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A comprehensive study of the extended magnetohydrodynamic model obtained from the two-fluid

theory for electrons and ions with the enforcement of quasineutrality is given. Starting from the

Hamiltonian structure of the fully three-dimensional theory, a Hamiltonian two-dimensional

incompressible four-field model is derived. In this way, the energy conservation along with four

families of Casimir invariants is naturally obtained. The construction facilitates various limits lead-

ing to the Hamiltonian forms of Hall, inertial, and ideal MHD, with their conserved energies and

Casimir invariants. Basic linear theory of the four-field model is treated, and the growth rate for

collisionless reconnection is obtained. Results from nonlinear simulations of collisionless tearing

are presented and interpreted using, in particular, normal fields, a product of the Hamiltonian theory

that gives rise to simplified equations of motion. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4974039]

I. INTRODUCTION

Out of necessity for practicable computation, for many

decades, researchers have produced reduced fluid models for

describing aspects of laboratory and naturally occurring plas-

mas. Applications of such models include the exploration of

MHD kink modes by means of reduced MHD,1 subsequently

extended to include, among other effects, Hall and gyro

physics2 as well as parallel compressibility and diamagnetic

effects.3 Further applications range from the investigation of

drift-waves4 to low-frequency turbulence5–8 and magnetic

reconnection.9–17

The various models have been obtained by various

means: in some cases, rigorous asymptotics were employed,

while other models were built on intuition, or using the

device of effecting closure by constraining to match a

desired linear theory (e.g., Ref. 2). Based on the noncanoni-

cal Hamiltonian formalism introduced for MHD in Ref. 18

(see, e.g., Refs. 19 and 20 for review), it was advocated in a

series of papers21–24 that retention of Hamiltonian form can

serve as a derivational aide or as a filter for selecting out

good theories in the ideal limit. By ideal limit, is meant the

limit of the model where all dissipative terms, such as colli-

sions, Landau damping, and dissipative anomalous transport

terms are neglected. Subsequently there have been many

papers by many authors that have adopted this point of view.

In the present work, we consider the two-dimensional

(2D) incompressible reduction of the extended magnetohy-

drodynamic (XMHD) model. This model is simply a reduced

case of a two-fluid model in which the charge quasineutrality

condition is invoked, the displacement current is ignored,

and the smallness of the electron-ion mass ratio is taken to

the first order approximation. The value of the XMHD model

resides in its ability to capture and describe the main two-

fluid effects, e.g., Hall drift and electron inertia. Unlike its

parent 3D version,25,26 the 2D incompressible reduction of

XMHD (RXMHD) has not yet been explored, however, from

the above mentioned Hamiltonian perspective. The

Hamiltonian approach can indeed be particularly fruitful in

this context because of the richness of the Casimir invariants

that typically emerge in 2D models. These invariants, which

are associated with the Hamiltonian structure, provide infor-

mation on the dynamics. Identifying the Hamiltonian struc-

ture of RXMHD and providing its Casimir invariants is one

of the goals of this paper. A further related issue that we

treat, is that of investigating how the conservation laws

related to the Casimir invariants in RXMHD, which properly

accounts for both ion and electron physics corrections, com-

pare with those of the submodels such as ideal reduced, Hall

and inertial MHD,27,28 where some of these effects are

neglected.

In addition to the investigation of the Hamiltonian struc-

ture of the model, we also present an application of RXMHD

where the Hamiltonian approach plays a role. Given that

RXMHD is a model that extends 2D incompressible Hall

MHD by properly accounting for electron physics, a natural

application for RXMHD is to 2D magnetic reconnection

driven by electron inertia. Such magnetic reconnection has

already been studied by means of a model very similar to

RXMHD in Ref. 30. These authors considered a weakly dis-

sipative model and identified the fundamental mechanisms

of two-fluid collisionless reconnection, in particular, with
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regard to the role of the Hall term and of the electron MHD

governing the dynamics at scales below the ion skin depth.

In the present manuscript, we carry out an investigation of

purely non-dissipative magnetic reconnection by means of

RXMHD, with an approach that is somewhat complementary

to that adopted in Ref. 30. We provide an analytical expres-

sion for the linear growth rate of reconnecting perturbations

and check it against numerical solutions, and we take advan-

tage of the Hamiltonian formulation to compare the evolu-

tion of the physical fields, in terms of which the model was

originally formulated, with normal fields, an alternative set

of variables. Normal fields are associated with the Casimir

invariants and express a simpler dynamics. This approach

was used in previous studies of collisionless reconnection in

Hamiltonian models (see, e.g., Refs. 10, 16, and 31–34).

Also, the Hamiltonian formulation provides the correct

expression for the total energy, which we exploit in order to

investigate the redistribution of magnetic energy into differ-

ent forms. We also remark that, in a recent publication,35 a

model, very similar to RXMHD was adopted to investigate

the numerical reconnection rates and the conservation of

three invariants during reconnection.

Our paper is organized as follows. In Sec. II, XMHD is

reviewed, and the Hamiltonian form of RXMHD, a four-

field model, is obtained from that of the full model.25,26

Consequences of this reduction are explored in Sec. III

where it is shown that in addition to the energy, the

RXMHD system possesses four infinite families of invari-

ants, the Casimir invariants. In addition, the so-called nor-

mal fields are obtained, and it is observed that the equations

of motion take a particularly simple form when expressed

in terms of them [compare Eqs. (25)–(28) to Eqs. (50) and

(51)]. Section IV treats various limits of RXMHD leading

to reduced Hall MHD (RHMHD), reduced inertial MHD

(RIMHD), and reduced MHD (RMHD). Numerical solution

of RXMHD is treated in Sec. V. Here the dispersion rela-

tion is plotted for the basic modes of the system, the colli-

sionless tearing instability growth rate is identified and

numerically verified, and nonlinear simulations of colli-

sionless tearing are performed, which reveal how energy

migrates from field into flow. Finally, in Sec. VI, we sum-

marize our results and draw conclusions.

