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The Vlasov–Maxwell equations possess a Hamiltonian structure expressed in terms
of a Hamiltonian functional and a functional bracket. In the present paper, the
transformation (‘lift’) of the Vlasov–Maxwell bracket induced by the dynamical
reduction of single-particle dynamics is investigated when the reduction is carried
out by Lie-transform perturbation methods. The ultimate goal of this work is to
provide an explicit pathway to the Hamiltonian formulations for the guiding-centre
and gyrokinetic Vlasov–Maxwell equations, which have found important applications
in our understanding of turbulent magnetized plasmas. Here, it is shown that the
general form of the reduced Vlasov–Maxwell equations possesses a Hamiltonian
structure defined in terms of a reduced Hamiltonian functional and a reduced bracket
that automatically satisfies the standard bracket properties.
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1. Introduction
Reduced plasma models play an important role in the analytical and numerical

investigations of the complex nonlinear dynamics of magnetized plasmas. The process
of dynamical reduction is generally based on the elimination of fast time scales from
either kinetic plasma equations or fluid plasma equations. In the kinetic case, the
dynamical reduction is usually carried out by considering a sequence of phase-space
transformations designed to eliminate a fast orbital time scale (e.g. the time scale
associated with the fast gyromotion of a charged particle about a magnetic-field
line) from the plasma kinetic equations (e.g. guiding-centre theory). In the fluid case,
on the other hand, the fast time scale is often of dynamical origin (e.g. the fast
compressional Alfvén wave time scale in a strongly magnetized plasma), and the
dynamical reduction involves the identification of a small number of fluid moments
and electromagnetic-field components that capture the desired reduced fluid dynamics
(e.g. reduced magnetohydrodynamics (MHD)).
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Reduced plasma models can be either dissipationless or dissipative, depending
on the dynamical time scales of interest. When considering the complex nonlinear
dynamics of high-temperature magnetized plasmas (e.g. magnetized fusion plasmas),
dissipationless reduced plasma models can offer great mathematical simplicity since
the time scales of interest may be much shorter than collisional (dissipative) time
scales. Furthermore, when a dissipationless reduced plasma model is shown to possess
a Hamiltonian structure, the powerful methods of Hamiltonian field theory can be
brought to bear in understanding its analytical and numerical solutions.

A fundamental question thus arises when reducing a system of Hamiltonian field
equations: will the dissipationless form of the reduced system possess a Hamiltonian
structure? In the case of several reduced dissipationless fluid plasma models derived
from Hamiltonian plasma models, the underlying reduced Hamiltonian structure can be
constructed from the reduced equations themselves, as was done for MHD (Morrison
& Greene 1980) and many other plasma models (Morrison 1982). Previous works
on the Lagrangian (variational) structure of the reduced Vlasov–Maxwell equations
(Pfirsch 1984; Pfirsch & Morrison 1985; Brizard 2000a,b) have shown that such
a construction is possible and that the reduced Lagrangian formulation (derived by
Lie-transform methods) yields crucial information about reduced energy–momentum
conservation laws.

The purpose of the present work is to investigate whether the Hamiltonian structure
of the reduced Vlasov–Maxwell equations can be constructed directly from the
original Hamiltonian structure of these equations. This will be accomplished by the
process of lifting introduced in Morrison (2013) and further developed in Morrison,
Vittot & de Guillebon (2013). The present work is a continuation of these earlier
works that allows for greater generality, while casting the formalism in the language
of Lie transforms that is commonplace in gyrokinetic theory (Brizard & Hahm 2007).
An extended version of this paper can be found in the e-print arXiv:1606.06652,
where several proofs and additional details are presented. The work presented here
introduces the mathematical foundations of the Hamiltonian structure of the reduced
Vlasov–Maxwell equations and explicit applications of this reduced Hamiltonian
formalism will be considered in future work.

The remainder of this paper is organized as follows. First we consider some
preliminary basics in § 2; viz., the definition of what constitutes a Hamiltonian field
theory is given and followed by some general comments on coordinate changes. Then,
in § 3, we review the Hamiltonian structure of the Vlasov–Maxwell equations, where
the Hamiltonian functional and the Vlasov–Maxwell bracket are presented. In § 4, we
derive the general transformation (lift) procedure of the Hamiltonian structure of the
Vlasov–Maxwell equations based on a general class of phase-space transformations
that depends on the electromagnetic fields (E, B). These transformations are
complicated because they depend on both independent and dependent variables;
therefore, we introduce operators on functions and meta-operators on functionals
to facilitate the transformation of the Vlasov–Maxwell equations as well as the
Vlasov–Maxwell Poisson bracket. Following this general phase-space transformation,
we therefore show how functional derivatives appearing in the Vlasov–Maxwell
bracket are lifted to a new function space.

