek and

|dEm/dt|/Em, become smaller than a tolerance, the simulation is stopped.

For the numerical results shown below, the inverse aspect ratio ε = 1/10, while

the grid numbers for r, θ and ζ are 100, 32 and 16, respectively. The Fourier mode

numbers included in the simulation are −10 ≤ m ≤ 10 and 0 ≤ n ≤ 5, respectively.

The tolerance for the convergence was chosen to be 10−6.

We present results for two initial conditions. The first corresponds to a trivial

stationary state where U = U(r) and ψ = ψ(r), with corresponding ϕ and J satisfying

U = △⊥ϕ and J = △⊥ψ, also being functions of r only. Clearly, the right-hand side of

(3), or (19), becomes zero in this case, and no change of the system occurs. Indeed, the

simulation code stopped immediately after initializing.

The second initial condition is given by the stationary state of the first one, plus

a small perturbation that has a radial magnetic field resonant at a rational surface.

The small perturbation changes the field-line topology by opening a magnetic island. If

the stationary state with cylindrical symmetry is unstable against the associated tearing

mode, we expect the system to evolve and reach a stationary state with magnetic islands,

with its energy decreased by the SA.

Figure 1 shows the safety factor profile q(r) of the stationary state with cylindrical

symmetry. The plasma rotation was assumed to be zero and ψ(r) was chosen so that

the safety factor q(r) = −εr/ψ′(r), where the prime denotes r derivative. Specifically,
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Figure 1. The safety factor profile q(r) for a stationary state.

q(r) = q0/(1− r2/2) was used, where q0 is the safety factor at r = 0, which gives q = 2

at r = 1/2.

The stationary state shown in figure 1 is unstable against a tearing mode with mode

numbers m = −2 and n = 1, which has the tearing mode parameter [35] ∆′ ≈ 22.4.

Thus a small perturbation with m = −2 and n = 1 was added to the cylindrically

symmetric state, giving a radial magnetic field across the q = 2 surface. The radial

profiles of the m = −2 and n = 1 components are shown in figure 2.
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Figure 2. Depiction of m = −2 and n = 1 components of (a) ℑU and ℑϕ, (b) ℜψ
and ℜJ at t = 0. A radial magnetic field exists at the q = 2 surface.

Let us compare our three smoothing kernels. For the initial condition shown in

figures 1 and 2, the right-hand sides of the evolution equations are plotted in figure 3.

For SA-2 and SA-3, the amplitudes of the plotted figures are multiplied by 10 and

100, respectively for easier comparison. Observe in figure 3(a) how the r-dependence is

smoother for SA-3.

Figure 4 shows the radial profile of gm/n,−m/−n(r, r
′′) of SA-3 for r′′ = 0.2, 0.4, 0.6

and 0.8. The mode numbers are m = −2 and n = 1 in figure 4(a), and m = −10 and

n = 5 in figure 4(b). The range of the vertical axis is the same for both figures. Note
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Figure 3. Depiction ofm = −2 and n = 1 components of (a) ℑdU
−2/1

dt and (b) ℜdψ
−2/1

dt

at t = 0 for physical dynamics and SA. Since the amplitudes are largely different, those

of SA-2 and SA-3 are multiplied by 10 and 100, respectively. The significant smoothing

effect in r of SA-3 is observed in (a).

that gm/n,−m/−n(r, r
′′) has smaller amplitudes for high m and n. This smoothing effect

in 2D is the same as that observed in [22, 23, 27], and is present also in SA-2. As for

the smoothing effect in r, it is larger for smaller m and n because the radial extent of

gm/n,−m/−n(r, r
′′) is larger for smaller m and n. Note that there is no smoothing effect

in r if gm/n,−m/−n(r, r
′′) = δ(r − r′′), as in SA-2. Thus the smoothing effect in r of

SA-3 may disappear if m and n go to infinity, while the smoothing in θ and ζ becomes

infinitely large.
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Figure 4. Radial profile plots of the 3D Green’s functions gm/n,−m/−n(r, r
′′) of SA-3

with (a) m = −2, n = 1 and (b) m = −10 and n = 5, for r′′ = 0.2, 0.4, 0.6 and 0.8.

The amplitudes of gm/n,−m/−n(r, r
′′) are smaller for larger m and n, implying a larger

smoothing effect. Also, observe the larger smoothing in r for smaller m and n, since

the radial extent of gm/n,−m/−n(r, r
′′) is larger for smaller m and n.

The time evolution of the energy and the conserved quantities are shown in figure 5

with αUU = αψψ = 100 for SA-2 and SA-3. SA-1 was numerically unstable, and a
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stationary state was not obtained. From figure 5(a), we observe that the total energy

Ek + Em decreases monotonically. Figure 5(b) shows the time history of |dEk/dt|/Ek

and |dEm/dt|/Em. When they became lower than the tolerance 10−6, the simulation

was stopped. Since the magnetic energy Em is dominant, its change is relatively small

from the beginning. From figures 5(c), 5(d) and 5(e), we observe that quantities that

should be conserved are well conserved in the simulation. The change of Cm is monitored

relatively to its initial value Cm(0) = 3.76, while Cv and Cc are plotted directly since

their initial values are zero.