II. DERIVATION OF REDUCED EXTENDED
MAGNETOHYDRODYNAMICS

A. Extended magnetohydrodynamics

The governing equations of extended magnetohydrody-

namics (XMHD) are the continuity equation

@q
@t
¼ �r � qVð Þ; (1)

the force law,

q
@V

@t
þ V:rð ÞV

� �
¼ �rpþ J� B� d2

e J � rð Þ J

q
; (2)

and the generalized Ohm’s law

Eþ V� B ¼ � di

q
rpe þ di

J

q
� Bþ d2

e

@

@t

J

q

� ��

þ V � rð Þ J

q
þ J

q
� r

� �
V

�
� did

2
e

J

q
� r

� �
J

q
:

(3)

Here q is the total mass density, V is the center of mass veloc-

ity, B is the magnetic field, E is the electric field, J is the cur-

rent density, and p ¼ pi þ pe is the total pressure, with pi being

the ion pressure and pe the electron pressure. The system is nor-

malized to the standard Alfv�enic units with de ¼ c=ðxpeLÞ and

di ¼ c=ðxpiLÞ, corresponding to the normalized electron and

ion skin depths, respectively, where xpe and xpi are the elec-

tron and ion plasma frequencies, and L is the system size.

Equations (1)–(3) are coupled with the pre-Maxwell equations

r� E ¼ � @B

@t
and r� B ¼ J; (4)

and for this paper, the systems will be closed by assuming a

barotropic equation of state, i.e., the pressure p is assumed to

depend only on the density q.

Upon using q�1rp ¼ rhðqÞ, which follows from the

barotropic assumption, where hðqÞ is the enthalpy, and using

the pre-Maxwell equations (4), one can obtain, from Eqs. (2)

and (3), the following system:

@V

@t
¼ � r� Vð Þ � Vþ q�1 r� Bð Þ � B�

�r hþ V2=2þ d2
e r� Bð Þ2=2q2

� �
; (5)

@B�

@t
¼ r� V� B�ð Þ � r � q�1 r� Bð Þ � B�

� 	
þ d2

er� q�1 r� Bð Þ � r � Vð Þ
� 	

; (6)

where

B� ¼ Bþ d2
er� q�1ðr � BÞ: (7)

Equations (1), (5), and (6) with the total energy36

h :¼
ð

d3x q
V2

2
þ U qð Þ

� �
þ B � B�

2


 �
; (8)

as Hamiltonian, and the Poisson bracket

F;Gf g ¼ �
ð

d3x

(
Fqr � GV þ FV � rGq½ �

� r � Vð Þ
q

� FV � GVð Þ
" #

� B�

q
� FV � r� GB�ð Þð Þ

� �

� B�

q
� r � FB�ð Þ � GVð Þ

� �

þ di
B�

q
� r � FB�ð Þ � r � GB�ð Þð Þ

� �

� d2
e

r� Vð Þ
q

� r � FB�ð Þ � r � GB�ð Þð Þ
" #)

;

(9)
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constitute a noncanonical Hamiltonian system in which the

phase space is spanned by the dynamical variables q;V, and

B�. In (9) Fn :¼ dF=dn denote the functional derivative of

the functional F with respect to the dynamical variable n.

The full Poisson bracket of Eq. (9) and a proof of the Jacobi

identity were first given in Ref. 25, with further properties

and a simplified proof of the Jacobi identity given in Ref. 26.

Further properties of the bracket and topological invariants

of XMHD were also studied in Ref. 29. The bracket of Eq.

(9) is an extension of the MHD bracket first given in Ref. 18,

amended by the inclusion of two additional terms, one pro-

portional to di, accounting for the Hall effect, and one pro-

portional to d2
e , accounting for electron inertia.

The Poisson bracket (9) has three independent Casimir

invariants

C1 ¼
ð

d3x B� � V� di

2d2
e

A�
� �

; (10)

C2 ¼
ð

d3x B� � A� þ d2
e V � ðr � VÞ�;

�
(11)

C3 ¼
ð

d3x q: (12)

Combining C1 and C2, produces the “canonical helicities”

C6 ¼
1

2

ð
d3x P6 � r � P6ð Þ; (13)

where P6 ¼ Vþ k6A�; with

k6 ¼
�di6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

i þ 4d2
e

p
2d2

e

: (14)

The invariants of (13) contain the topological information

regarding the linking of P6 lines, including their self-linking

that can be decomposed into writhing and twisting. Because

P6 are associated with Lie-dragged differential forms, their

topological information is preserved by the dynamics. See

Refs. 26 and 29 for further discussion.

B. Reduced extended MHD

1. Direct reduction

In the incompressible limit, the reduced extended mag-

netohydrodynamics (RXMHD) can be obtained by writing V

and B in the Clebsch-like forms

Bðx; y; tÞ ¼ rwðx; y; tÞ � ẑ þ bðx; y; tÞẑ; (15)

Vðx; y; tÞ ¼ �r/ðx; y; tÞ � ẑ þ vðx; y; tÞẑ ; (16)

where w and / are the flux and stream functions, respec-

tively, and b and v are ẑ-components of these fields. From

(15), the current density J is seen to be given by

J ¼ r� B ¼ rb� ẑ �r2w ẑ: (17)

Upon setting q¼ 1 and using (15) and (16), the ẑ-component

of Eq. (2) yields

@v

@t
¼ � /; v½ � þ b;w½ � � d2

e b;r2w
� �

; (18)

where ½f ; g� ¼ rf �rg � ẑ, is the standard canonical

Poisson bracket with x and y as canonically conjugate coor-

dinates. Similarly, operating with ẑ � r� on (2) yields

@r2/
@t
¼ � /;r2/

� �
� r2w;w
� �

� d2
e b;r2b
� �

; (19)

and the ẑ-component of (3) is

� @w
@t
þ w;/½ � ¼ di b;w½ � � d2

e

@

@t
r2wþ d2

e r2w;/
� �

þ d2
e v; b½ � � did

2
e b;r2w
� �

; (20)

where we made use of the relation Ez ¼ �@w=@t. Finally

operating with ẑ � r� on (3) gives

� @b

@t
þ v;w½ � � /; b½ � ¼ di w;r2w

� �
� d2

e

@

@t
r2b

þ d2
e r2/; b
� �

þ d2
e r2b;/
� �

� did
2
e b;r2b
� �

: (21)

Therefore, with the definitions

x ¼ r2/; (22)

w� ¼ w� d2
er2w; (23)

b� ¼ b� d2
er2b ; (24)

the RXMHD equations can be written as follows:

@w�

@t
¼ � /;w�½ � � di b;w�½ � þ d2

e b; v½ �; (25)

@x
@t
¼ � /;x½ � � r2w;w

� �
� d2

e b;r2b
� �

; (26)

@b�

@t
¼ � /; b�½ � þ di r2w;w

� �
þ v;w½ �

þ d2
e b;x½ � þ did

2
e b;r2b
� �

; (27)

@v

@t
¼ � /; v½ � þ b;w�½ � : (28)

The Hamiltonian (energy) (8) in terms of the new varia-

bles becomes

h :¼ 1

2

ð
d2x �/x�r2ww� þ bb� þ v2
� 	

; (29)

which can be shown by a direct calculation to be conserved

by the RXMHD system of (25)–(28).