In § 5, we demonstrate this general lifting procedure by considering a preliminary
transformation from particle phase space to local phase-space coordinates that depends
on the local magnetic field B(x) only. As a result of the preliminary local phase-
space transformation, however, the evolution of the local Vlasov function now depends
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explicitly on the fast gyromotion time scale, which must be removed by the near-
identity guiding-centre phase-space transformation (see Cary & Brizard (2009) for a
recent review).

In § 6, we review the process of dynamical reduction of the phase-space particle
dynamics by Lie-transform perturbation methods (Brizard 2009). Here, the dynamical
reduction requires that a near-identity transformation be applied to the local
phase-space coordinates. In § 7, we construct the reduced Vlasov–Maxwell equations
by Lie-transform and meta-operator methods and, in § 8, we derive the reduced
Vlasov–Maxwell bracket by the application of meta-operators on the Vlasov–Maxwell
bracket. We also verify that the reduced Vlasov–Maxwell equations can be expressed
as Hamiltonian field equations in terms of the reduced Hamiltonian functional and
the reduced Vlasov–Maxwell bracket.

2. Preliminaries

Although Hamiltonian descriptions of plasma dynamical systems are discussed in
several sources (Morrison 1982, 1998, 2005), we briefly review here some basics of
Hamiltonian field theory, before continuing on to the Vlasov–Maxwell theory.

2.1. General Hamiltonian field theory
The Hamiltonian formulation of a general field theory involving an N-component field
Ψ = (ψ1, . . . , ψN) is expressed in terms of a Hamiltonian functional H[Ψ ], identified
from the energy conservation law of the field equations, and a bracket structure

[F , G]Ψ ≡
∫

r

δF
δψa(r)

Jab(Ψ ; r)
δG

δψb(r)
, (2.1)

where
∫

r denotes an integration over the base space for the fields Ψ . Here, the N×N
matrix operator Jab

= −Jba is antisymmetric, while F [Ψ ] and G[Ψ ] are arbitrary
functionals; summation over repeated indices is implied throughout the manuscript
and explicit time dependence is not displayed unless necessary. In addition, functional
derivatives δF/δψa are defined in terms of the Fréchet derivative:

δF ≡
d
dε

∣∣∣∣
ε=0

F [Ψ + εδΨ ] =
∫

r

δF
δψa(r)

δψa(r), (2.2)

which may involve integration by parts if the functional F depends on ∇ψa.
Since the operator Jab

=−Jba is antisymmetric, the bracket (2.1) is also antisymmetric:
[F , G]Ψ = −[G, F ]Ψ and it also possesses the Leibniz property [F , GK]Ψ =
[F , G]ΨK + G[F , K]Ψ , where F , G, and K are arbitrary functionals. In addition,
it satisfies the Jacobi identity

[F , [G,K]Ψ ]Ψ + [G, [K,F ]Ψ ]Ψ + [K, [F , G]Ψ ]Ψ ≡ 0. (2.3)

Using the Hamiltonian functional H[Ψ ] and the bracket (2.1), the field equations for
Ψ are expressed in Hamiltonian form as

∂F
∂t
≡ [F ,H]Ψ =

∫
r

δF
δψa(r)

(
Jab(Ψ ; r)

δH
δψb(r)

)
≡

∫
r

δF
δψa(r)

∂ψa(r)
∂t

. (2.4)
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While an antisymmetric matrix operator Jab that satisfies the Leibniz property is
relatively easy to construct, the Jacobi identity (2.3) is generally difficult to satisfy.
(See Morrison (1982) where the Jacobi identity is discussed in generality.)

The purpose of the present paper is to investigate how the bracket structure (2.1) is
affected by a field transformation Ψ →Ψ , where the transformation depends on both
independent and dependent variables, as noted above, with the new fields Ψ having
desirable properties making them amenable to theoretical and/or numerical reduction.