SA-3 requires longer t for convergence. Although the time t is not physical and

depends on αUU and αψψ, late convergence can also be because SA-3 smooths in r, and

thus tends to prevent generation of fine structure in r. Magnetic islands have current

channels that may be easier to generate with SA-2 than SA-3. This also indicates that

a stationary state with fine structure in θ and ζ may take more simulation time using

SA-2 and SA-3.

Figure 6 shows the real parts of the radial profiles ℜψ−2/1, ℜψ−4/2, ℜJ−2/1 and

ℜJ−4/2 of the obtained stationary state. The radial magnetic field of the m = −2 and

n = 1 mode remains at the q = 2 surface when the magnetic island exists. These profiles

differ greatly from the initial condition, with larger amplitudes, while the radial profile

of the m/n = −2/1 mode is still similar to the corresponding linear mode. Therefore,

the magnetic island of this stationary state saturated in a weakly nonlinear sense.

On the other hand, the radial profiles of SA-2 and SA-3 are a bit different. Also,

almost no change was observed in ℑU and ℑϕ. These will be discussed in the next

section.

4. Discussion

Firstly, let us investigate why SA-2 and SA-3 differ. One reason could be the tolerance

for stopping the simulation, which was set to |dEk/dt|/Ek and |dEm/dt|/Em becoming

smaller than 10−6. While the magnetic energy of the m/n = 0/0 component is very

large, the relative rate of change of Em of the m/n 6= 0/0 components was very small.

Therefore, we may need another criterion for convergence. For example, separating out

the energy of the m/n = 0/0 mode and monitoring the relative change rates of both

components of energy could be an improvement.

Secondly, let us investigate why ℑU and ℑϕ did not change during the SA evolution;

i.e., why ψ relaxed faster than U . One possible reason is again the convergence criterion.

If a longer simulation is performed with a much smaller tolerance, U and ϕ may also

change. Another possible reason may be due to the choice of αUU and αψψ, especially

their ratio. If we write the evolution equations for SA-1 explicitly, we have

∂U

∂t
= αUU [U(x), f

U(x)] + αψψ

(

[ψ(x), fψ(x)]− ε
∂fψ(x)

∂ζ

)

, (51)

∂ψ

∂t
= αψψ

(

[ψ(x), fU(x)]− ε
∂fU (x)

∂ζ

)

. (52)
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Figure 5. Time evolution of (a) total energy Ek + Em, (b) relative change rate of

energy |dEk/dt|/Ek and |dEm/dt|/Em, (c) relative change (Cm(t)−Cm(0))/Cm(0), (d)

Cv and (e) Cc. The values αUU = αψψ = 100 were used. The total energy decreases

monotonically and reaches a stationary state. The relative change of Cm is normalized

by the initial value Cm(0) in (c). Since Cv = 0 and Cc = 0 at t = 0, just their values

themselves are plotted in (d) and (e).

Therefore, the ratio of αUU to αψψ can significantly affect the time evolution of U . As

was studied in [22] for the 2D cases, the relaxation path can change if we change the

ratio of αUU to αψψ. As we observe, the time evolution of U is governed by two advection
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Figure 6. Radial profiles of (a) ℜψ−2/1 and ℜψ−4/2 and (b) ℜJ−2/1 and ℜJ−4/2 of

the obtained stationary state are plotted. Almost no changes occur in ℑU and ℑϕ.
The m/n = −2/1 components have similar structure as the linear mode.

fields fU and fψ, while ψ by fU only. Therefore the relaxation path can change if we

change the ratio of contributions from fU and fψ. This situation is also the same for

SA-2 and SA-3. If the relaxation of U is much slower than ψ, a simple solution is to

increase the ratio of αUU to αψψ. Then the right-hand side of the evolution equation of

ψ becomes smaller and that of U becomes larger. However, if αUU is increased in the

present code, the simulation tends to be unstable. The dependence of the numerical

stability on αUU and αψψ, in addition to the choice of the symmetric bracket, needs to

be examined more carefully.

The result of section 3 is only one example of a magnetic island stationary state

achievable with SA. When the initial perturbation of the m = −2 and n = 1

component was chosen larger, the m = 0 and n = 0 components of U and ψ were

changed significantly by the nonlinear effects, leading to a different stationary state.

Incorporating Dirac constraints as in [27] should be explored in the future for selecting

out desired states. Also, the effects of the m = 0 and n = 0 component of the plasma

rotation should be investigated because it changes the linear stability against tearing

modes. Details of these issues will be studied and will be reported on in the near future.

5. Summary

The method of simulated annealing (SA) was developed to obtain a three-dimensional

stationary state of low-beta reduced MHD in cylindrical geometry. The theory of

SA was explained for low-beta reduced MHD, and three versions of the symmetric

bracket were introduced. A simulation demonstrated that the energy of the system

monotonically decreases by SA, while conserving other invariants. Starting from a

cylindrically symmetric state with the addition of a perturbation that opens a small

magnetic island at a rational surface, SA generated a stationary state with magnetic

islands as a lower energy state. Smoothing effects by the symmetric brackets were also
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examined. A symmetric bracket with higher smoothing may require longer simulation

time for convergence, while it can contribute to numerical stability. Several issues for

consideration in the future were discussed.
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