2. Reduction via chain rule

Another way to obtain RXMHD is by Hamiltonian

reduction. With this method, the Poisson bracket (9) is

rewritten in terms of the new variables via the functional

chain rule (see, e.g., Refs. 37 and 38 where this is done for

MHD). This method has the advantage of yielding directly,

the Hamiltonian structure of RXMHD.
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The chain rule proceeds by assuming functionals that

obtain their dependence on V and B� through the new varia-

bles x; v;w�, and b�, i.e.,

F V;B�� ¼ �F x; v;w�; b��:
��

(30)

Varying both sides of (30) givesð
d2x FV � dV ¼

ð
d2x ð �Fx dxþ �Fv dvÞ; (31)

while variation of the velocity field V of (16) gives

dV ¼ ẑ �rd/þ dvẑ: (32)

From (32), we obtain

dv ¼ ẑ � dV: (33)

while ẑ � dV ¼ �rd/. Thus using dx ¼ r � rd/, we

obtain

dx ¼ r � ðdV� ẑÞ: (34)

Upon inserting Eqs. (32) and (34) into Eq. (31), performing

an integration by parts, and using the arbitrariness of dV, we

obtain

FV ¼ r �Fx � ẑ þ �Fv: (35)

In a similar way, we obtain

r� FB� ¼ r �Fb� � ẑ þ �Fw� ẑ: (36)

Now we are in a position to use (35) and (36) to reduce

the Poisson bracket of (9) to one in terms of the reduced vari-

ables. This calculation gives

fF;Gg ¼
ð

d2xfw�ð½Fx;Gw� � þ ½Fw� ;Gx� þ ½Fv;Gb� �

þ ½Fb� ;Gv� � dið½Fw� ;Gb� � þ ½Fb� ;Gw� �ÞÞ
þxð½Fx;Gx� þ d2

e ½Fb� ;Gb� �Þ
þ b�ð½Fx;Gb� � þ ½Fb� ;Gx� � di½Fb� ;Gb� �Þ
þ vð½Fx;Gv� þ ½Fv;Gx�
þ d2

e ð½Fw� ;Gb� � þ ½Fb� ;Gw� �ÞÞg; (37)

where, consistent with the representation (16), we have

removed the q dependence and used the relationð
d2x f ½g; h� ¼

ð
d2x h½f ; g� ¼

ð
d2x g h; f �;½ (38)

valid for generic functions f, g, and h and appropriate bound-

ary conditions. Here and henceforth, we drop the bars on the

functionals.

The above bracket (37) with the Hamiltonian (29) pro-

duces the equations of motion (25)–(28) in the form @f=@t
¼ ff;hg, where f ¼ ðw�;x; b�; vÞt denotes the dynamical

variables of the system.

C. Jacobi identity

As a further check that the set of equations (25)–(28)

with the Hamiltonian (29) constitutes a noncanonical

Hamiltonian system with Poisson bracket (37), we verify the

following requisite bracket properties:

• antisymmetry

fF;Gg ¼ �fG;Fg;

• Leibniz property

fFG;Hg ¼ FfG;Hg þ GfF;Hg;

• Jacobi identity

fF; fG;Hgg þ fH; fF;Ggg þ fG; fH;Fgg ¼ 0:

Assuming boundary conditions such that the surface

terms vanish, as would be the case for periodic boundary

conditions, we can easily demonstrate the first two proper-

ties. However, the proof of Jacobi identity is more difficult.

A direct proof is tedious, but instead we can follow the gen-

eral theory of Ref. 40. Using f ¼ ðw�;x; b�; vÞt with each

field being indexed by fl; l ¼ 1;…; 4, we can write (37) in

the form

fF;Gg ¼
ð

d2x Fl;F��Wl�
c fc;

�
(39)

where Fl ¼ dF=dfl and the quantities Wl�
c are symmetric in

their upper indices. Considering the Wl�
c as a family of

matrices indexed by �, the Jacobi identity is satisfied if and

only if the following matrices pairwise commute

WðxÞ ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BBBB@

1
CCCCA; W w�ð Þ ¼

0 0 0 0

1 0 �di 0

0 0 0 0

0 0 d2
e 0

0
BBBB@

1
CCCCA;

Wðb
�Þ ¼

0 0 d2
e 0

0 �di 0 1

1 0 �di 0

0 d2
e 0 0

0
BBBBB@

1
CCCCCA; WðvÞ ¼

0 0 0 0

0 0 1 0

0 0 0 0

1 0 0 0

0
BBBB@

1
CCCCA;

which follows from a relatively easy calculation.

Consequently, the Poisson bracket (37) satisfies the Jacobi

identity. Two alternative ways exist for proving the Jacobi

identity for the Poisson bracket (37): (i) one is to note that it

follows systematically from the reduction procedure akin to

that of Refs. 37 and 38 and (ii) would be to obtain it from the

two-dimensional version of the canonical bracket of Ref. 39

expressed in terms of the Lagrangian variables by means of

the noncanonical transformation that maps Lagrangian varia-

bles into Eulerian variables.

D. Remarkable transformations

In Ref. 26 it was shown that the Poisson bracket (9) fol-

lows from a remarkable sequence of variable and parameter

transformations of a basic bracket for Hall MHD. This led to

a dramatically simplified calculation for the Jacobi identity
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and quite naturally to the Casimir invariants. We will show

that the reduced Poisson bracket of (37) possesses analogous

transformations.