2.2. Functional transformation of a Hamiltonian bracket
As noted above, the question of how Hamiltonian functional brackets transform has
recently been studied in the ‘lift’ context by Morrison (2013) and Morrison et al.
(2013) for the Vlasov–Maxwell equations. In particular, Morrison et al. (2013) studied
the process of lifting associated with a change of momentum-space coordinates p→ p
(at a fixed particle position x) that is dependent on the local magnetic field; this
case is revisited here in § 5 using the notation introduced in § 4. Alternatively, one
may consider transformations in the context of Dirac constraint theory (Morrison,
Lebovitz & Biello 2009; Chandre, Morrison & Tassi 2012; Chandre et al. 2013).
In particular, Squire et al. (2013) considered the construction of a reduced bracket
for the gyrokinetic Vlasov–Poisson equations by using this method. Another context
is that of ‘beatification’ (Morrison & Vanneste 2016; Viscondi, Caldas & Morrison
2016) where one uses transformations to perturbatively remove nonlinearity from the
Poisson bracket and place it in the Hamiltonian functional.

In the present paper, we study the lifting of the Vlasov–Maxwell bracket associated
with a phase-space coordinate transformation

Tε ≡ T ε
◦ T0 : z→ z0 ≡ T0z→ Z≡ T εz0 ≡ Tεz, (2.5)

which represents the composition of a preliminary phase-space transformation
T0 to local phase-space coordinates z0 followed by a near-identity phase-space
transformation T ε

≡ · · ·T3T2T1 to reduced phase-space coordinates Z that is generated
by Lie-transform perturbation methods. The phase-space coordinate transformation
(2.5) will be assumed to be invertible, with T −1

ε ≡ T −1
0 T −ε . (See, e.g. Brizard &

Hahm (2007) and Brizard (2008) for further discussion.)
As in Morrison (2013), our construction will explicitly guarantee that the reduced

Vlasov–Maxwell bracket satisfies the Jacobi identity (2.3), while the reduced
functionals will depend on the reduced Vlasov distribution function F≡ T−1

ε f , defined
as the push forward T−1

ε ≡ T−εT−1
0 of the particle Vlasov distribution function f and

the electromagnetic fields (E, B). The present reduced Vlasov–Maxwell Hamiltonian
formulation uses exclusively the variable E, while the earlier work of Morrison (2013)
used both E and the electric displacement field Dε ≡ E + 4πPε as a field variable,
where Pε denotes the reduced polarization (Brizard 2008, 2013; Tronko & Brizard
2015).

3. Hamiltonian structure of the Vlasov–Maxwell equations
We now briefly review of the Hamiltonian structure of the Vlasov–Maxwell

equations introduced in Morrison (1980), with corrections given in Marsden &
Weinstein (1982) and Morrison (1982). The Hamiltonian functional is simply
represented as the energy invariant of the Vlasov–Maxwell equations:

H[ f ,E,B] =
1

8π

∫
r
(|E(r)|2 + |B(r)|2)+

∫
z
J (z) f (z)K(z), (3.1)
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where the Jacobian J is shown explicitly and K=|p|2/(2m) denotes the kinetic energy
of a particle of mass m and charge e (summation over particle species is implied
whenever applicable).

The Vlasov–Maxwell bracket is a bilinear operator on arbitrary functionals
F [ f ,E,B] and G[ f ,E,B]:

[F , G] =
∫

z
J f

{
1
J
δF
δf
,

1
J
δG
δf

}
+ 4πc

∫
r

(
δF
δE
· ∇×

δG
δB
−
δG
δE
· ∇×

δF
δB

)
− 4πe

∫
z
J f

(
δF
δE
·

{
x,

1
J
δG
δf

}
−
δG
δE
·

{
x,

1
J
δF
δf

})
, (3.2)

where the variation δF of an arbitrary functional F [ f , E, B] is defined in terms of
the Fréchet derivative

δF ≡
d
dε

∣∣∣∣
ε=0

F [ f + εδf ,E+ εδE,B+ εδB] =
∫

z
δf
δF
δf
+

∫
r

(
δE ·

δF
δE
+ δB ·

δF
δB

)
.

(3.3)
For the sake of our presentation, the three terms appearing in the bracket (3.2) are
called, respectively, the Vlasov, Maxwell and interaction sub-brackets.