Specifically, the bracket (9) maps into the Poisson

bracket of Hall MHD in terms of the field Bk6
, when one car-

ries out the transformation

Bk6
¼ B� þ k�1

6 r� V: (40)

The analogous transformation in our 2D case would then be

of the form

Bk6
¼ rwk6

� ẑ þ bk6
ẑ; (41)

and this suggests the change of variables

wk6
¼ w� þ v=k6; bk6

¼ b� þ x=k6: (42)

With this change of variables, the bracket (37) becomes

F;Gf g ¼
ð

d2x

(
wk6

2

k6

� di

� �
Fwk6

;Gbk6

� ���

þ Fbk6
;Gwk6

� �Þ þ Fwk6
;Gx

� �þ Fx;Gwk6

� �
þ Fv;Gbk6

� �þ Fbk6
;Gv

� �Þ þ x Fx;Gx½ �

þ v Fx;Gv½ � þ Fv;Gx½ �ð Þ þ bk6

� Fx;Gbk6

� �þ Fbk6
;Gx

� ��
þ 2

k6

� di

� �
Fbk6

;Gbk6

� ��)
: (43)

Note that one obtains the bracket (43) for either choice of the

values of k6 in Eq. (14). Also, note that the bracket (43) is

identical to the Poisson bracket identified by Eqs. (43) and

(44) in Ref. 24 if one replaces, in the latter bracket, b with

�1 and 2db with 2=k6 � di. We have thus shown that the

bracket (37) can be transformed, by means of an invertible

change of variables, into a known Poisson bracket for which

the Jacobi identity has already been proven. Consequently,

this serves as an alternative verification that the bracket (37)

satisfies the Jacobi identity. We remark that the model in

Ref. 24 (in the 2D cold ion limit with no magnetic curva-

ture), is isomorphic to 2D incompressible Hall MHD,

which is consistent with the above mentioned general result

of Ref. 26.

Given the relationship to the results of Ref. 24 we can

immediately identify the Casimir invariants and normal

fields, a special class of field variables, which we consider

next.

III. NORMAL FIELDS AND CASIMIR INVARIANTS

A. Normal fields

The four-field bracket of (43) is complicated, as one

might expect considering the physics described by the

RXMHD model. However, as described in Ref. 40, nonca-

nonical brackets can be mapped by coordinate changes into

special simplified forms. For systems of four fields, there are

only a few such simplified forms. The fields in which the

bracket is simplified are called normal fields—for the present

case, they are given by

wþ ¼ wk6
; w� ¼ wk6

� 2

kþ
� di

� �
v;

bþ ¼ bk6
; b� ¼ bk6

� 2

kþ
� di

� �
x:

(44)

In terms of these normal fields, the bracket (43) becomes

F;Gf g ¼ 2

kþ
� di

� �ð
d2x wþ Fwþ ;Gbþ

� ���
þ Fbþ ;Gwþ

� �
Þ þ bþ Fbþ ;Gbþ½ � � b� Fb� ;Gb�½ �

�w� Fw� ;Gb�½ � þ Fb� ;Gw�½ �ð Þg; (45)

a form that is the direct sum of two semidirect product brack-

ets (see Ref. 40). In terms of the normal fields w6; b6, the

corresponding Casimirs for this bracket are known to be

C1;2 ¼
ð

d2xF6ðw6Þ; C3;4 ¼
ð

d2x b6G6ðw6Þ; (46)

with F6 and G6 arbitrary functions.

We remark that, in the 2D incompressible limit, the

Casimir invariants C1;2 of XMHD reduce toð
d2x B� � V� di

2d2
e

A�
� �

¼
ð

d2x xw� þ vb� � di

2d2
e

w�b�
� �

;

(47)

andð
d2x B� � A� þ d2

e V � ðr � VÞ� ¼
ð

d2xðw�b� þ d2
e vxÞ;

�
(48)

respectively. Such Casimir invariants indeed correspond to

linear combinations of the Casimir invariants C3;4 of Eq.

(46), for the particular choice G6 ¼ w6. This shows how the

Casimir invariants of XMHD are related to those of

RXMHD.

We remark that, in Ref. 35, a system isomorphic to

RXMHD was studied but only three out of the infinite num-

ber of invariants of the model were presented.

Noting that 2=kþ � di ¼ 1=kþ � 1=k�, we find that the

normal fields are related to the original variables by

w6 ¼ w� þ v

k6

and b6 ¼ b� þ x
k6

: (49)

In terms of the normal fields, the RXMHD system obtains

the perspicuous form

@w6

@t
þ /6;w6½ � ¼ 0; (50)

@b6

@t
þ /6; b6½ � ¼ k6 w6;w½ �; (51)
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where /6 ¼ /� d2
ek6b. Here we also made use of the rela-

tion di � 1=k6 ¼ �d2
ek6. From Eqs. (50) and (51), it

emerges that w6 are Lagrangian invariants of the model,

reminiscent of Ohm’s law for reduced MHD (RMHD),

whereas the equations describing b6 are reminiscent of the

RMHD vorticity equation.

We remark that, by expanding in the limit d2
e=d2

i ! 0,

one can obtain the following relations:

wþ ’ wþ diviz; w� ’ w� d2
e

di
vez; (52)

ẑ �r/þ ’ vi?; ẑ �r/� ’ ve?; (53)

bþ ’ bþ dixi; b� ’ b� d2
e

di
xe; (54)

/ ’ /þ þ
d2

e

d2
i

/�; b ’ /� � /þ
di

; (55)

where viz and vez are the z-components of the ion and electron

fluid velocities, (so that r2w ¼ ðvez � vizÞ=di and v ’ viz

þðd2
e=d2

i ÞvezÞ; vi? and ve? are the ion and electron perpendic-

ular fluid velocities, whereas xi;e ¼ ẑ � r � vi;e? are the z
components of the corresponding vorticities. From Eqs.

(52)–(54), it emerges then that w6 correspond to the z-com-

ponents of the canonical momenta for ions and electrons.

These are advected, according to Eq. (50), by the perpen-

dicular ion and electron velocities, respectively. The nor-

mal fields b6, on the other hand, represent some

generalized vorticities, analogous to the generalized vortic-

ity of Hall-MHD.

The Hamiltonian (29) can be expressed in terms of the

normal fields by making use of the following transformations:

w� ¼ kþwþ � k�w�
kþ � k�

; v ¼ wþ � w�
d2

e kþ � k�ð Þ ; (56)

b� ¼ kþbþ � k�b�
kþ � k�

; x ¼ bþ � b�
d2

e kþ � k�ð Þ ; (57)

and introducing the linear operator L, such that w� ¼ Lw
and b� ¼ Lb. Assuming this operator is invertible, one can

then write

w ¼ L�1 kþwþ � k�w�
kþ � k�

; b ¼ L�1 kþbþ � k�b�
kþ � k�

; (58)

and replace these expressions in (29). The resulting func-

tional is

h ¼ 1

2

ð
d2x

�
� bþ � b�

d2
e kþ � k�ð Þr

�2 bþ � b�
d2

e kþ � k�ð Þ

þ kþbþ � k�b�
kþ � k�

L�1 kþbþ � k�b�
kþ � k�

� kþwþ � k�w�
kþ � k�

r2L�1 kþwþ � k�w�
kþ � k�

þ
w2
þ � 2wþw� þ w2

�

d4
e kþ � k�ð Þ2

�
: (59)

Because the Hamiltonian of (59) is complicated, it may

be more straightforward to consider that of (29) in terms of

the original variables. An approximate form can be obtained

by neglecting again d2
e=d2

i when compared to terms of order

unity, and making use of the relations (53), (55), and the

relation r2w ¼ ðvez � vizÞ=di. This leads to the following

approximate expression for the Hamiltonian:

h ’ 1

2

ð
d2x jrwj2 þ b2 þ v2

i? þ v2
izþ

d2
e

d2
i

v2
e? þ v2

ez

� 	 !
:

(60)

The expression (60) shows that the Hamiltonian is nearly

given by the sum of magnetic energy (the first two terms on

the right-hand side of (60)), with the ion kinetic energy (third

and fourth terms) and the electron kinetic energy (fifth and

sixth terms).

IV. LIMITS OF RXMHD

A. 2D incompressible Hall MHD

If we set de¼ 0 in Eqs. (25)–(28), we obtain the 2D

incompressible Hall MHD system

@w
@t
¼ � /;w½ � � di b;w½ �; (61)

@x
@t
¼ � /;x½ � � r2w;w

� �
; (62)

@b

@t
¼ � /; b½ � þ di r2w;w

� �
þ v;w½ �; (63)

@v

@t
¼ � /; v½ � þ b;w½ �: (64)

As anticipated above, this model is also Hamiltonian, with

the Hamiltonian functional

H ¼ 1

2

ð
d2x jr/j2 þ jrwj2 þ b2 þ v2
� 	

; (65)

and Poisson bracket

fF;Gg ¼
ð

d2xfwð½Fx;Gw� þ ½Fw;Gx� þ ½Fv;Gb�

þ ½Fb;Gv� � dið½Fw;Gb� þ ½Fb;Gw �ÞÞ

þx½Fx;Gx� þ vð½Fx;Gv� þ ½Fv;Gx�Þ

þ bð½Fx;Gb� þ ½Fb;Gx� � di Fb;Gb�Þg:½ (66)

This system, which previously appeared in Ref. 24, has the

Casimirs

C1 ¼
ð

d2xKðwÞ; (67)

C2 ¼
ð

d2x bSðwÞ; (68)

C3 ¼
ð

d2x T ðwHÞ; (69)
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C4 ¼
ð

d2x bHRðwHÞ; (70)

where bH ¼ bþ dix; wH ¼ wþ div and K;S; T and R are

arbitrary functions. In particular, for S ¼ w and R ¼ wH , one

retrieves the 2D incompressible versions of the functionalsð
d3x A � B; (71)

and ð
d3xðAþ diVÞ � ðBþ dir� VÞ; (72)

respectively, which are Casimir invariants for 3D Hall

MHD, corresponding to the magnetic helicity and to a gener-

alized magnetic helicity.

B. 2D incompressible inertial MHD

If we set di¼ 0 in Eqs. (25)–(28), while retaining de, we

obtain the 2D incompressible inertial MHD system

@w�

@t
¼ � /;w�½ � þ d2

e b; v½ �; (73)

@x
@t
¼ � /;x½ � � r2w;w

� �
� d2

e b;r2b
� �

; (74)

@b�

@t
¼ � /; b�½ � þ v;w½ � þ d2

e b;x½ �; (75)

@v

@t
¼ � /; v½ � þ b;w�½ �: (76)

In this limit, the Hamiltonian (29) does not change, but the

Poisson bracket becomes

fF;Gg ¼
ð

d2xfw�ð½Fx;Gw� � þ ½Fw� ;Gx�

þ½Fv;Gb� � þ ½Fb� ;Gv�Þ
þxð½Fx;Gx� þ d2

e ½Fb� ;Gb� �Þ
þb�ð½Fx;Gb� � þ ½Fb� ;Gx�Þ
þvð½Fx;Gv� þ ½Fv;Gx�
þd2

e ð½Fw� ;Gb� � þ ½Fb� ;Gw� �ÞÞg: (77)

We can easily prove that the above system is Hamiltonian

through one of the methods discussed in Sec. II C.

It may seem odd to retain de while dropping di, since

they scale with the mass ratio, but this limit may make sense

in a different ordering.36

The Poisson bracket (77) possesses the following four

families of Casimir invariants

C1;2 ¼
ð

d2xY6ðwi
6Þ; (78)

C3;4 ¼
ð

d2x bi
6P6ðwi

6Þ; (79)

where bi
6 ¼ b�6dex;w

i
6 ¼ w�6dev and Y6 and P6 are

arbitrary functions.

3D inertial MHD, which previously appeared in Ref. 26,

has the Casimirs ð
d3x B� � V; (80)

and ð
d3x B� � A� þ d2

e V � ðr � VÞ�;
�

(81)

which, in their 2D incompressible limit, becomeð
d2x ðxw� þ b�vÞ; (82)

and ð
d2x ðw�b� þ d2

ev xÞ; (83)

respectively. These are the linear combinations ofð
d2x bi

6wi
6; (84)

corresponding to the Casimir invariants C3;4 of Eq. (79) for

the choice P6 ¼ wi
6.

C. 2D incompressible ideal MHD

The 2D incompressible ideal MHD system can be

obtained by setting di ¼ de ¼ 0 in Eqs. (25)–(28), giving

@w
@t
¼ � /;w½ �; (85)

@x
@t
¼ � /;x½ � � r2w;w

� �
; (86)

@b

@t
¼ � /; b½ � þ v;w½ �; (87)

@v

@t
¼ � /; v½ � þ b;w½ �: (88)

Reduced ideal MHD has the energy

H ¼ 1

2

ð
d2x jr/j2 þ jrwj2 þ b2 þ v2
� 	

; (89)

and the Poisson bracket

fF;Gg ¼
ð

d2xfwð½Fx;Gw� þ ½Fw;Gx� þ ½Fv;Gb�

þ ½Fb;Gv�Þ þ x½Fx;Gx�
þ vð½Fx;Gv� þ ½Fv;Gx�Þ
þ bð½Fx;Gb� þ ½Fb;Gx�Þg: (90)

This reduced ideal MHD model, which previously appeared

in Ref. 24, has the Casimirs

C1 ¼
ð

d2x IðwÞ; (91)

C2 ¼
ð

d2x bOðwÞ; (92)
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C3 ¼
ð

d2x vQðwÞ; (93)

C4 ¼
ð

d2x ðxUðwÞ þ b vU0ðwÞÞ; (94)

where I ;O;Q;U are arbitrary functions and the prime sym-

bol denotes derivative with respect to the argument of the

function.