The single-particle (non-canonical) Poisson bracket { , } appearing (3.2) is defined
in terms of functions f and g on particle phase space as

{ f , g} =
(
∇f ·

∂g
∂p
−
∂f
∂p
· ∇g

)
+

e
c

B ·
∂f
∂p
×
∂g
∂p
. (3.4)

The Poisson bracket (3.4) can also be written in divergence form as

{ f , g} ≡
∂f
∂zα

Jαβ
∂g
∂zβ
=

1
J

∂

∂zα
(J f {zα, g}), (3.5)

where the antisymmetric Poisson matrix components Jαβ(z) ≡ {zα, zβ} satisfy the
Liouville identities ∂(J Jαβ)/∂zα ≡ 0. In what follows, explicit and implicit time
dependences are assumed for the Vlasov distribution f and the electromagnetic fields
(E, B) and time is unaffected by the phase-space transformations considered here.
The proof of the Jacobi identity (see appendix A of the e-print arXiv:1606.06652 for
details) for the Poisson bracket (3.4):

{ f , {g, h}} + {g, {h, f }} + {h, { f , g}} = 0 (3.6)

requires that the magnetic field B be divergenceless: ∇ ·B≡ 0.
The Vlasov–Maxwell bracket (3.2) is antisymmetric [G,F ] =−[F , G] and satisfies

the Leibniz property [F , GK] = [F , G]K + G[F , K]. In addition, it was shown in
Morrison (1982) that direct calculation yields the Jacobi identity

[F , [G,K]] + [G, [K,F ]] + [K, [F , G]] ≡
∫

z
f∇ ·B

(
∂

∂p
δF
δf
·
∂

∂p
δG
δf
×
∂

∂p
δH
δf

)
= 0,

(3.7)
which requires the condition ∇ · B= 0. Details of the original (onerous and lengthy)
calculation were recorded in an appendix of Morrison (2013), while a simplified
version of this calculation is presented in appendix B of the e-print arXiv:1606.06652.
Note that the Jacobi condition ∇ · B = 0 for the bracket (3.2) is inherited from the
Jacobi condition for the Poisson bracket (3.4).
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3.1. Vlasov–Maxwell equations
The Hamiltonian evolution of a generic functional F [ f , E, B] is expressed in terms
of the Hamiltonian functional (3.1) and the Vlasov–Maxwell bracket (3.2) as

∂F
∂t
≡ [F ,H] = −

∫
z

δF
δf
({ f ,K} + eE · {x, f })−

∫
r

δF
δB
· (c∇×E)

+

∫
r

δF
δE
·

(
c∇×B− 4πe

∫
z
J f δ3(x− r){x,K}

)
, (3.8)

which becomes

∂F
∂t
≡

∫
z

δF
δf (z)

∂f
∂t
+

∫
r

(
δF
δE(r)

·
∂E
∂t
+

δF
δB(r)

·
∂B
∂t

)
, (3.9)

where the Vlasov equation in particle phase space (x, p=mv) is

∂f
∂t
=−v · ∇f (z)− e

(
E(x)+

v

c
×B(x)

)
·
∂f (z)
∂p

, (3.10)

and the Maxwell equations are

∂E
∂t
= c∇×B− 4πe

∫
z
J f δ3(x− r)v ≡ c∇×B− 4πJ(r), (3.11)

∂B
∂t
=−c∇×E. (3.12)

The remaining Maxwell equations

∇ ·E= 4πe
∫

z
J f δ3(x− r)≡ 4π%(r), (3.13)

∇ ·B= 0 (3.14)

can be seen as initial conditions for the electromagnetic fields (E,B) for ∇ · (∂B/∂t)=
0 and ∇ · (∂E/∂t)=−4π∇ · J = 4π∂%/∂t, which represents the charge conservation
law and follows from (3.11). We note that the charge density %(r) and the current
density J(r) are functionals of the Vlasov distribution f (z), both labelled by the field
position r and the presence of the delta function δ3(x− r) in (3.11) and (3.13) implies
that only particles located at x= r contribute to the electromagnetic fields (E,B).

3.2. Hamiltonian properties
The characteristics of the Vlasov equation (3.10) are the equations of motion

dx
dt
=

p
m

and
dp
dt
= eE(x)+

ev
c
×B(x), (3.15a,b)

which can be expressed in (non-canonical) Hamiltonian form as (Morrison 2013)

dzα

dt
≡ {zα,K} + eE(x) · {x, zα}. (3.16)
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Hence, the Vlasov equation (3.10) may be expressed as

∂f
∂t
+

dzα

dt
∂f
∂zα
= 0, (3.17)

which may also be expressed in divergence form as

∂(J f )
∂t
=−

∂

∂zα

(
J f

dzα

dt

)
, (3.18)

since the Jacobian J satisfies the Liouville theorem

∂J
∂t
+

∂

∂zα

(
J

dzα

dt

)
= 0. (3.19)

Lastly, using (3.9) with (3.11)–(3.12) and (3.18), we easily show that the
Hamiltonian functional (3.1) is itself an invariant of the Vlasov–Maxwell dynamics:

∂H
∂t
=

∫
r

[
E

4π
· (c∇×B− 4πJ)−

B
4π
· (c∇×E)

]
−

∫
z

∂

∂zα

(
J f

dzα

dt

)
K

=

∫
z
J f

(
dK
dt
− eE · v

)
= 0, (3.20)

which vanishes since dK/dt= ev ·E. Equation (3.20), expressed as ∂H/∂t= [H,H] ≡
0, immediately follows from the antisymmetry of the Vlasov–Maxwell bracket (3.2).

4. General transformation lift of the Vlasov–Maxwell equations
We consider the transformation of the Hamiltonian structure (3.1)–(3.2) of the

Vlasov–Maxwell equations associated with a general time-dependent phase-space
transformation that depends on the electromagnetic field (E, B) as well as their
spatial gradients. Hence, we consider a phase-space transformation T : z→ Z that is
also invertible T −1

: Z→ z.
In the next sections, we will consider the two-step transformation process (2.5)

encountered in the dynamical reduction of charged-particle motion in a strong
magnetic field (e.g. guiding-centre transformation (Cary & Brizard 2009)). In
the first step (§ 5), we present the preliminary transformation T0 from particle
phase-space coordinates (x, p) to local phase-space coordinates zα0 ≡ (x, p‖, µ, ζ ),
where T0(x, p)≡ (x, p‖b̂+ p

⊥
).

The preliminary phase-space transformation introduces explicit dependence on the
fast gyromotion time scale (through the local gyroangle ζ ). In the second step (§ 6),
we present the near-identity phase-space transformation T ε

≡ · · · T2T1 to the reduced
phase-space coordinates Zα ≡ (X, p

‖
, µ, ζ ) generated by Lie-transform perturbation

methods.

4.1. General operators on functions and functionals
A general phase-space transformation T induces operators on phase-space functions
and meta-operators on functionals. First, the push-forward operator T−1

: f→ f ≡ T−1f
transforms a function f on particle phase space into a function f on the new phase
space. In addition, the pull-back operator T : f→ f ≡T f transforms a function f on the
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new phase space into a function f on particle phase space. These operator definitions
ensure that the scalar-covariance properties are satisfied: f (z)= f (T −1Z)= T−1f (Z)=
f (Z) and f (Z) = f (T z) = T f (z) = f (z). The transformed Jacobian J is defined from
the push-forward relation T−1(J d6z)≡ J d6Z, where d6z and d6Z denote differential
six-forms in their respective phase spaces.

Secondly, we introduce the meta-push-forward functional operator T :F→F ≡TF
and the meta-pull-back functional operator T−1

: F → F ≡ T−1F , which satisfy the
functional-covariance properties, e.g. F [f ] =TF [f ] =F [T f ] =F [ f ].

4.2. Transformed Vlasov–Maxwell equations
The transformation of the Vlasov equation (3.17) proceeds through the push-forward
transformation of each of its parts:

T−1

(
∂f
∂t

)
=−T−1({ f ,K} + eE · {x, f }). (4.1)

While time is unaffected by the phase-space transformations considered here, we note
that the partial-time derivative ∂/∂t does not commute with the push-forward operator
T−1 and, thus, the commutation relation [T−1, ∂/∂t] must be calculated carefully.

4.2.1. Transformed partial-time derivative
On the left-hand side of (4.1), we introduce the transformed partial-time derivative

∂/∂t:

T−1

(
∂f
∂t

)
=

[
T−1

(
∂

∂t
T

)]
T−1f ≡

∂ f
∂t
, (4.2)

which is defined by the operator-commutation identity

∂ f
∂t
≡
∂f
∂t
+

[
T−1

(
∂

∂t
T

)
−
∂

∂t

]
f ≡

∂f
∂t
+
∂ Zα

∂t
∂f
∂Zα

, (4.3)

where the second term is a partial-differential operator in the new phase space:

∂ Zα

∂t
≡ T−1

(
∂(TZα)
∂t

)
. (4.4)

Note that, for a time-independent phase-space transformation, the operators ∂/∂t and
T−1 commute and T−1(∂f /∂t)= ∂(T−1f )/∂t= ∂f /∂t.