With the choices O ¼ w and U ¼ w, one retrieves, from

C2 and C4 in Eqs. (92) and (94), the 2D incompressible ver-

sions of the magnetic helicityð
d3x A � B; (95)

and of the cross-helicity ð
d3x V � B; (96)

of 3D ideal MHD.

V. NUMERICAL RESULTS

A. Linear analysis

Before describing our nonlinear simulations, we perform

a simple linear stability analysis in Sec. V A 1 to verify that

RXMHD contains the basic whistler and cyclotron waves.

This is followed by an investigation of collisionless tearing

modes in our nonlinear simulation geometry, which serves

as an introduction to our nonlinear numerical results.

1. Basic modes

We linearize the RXMHD equations of (26) and (27) to

investigate the basic modes they contain. Upon assuming a

magnetostatic equilibrium state corresponding to a unit vec-

tor b̂0 in x – y plane, we expand all quantities as

w ¼ ~w exp ðik?:r? � iwtÞ, where w is the angular frequency,

and k? is the perpendicular wavenumber, to obtain

~/ ¼ b̂0 � k?
� 	

w
~w ~v ¼ � b̂0 � k?

� 	
w

~b

w 1þ d2
e k2
?

� 	
~w ¼ b̂0 � k?

� 	
~/ þ di b̂0 � k?

� 	
~b

w 1þ d2
e k2
?

� 	
~b ¼ b̂0 � k?

� 	
~v � dik

2
? b̂0 � k?
� 	

~w:

Manipulation of the above yields

w 1þ d2
e k2
?

� 	
~w ¼ b̂0 � k?

� 	2

w
~w þ di b̂0 � k?

� 	
~b;

w 1þ d2
e k2
?

� 	
~b ¼ b̂0 � k?

� 	2

w
~b þ dik

2
? b̂0 � k?
� 	

~w;

whence we obtain the dispersion relation of RXMHD

fw2ð1þ d2
e k2
?Þ � k2

? cos2hg2 ¼ w2d2
i k4
? cos2h;

where h is the angle between b̂0 and k?.

As expected, this linear dispersion relation is coincident

with the 3D nonlinear dispersion relation of XMHD.41 In

Fig. 1, the upper branch represents the whistler waves, whilst

the lower branch represents the ion cyclotron waves. We can

also observe that both branches saturate, at the electron gyro-

frequency and ion gyrofrequency, respectively.

2. Collisionless tearing modes

The XMHD model of (25)–(28) can describe various

instabilities, including collisionless tearing modes induced by

the presence of electron inertia, which breaks the usual MHD

frozen-in condition as evidenced by Eqs. (25) and (27).

In order to investigate collisionless tearing, we suppose

that a resonant surface is located at x¼ 0, and we choose an

equilibrium around x¼ 0 given by

weq ¼ �x2; beq ¼ 0; /eq ¼ 0; veq ¼ 0: (97)

Then upon linearizing the system of (25)–(28) about this equi-

librium, assuming solutions of the form wðx; y; tÞ ¼ ~wðxÞ
eikyþct with analogous expressions for /; v; and b, where the

constants c and k indicate the growth rate and the wave num-

ber of the perturbation, respectively, we obtain

gðð1þ k2d2
e Þ~w � d2

e
~w
00Þ ¼ �ixð~/ þ di

~bÞ; (98)

gð~/00 � k2 ~/Þ ¼ �ixð~w00 � k2 ~wÞ; (99)

gðð1þ k2d2
e Þ~b � d2

e
~b
00Þ ¼ ixdið~w

00 � k2 ~wÞ þ ix~v; (100)

g~v ¼ ix~b; (101)

where g ¼ c=ð2kÞ and the prime symbol denotes derivative

with respect to the argument. We remark then that the linear

system (98)–(100) corresponds also to the linearization of

the four-field model studied in Ref. 42, provided one uses

weq ¼ �x2 instead of weq ¼ �x2=2 and replaces the constant

db of Ref. 42 with the constant di (which corresponds to tak-

ing the limit b! þ1). The additional terms of the model

of (25)–(28) that are absent in the four-field model of Ref.

42, indeed, contribute only during the nonlinear regime. We

can then export the analysis carried out in Ref. 42, where a

relation for the growth rate in terms of equilibrium parame-

ters was found by asymptotic matching. In this way, we

obtain the following expression for the growth rate for our

system of (98)–(100):

FIG. 1. The dispersion relation (w) profiles for h¼ 0, di¼ 0.1, and

de¼ 0.0233. The upper branch corresponds to whistler waves, while the lower

branch represents the ion cyclotron waves. The dashed reference line corre-

sponding to ideal Alfv�en waves which in dimensionless units is w ¼ k?.
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� p

D0
� p

2

g2

diG g=dið Þ þ
dediG g=dið Þ

g
¼ 0; (102)

where D0 is the classical tearing stability parameter43 and

GðxÞ ¼ ð
ffiffiffi
x
p
=2ÞCð1=4þ x=4Þ=Cð3=4þ x=4Þ, with C indicat-

ing the Gamma function. A version of the relation (102),

adopting resistivity instead of electron inertia, has also been

used in Ref. 44 for linear studies of reconnection based on

2D incompressible Hall MHD. The relation (102) is valid if

the conditions de � g� di � 1 are satisfied.42

In Fig. 2, values of the growth rate c, obtained from the

asymptotic relation (102), are checked against values

obtained from numerical simulations, for a case with large

D0. The numerical code used for these simulations is an adap-

tation of the one used in Ref. 11 to solve the four-field sys-

tem initialized by perturbing about the equilibrium

weq ¼
1

cosh2x
; beq ¼ /eq ¼ veq ¼ 0: (103)

Note that the equilibrium (103), when expanded about x¼ 0,

corresponds to the equilibrium (97) adopted for deriving the

analytical expression for the growth rate.