4.2.2. Transformed Poisson bracket
On the right-hand side of (4.1), we define the transformed Poisson bracket { , } on

the new phase space from the identity (Brizard 2008)

{f , g} ≡ T−1({ f , g})≡ T−1({T f , Tg})≡
∂f
∂Zµ

Jµν
∂g
∂Zν

, (4.5)

where the transformed Poisson matrix Jµν is defined in terms of the particle Poisson
matrix Jαβ ≡ {zα, zβ} as

Jµν ≡ T−1

(
∂(TZµ)
∂zα

Jαβ
∂(TZν)
∂zβ

)
= T−1({TZµ, TZν})≡ {Zµ, Zν}. (4.6)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377816001161
Downloaded from https://www.cambridge.org/core. University of Texas Libraries, on 01 Jul 2020 at 19:12:41, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377816001161
https://www.cambridge.org/core


Lifting of the Vlasov–Maxwell bracket by Lie-transform method 9

The transformed Poisson bracket (4.5) is guaranteed to satisfy the Jacobi identity
because it is derived from a transformed Lagrange two-form ω≡ T−1ω= T−1(dγ )=
d(T−1γ )≡ dγ that is closed dω≡ 0.

The transformed Poisson bracket (4.5) is expressed in phase-space divergence
form as

{f , g} ≡
1
J

∂

∂Zα
(J f {Zα, g}), (4.7)

which follows from the Liouville identities ∂(J Jαβ)/∂Zα ≡ 0. Using the definition
(4.5), the right-hand side of (4.1) now becomes

−T−1({ f ,K} + eE · {x, f })=−{f ,K} − eT−1E · {T−1x, f }, (4.8)

where T−1x denotes the push forward of the particle position x and T−1E denotes the
push forward of the electric field as it appears in the reduced particle dynamics.

4.2.3. Transformed Vlasov equation
By combining (4.2) and (4.8), we obtain the transformed Vlasov equation

∂f
∂t
=−

[
{Zα,K} + eT−1E · {T−1x, Zα} +

∂ Zα

∂t

]
∂f
∂Zα
≡−

d Zα

dt
∂f
∂Zα

, (4.9)

where the transformed phase-space dynamics d Zα/dt includes the transformed partial-
time derivative (4.4) as well as the transformed Hamilton equations

˙Z
α

≡ {Zα,K} + eT−1E · {T−1x, Zα}. (4.10)

Next, the transformed Liouville theorem requires that the transformed Jacobian J
satisfies the evolution equation

∂J
∂t
+

∂

∂Zα

(
J

d Zα

dt

)
= 0. (4.11)

Since the transformed Hamilton equations (4.10) satisfy the identity ∂(J ˙Z
α

)/∂Zα ≡ 0,
the transformed Jacobian, therefore, satisfies the equation

∂J
∂t
=−

∂

∂Zα

(
J
∂ Zα

∂t

)
=−

∂

∂Zα

[
J T−1

(
∂(TZα)
∂t

)]
. (4.12)

Moreover, the transformed Vlasov equation (4.9) can be written in divergence form
as

∂(J f )
∂t
=−J

(
˙Z
α

+
∂ Zα

∂t

)
∂f
∂Zα
− f

∂

∂Zα

(
J
∂ Zα

∂t

)
=−

∂

∂Zα

(
J f

d Zα

dt

)
. (4.13)
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4.2.4. Transformed Maxwell equations
Lastly, we turn our attention to the transformation of the Maxwell equations

(3.11)–(3.14). Of course, (3.12) and (3.14) are unchanged by the phase-space
transformation since they are source free. The Maxwell equations (3.11) and (3.13),
however, become

∂E
∂t
= c∇×B− 4πe

∫
Z
J f δ3(T−1x− r)

d(T−1x)
dt

≡ c∇×B− 4πTJ(r), (4.14)

∇ ·E= 4πe
∫

Z
J f δ3(T−1x− r)≡ 4πT%(r), (4.15)

where the meta-push-forward T is applied on the particle current density in (3.11) and
the particle charge density in (3.13), which are both functionals labelled by the field
position r. In (4.14), the push forward of the particle velocity is defined as

d(T−1x)
dt

= T−1

(
dx
dt

)
= {T−1x,K}, (4.16)

where we used the identities ∂(T−1x)/∂t≡ T−1(∂x/∂t)≡ 0 (i.e. the particle position x
does not explicitly depend on time) and {T−1x, T−1x} ≡ T−1({x, x})= 0.

4.3. Transformed functional variations

The variation of an arbitrary functional F [f ,E,B] is defined in terms of the Fréchet
derivative (3.3), which can be transformed to yield

T[δ(T−1F)] =
∫

Z
J T−1(δf )T−1

[
1
J
δ(T−1F)
δf

]

+

∫
r

(
δE ·

δ(T−1F)
δE

+ δB ·
δ(T−1F)
δB

)
. (4.17)

Here, the push forward of the variation δf on particle phase space:

T−1(δf )= δ(T−1f )+ ([T−1, δ]T )T−1f ≡ δf + ([T−1, δ]T )f (4.18)

is expressed in terms of the transformed variation δf on the new phase space and the
commutation operator

([T−1, δ]T )= T−1(δT )− δ ≡ T−1
[δ(TZα)]

∂

∂Zα
, (4.19)

which is similar to the commutator (4.3), with ∂/∂t replaced by δ. Hence, (4.18) can
be expressed as

T−1(δf )= δf + T−1
[δ(TZα)]

∂f
∂Zα
≡ δf +

∫
r
[δE(r) · ∂Ef + δB(r) · ∂Bf ], (4.20)
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Lifting of the Vlasov–Maxwell bracket by Lie-transform method 11

where the differential operators ∂E and ∂B are defined as

∂E ≡ T−1

[
δ(TZα)
δE(r)

]
∂

∂Zα
and ∂B ≡ T−1

[
δ(TZα)
δB(r)

]
∂

∂Zα
. (4.21a,b)

If we now use the identity δF ≡ T[δ(T−1F)] in (4.17), we obtain the functional-
variation relations

T−1

[
1
J
δ(T−1F)
δf

]
≡

1
J
δF
δf
, (4.22)

δ(T−1F)
δE(r)

≡
δF
δE(r)

−

∫
Z
∂Ef

δF
δf
≡

δF
δE(r)

−∆EF(r), (4.23)

δ(T−1F)
δB(r)

≡
δF
δB(r)

−

∫
Z
∂Bf

δF
δf
≡

δF
δB(r)

−∆BF(r). (4.24)

Hence, the meta-pull-back operator T−1 introduces electromagnetic shifts (∆E, ∆B) in
the functional derivatives (4.23)–(4.24) that are due to the dependence of the phase-
space transformation on the electromagnetic fields (E,B), as shown in (4.21).

4.4. Transformed Hamiltonian functional
As an application of the transformed functional variations (4.22)–(4.24), we consider
the transformed Hamiltonian functional H obtained from the meta-push-forward of the
Hamiltonian functional (3.1):

H≡TH=
1

8π

∫
r
(|E|2 + |B|2)+

∫
Z
J f K, (4.25)

where K ≡ T−1K is the transformed kinetic energy. First, the functional variation of
H yields

δH=
∫

r

(
δE ·

E
4π
+ δB ·

B
4π

)
+

∫
Z
[δf J K + f δ(J K)], (4.26)

where δ(J K)= δJ K +J δK. Here, we have

δJ =−
∂

∂Zα
[J T−1(δTZα)], (4.27)

which follows from (4.12), while

δK = δ(T−1K)= T−1(δK)− ([T−1, δ]T )T−1K ≡−T−1(δTZα)
∂K
∂Zα

, (4.28)

where we used δK≡0 (i.e. the particle kinetic energy K does not depend on E and B).
Next, by combining (4.27)–(4.28), we find

δ(J K)=−
∂

∂Zα
[J KT−1(δTZα)], (4.29)
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so that integration by parts of this term in (4.26) yields

δH =
∫

r

(
δE ·

E
4π
+ δB ·

B
4π

)
+

∫
Z

[
δf J K +J K[T−1(δTZα)]

∂f
∂Zα

]
≡

∫
r

(
δE(r) ·

δH
δE(r)

+ δB(r) ·
δH
δB(r)

)
+

∫
Z
δf (Z)

δH
δf (Z)

, (4.30)

where we find the functional variations

δH
δf
=J K, (4.31)

δH
δE
=

E
4π
+

∫
Z
∂Ef

δH
δf
≡

E
4π
+∆EH, (4.32)

δH
δB
=

B
4π
+

∫
Z
∂Bf

δH
δf
≡

B
4π
+∆BH. (4.33)

Hence, substituting (4.31)–(4.33) into (4.22)–(4.24) yields

T−1

[
1
J
δ(T−1H)
δf

]
≡

1
J
δH
δf
=K ≡ T−1

(
1
J
δH
δf

)
, (4.34)

δ(T−1H)
δE(r)

≡
δH
δE(r)

−∆EH(r)=
E(r)
4π
≡

δH
δE(r)

, (4.35)

δ(T−1H)
δB(r)

≡
δH
δB(r)

−∆BH(r)=
B(r)
4π
≡

δH
δB(r)

, (4.36)

where we see that the terms (∆EH, ∆BH) are exactly cancelled in the functional
derivatives (4.32)–(4.33), which is not the case for a general transformed functional F .