The model equations are solved on a grid consisting of up

to 2048� 4096 grid points, depending on the scale lengths to

be resolved. All the fields are split into the time-independent

equilibrium and an evolving perturbation advanced in time by

a third order Adams-Bashforth algorithm. Periodic boundary

conditions have been imposed along the shear equilibrium

magnetic field direction, y, whereas Dirichlet conditions have

been applied in the x-direction with all the perturbed fields

vanishing at the boundaries. A pseudospectral method is

adopted for the periodic direction, while a compact finite dif-

ference algorithm on a non-equispaced grid is used for the

spatial operations along the x direction. The tearing instability

is initiated by perturbing the equilibrium with a small distur-

bance of the parallel current density j ¼ �r2w of the form

djðx; yÞ ¼ djðxÞ cosð2py=LyÞ, where djðxÞ is a function local-

ized within a width of order de around the rational surface

x¼ 0.

One can observe from the figure that the agreement

between numerical and analytical values becomes better and

better as the parameter g=di decreases. This is expected,

since, the relation (102) holds in the asymptotic limit g=di

� 1. We remark that, in the large D0 regime, in the limit

g=di � 1, the relation (102) can be approximated by42

g ¼ 1ffiffiffiffiffiffi
2p
p C 1=4ð Þ

C 3=4ð Þ
ffiffiffiffiffiffiffiffi
dedi

p
; (104)

which also shows the accelerating role played by the Hall

term, associated with the length scale di.

B. Nonlinear numerical simulations

Having obtained a handle on the linear dynamics, we

now describe our nonlinear numerical simulations. In partic-

ular, we follow the nonlinear evolution of the velocity and

magnetic fields during the process of magnetic reconnection

initiated by perturbing the equilibrium (103). The code

employed is that of Sec. V A 2.

Figure 3 shows contour plots of the out-of-plane magnetic

and vorticity fields, at times well into the nonlinear regime,

for two choices of skin depths with the same mass ratios. The

two times, 126sA for the case with de ¼ 0:05; di ¼ 0:5 and

56sA for the case with de ¼ 0:1; di ¼ 1, were chosen because

they represent approximately the same nonlinear stage. In

both cases, the field b exhibits the characteristic quadrupolar

structure, a signature of Hall reconnection (see, e.g., Refs. 45

and 46). In the case with the smaller skin depths, Figs. 3(a)

and 3(b), one observes that the vorticity concentrates on a nar-

row region with a size of order of de. In this region, the behav-

ior is mainly dictated by incompressible hydrodynamics and

the system can eventually become prone to the Kelvin-

Helmholtz instability.30 On the other hand, when increasing de

and di, as in Figs. 3(c) and 3(d), vorticity is no longer concen-

trated on a narrow region but distributes mainly along the

island separatrices and inside the island over a region of width

on the order of di, thus suppressing the Kelvin-Helmholtz

instability. A similar mechanism for inhibiting a secondary

Kelvin-Helmholtz instability was observed also for collision-

less reconnection in the presence of a guide field in Refs.

31–33. In this case, the role of the Hall term was played by

the electron pressure contribution to Ohm’s law. For com-

pleteness, we plot the remaining two fields at 126sA in Fig. 4

with v shown in Fig. 4(a) and w in Fig. 4(b).

It is of interest to compare the four fields ðx; b; v;wÞ
with the normal fields ðb6;w6Þ This is done in Fig. 5 for the

smaller skin depths. As noted above in Figs. 3(a) and 3(b), b
and x display the characteristic quadrupolar and current

layer behavior, respectively, while from Figs. 4(a) and 4(b),

the field v is seen to display a sort of amorphous structure

with a mixture of both features, while w shows an elongated

form with the minimal current layer evidence. In compari-

son, the normal fields of Fig. 5 reveal a cleaner separation of

behavior, with ðbþ;wþÞ displaying the current layer, which

is notably absent in the normal fields ðb�;w�Þ. Observe that

the amorphous behavior of v is absent, and the quadrupolar

behavior of b has now been concentrated along the magnetic

FIG. 2. Comparison between values of the growth rate c obtained from

numerical simulations and from the asymptotic relation (102), for different

values of the parameter g=di. Crosses and asterisks indicate the analytical

and numerical values, respectively, for di ¼ 0:5, whereas diamonds and tri-

angles correspond to the analytical and numerical values, respectively, for

di ¼ 0:2. For all cases D0 ¼ 59:9.
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island contour. We draw the conclusion that the normal

fields more clearly delineate the nature of the evolution.

As noted in Sec. III A, it is evident from Eq. (52) that

the normal fields w6 correspond to the z-components of the

electron and ion canonical momenta. It is important to recall

that the notion of canonical momentum originates in the

Hamiltonian formalism and, consequently, that they should

play a clarifying role in the present application is not surpris-

ing. Because the fields w6 are advected by the velocities

associated with /6 (cf. Eq. (50)), we examine the moduli

jr/þj and jr/�j of the perpendicular velocities V6 ¼ ẑ
�r/6 that are doing the advecting. Figure 6 shows profiles

of the moduli at y¼ 0, i.e., across the X-point. One observes

that, in a narrow region around the resonant surface at x¼ 0,

the velocity V�, which is predominantly due to the electrons,

dominates over the velocity Vþ, which is predominantly due

to the ions and actually vanishes at x¼ 0. This is consistent

with the behavior described in Ref. 30 where the magnetic

flux bundle coalescence in a high b regime was investigated.

As discussed in Ref. 30, this behavior can be explained

considering that, in a region with the size L � de � di

around the resonant surface, the system (25)–(28) reduces to

2D electron MHD. The dynamics is then essentially gov-

erned by the electron motion, whereas the ions are immobile.

On the other hand, on scales L 	 di, one enters an MHD

regime, where ve? 
 vi?, as Fig. 6 shows with corrections

due to the use of the normal fields.

The global structures of the velocities V6 are revealed in

the contour plots of /þ and /�, respectively, shown in Fig. 7.

As expected, upon comparing / to /þ it is seen that the bulk

velocity is mostly due to the ion velocity, which exhibits the

characteristic convective cells. The stream function /�, associ-

ated with the corrected electron velocity, on the other hand,

concentrates mainly on the narrow structures along the separa-

trices. An analytical argument justifying such behavior of the

electron velocity was provided in Ref. 30, based on the electron

MHD approximation, valid on scales much smaller than di.

Because of the Hamiltonian nature of the model, the

total energy of (29) is conserved, yet during the course of the

dynamics, energy may transfer from one term to another. In

order to track this, we write

h ¼hKp þhv þhB þhb þhKe þhKez; (105)

with

hKp ¼
ð

d2x jr/j2=2; (106)

hv ¼
ð

d2x v2=2; (107)

hB ¼
ð

d2x jrwj2=2; (108)

FIG. 3. Contour plots of the out-of-

plane magnetic field b and vorticity x
at time 126sA for de ¼ 0:05 and di

¼ 0:5 ((a) and (b)) and at time 56sA for

de ¼ 0:1 and di¼ 1 ((c) and (d)). The

magnetic island is superimposed on the

contour plots.

FIG. 4. Contour plots of the velocity field v (a) and flux w (b) at time 126sA

for de ¼ 0:05 and di ¼ 0:5. The magnetic island is superimposed on the con-

tour plots.
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hb ¼
ð

d2x b2=2; (109)

hKe ¼
ð

d2x d2
e jr2wj2=2; (110)

hKez ¼
ð

d2x d2
e jrbj2=2; (111)

and track each term during the reconnection process. Here,

for convenience and physical clarity, we do this in terms of

the original fields that appear in the Hamiltonian as a sum of

squares, rather than evaluate the expression of (59) in terms

of the normal fields. In Fig. 8, the total energy h, normal-

ized to its initial value, is displayed as a solid line, showing

that indeed the numerics preserves it well up to time 126sA

for our example with de ¼ 0:05 and di ¼ 0:5. Instead of plot-

ting h, we plot Etot, which is the total energy relative to the

initial value of h. The other energies of (106)–(111) are

plotted similarly, e.g., EKp is the variation with respect to its

initial value of hKp, relative to h. Next we observe that the

energy EB decreases while getting transferred to all of the

other terms in varying amounts. The energy EKe, which is

essentially the electron kinetic energy, gains only a small

amount, as does the energy EKez, which also contains higher

order derivatives. Note both these energies are referred to the

left hand scale. All of the other energies grow significantly

more, but by far, most of the energy goes into EKp, the per-

pendicular kinetic energy, which significantly dominates Eb,

the parallel magnetic, and Ev parallel kinetic energies.

To compare these results with more conventional analy-

ses, we consider the approximate Hamiltonian of (60), which

although not exactly conserved can be used to prove a physi-

cally transparent interpretation of the energy redistribution

process during the reconnection. We write the approximate

Hamiltonian ~h as the sum

~h ¼ ~hB þ ~hi þ ~he; (112)

where ~hB ¼ ð1=2Þ
Ð

d2xðjrwj2 þ b2Þ is the total magnetic

energy, ~hi ¼ ð1=2Þ
Ð

d2xðv2
i? þ v2

izÞ is the total ion kinetic

energy and ~he ¼ ð1=2Þðd2
e=d2

i Þ
Ð

d2xðv2
e? þ v2

ezÞ is the total

electron kinetic energy. It is easy to infer from Fig. 8 that

reconnection converts most of the magnetic energy into

kinetic energy of the ion flow. This is consistent with what is

heuristically mentioned in Ref. 30, although the actual con-

served energy was not identified in that reference.

VI. SUMMARY AND CONCLUSIONS

In this paper we have given a comprehensive analysis of

reduced extended MHD, a 2D version of extended MHD.

We have derived the model starting from the Hamiltonian

FIG. 5. Contour plots of normal fields

ðb6;w6Þ at time 126sA for de ¼ 0:05

and di ¼ 0:5. The magnetic island is

superimposed on the contour plots.

FIG. 6. Plots of jr/þj (dashed line) and jr/�j (solid line) at y¼ 0 and

t¼ 126.
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form of the fully three-dimensional model, by a reduction

procedure that produced the Hamiltonian form of the

reduced model, RXMHD. This procedure led to the physical

energy, which serves as the reduced Hamiltonian, the four

families of Casimir invariants, and the definitions of the nor-

mal fields ðb6;w6Þ in terms of which the four equations of

motion take a simplified intuitive form. Further reductions of

the RXMHD led in a natural way to reduced Hall MHD,

inertial MHD, and ideal MHD, Hamiltonian field theories

with conserved energies and associated Casimir invariants.

Analyses of RXMHD revealed the natural modes of oscilla-

tion, the expected whistler and ion cyclotron waves. The

analytical expression for the linear collisionless tearing

growth rate was inferred and checked against the numerical

solutions. Nonlinear simulations of collisionless tearing

revealed a behavior typical of Hall and electron inertia phys-

ics, but better organized by the new normal field variables.

The content of this work opens many avenues for further

study, both analytical and numerical. We mention a few. On

the analytical side, one can effect absolute equilibrium calcu-

lations akin to those of Refs. 47 and 48 in order to infer the

energy cascades. In addition, one can derive the Hamiltonian

form of 3D incompressible XMHD using the Dirac con-

straint technique of Ref. 49 and derive the weakly 3D ver-

sion of the present model, where the latter gives rise to terms

linear in parallel derivatives caused by a strong guide field.

The general Hamiltonian form of such weakly 3D models is

available in Ref. 33 and the correct one can be obtained by

aspect ratio expansion of the full XMHD model or by

Hamiltonian reduction. Having in hand, the weakly 3D ver-

sion of RXMHD opens the way for numerical treatment of

weakly 3D collisionless tearing.
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FIG. 7. Contour plots of / (left), /þ
(middle), and /� (right) for de ¼ 0:05

and di ¼ 0:5. The magnetic island is

superimposed to the contour plots.

FIG. 8. Temporal plots of the terms of the Hamiltonian h of (105) relative

to their values at t¼ 0 and normalized to the initial value of the total energy

(105) for parameters values de ¼ 0:05 and di ¼ 0:5. The total energy, repre-

sented by Etot, retains its initial value (solid line) throughout the simulation.

The other terms, defined by (106)–(111), are seen to increase at the expense

of the decreasing perpendicular magnetic energy EB (dash-dot-dot-dot) with

most energy going into the perpendicular kinetic energy EKp (dash-dot).

Note that times before t ¼ 60sA are not shown because the dynamics is still

in the linear phase where the variations of all terms are negligible.
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