4.5. Transformed Vlasov–Maxwell bracket
The transformed Vlasov–Maxwell bracket is now constructed in a three-step
process with the help of the meta-operators T−1 and T. First, we note that the
Vlasov–Maxwell functional bracket (3.2) is itself a functional and thus transforms
as a functional under the action of the meta-push-forward T. Hence, we express the
meta-push-forward of the Vlasov–Maxwell functional bracket (3.2) as

T([F , G]) =
∫

Z
J f

[
T−1

({
J −1 δF

δf
,J −1 δG

δf

})]
+ [Maxwell sub-bracket]

− 4πe
∫

Z
J f

[
T−1

(
δF
δE(x)

)
· T−1

({
x,J −1 δG

δf

})
− T−1

(
δG
δE(x)

)
· T−1

({
x,J −1 δF

δf

})]
, (4.37)

where the Maxwell sub-bracket is unaffected by the meta-push-forward (since it is
independent of the Vlasov distribution function) and we used the distributivity property
of the push-forward operation T−1 in the interaction sub-bracket.
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Next, we insert the definition of the transformed Poisson bracket (4.5) to obtain

T([F , G]) =
∫

Z
J f
{

T−1

(
J −1

δF
δf

)
, T−1

(
J −1

δG
δf

)}
+ [Maxwell sub-bracket]

− 4πe
∫

Z
J f

[
T−1

(
δF
δE(x)

)
·

{
T−1x, T−1

(
J −1

δG
δf

)}

− T−1

(
δG
δE(x)

)
·

{
T−1x, T−1

(
J −1

δF
δf

)}]
. (4.38)

Lastly, we use the meta-pull-back operation T−1 to replace the particle functionals F
and G with the transformed functionals F = T−1F and G = T−1G, which yields the
transformed Vlasov–Maxwell bracket [F , G] ≡T([T−1F ,T−1G]):

[F , G] =
∫

Z
J f

{
1
J
δF
δf
,

1
J
δG
δf

}

+ 4πc
∫

r

[(
δF
δE(r)

−∆EF(r)
)
· ∇×

(
δG
δB(r)

−∆BG(r)
)

−

(
δG
δE(r)

−∆EG(r)
)
· ∇×

(
δF
δB(r)

−∆BF(r)
)]

− 4πe
∫

Z
J f

T−1

(
δF
δE(x)

−∆EF(x)
)
·

{
T−1x,

1
J
δG
δf

}

− T−1

(
δG
δE(x)

−∆EG(x)
)
·

{
T−1x,

1
J
δF
δf

} , (4.39)

where we substituted the transformed functional variations (4.22)–(4.24). The bracket
(4.39) is similar in form to the bracket (47) of Morrison (2013), but is restricted
since it is essentially a restatement of Vlasov–Maxwell theory, while the bracket of
Morrison (2013) applies to a larger class of theories. We immediately note that the
transformed Vlasov–Maxwell bracket (4.39) automatically satisfies the Jacobi identity

0 = [[F , G],H] + [[G,H],F ] + [[H,F ], G]
≡ T([[F , G],H] + [[G,H],F ] + [[H,F ], G]), (4.40)

since the original Vlasov–Maxwell bracket (3.2) satisfies the Jacobi identity.
We now show that the transformed Vlasov–Maxwell equations (4.9), (4.14) and

(3.12) can be expressed in Hamiltonian form as [F ,H], where

[F ,H] =
∫

Z
J f

{
1
J
δF
δf
,K

}

+ c
∫

r

[(
δF
δE
−∆EF

)
· ∇×B−

(
δF
δB
−∆BF

)
· ∇×E

]
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− 4πe
∫

Z
J f

[
T−1

(
δF
δE(x)

−∆EF(x)
)
· {T−1x,K}

− T−1

(
E(x)
4π

)
·

{
T−1x,

1
J
δF
δf

} , (4.41)

where we used (4.34)–(4.36). Upon integration by parts, we obtain

[F ,H] = −
∫

Z

δF
δf
({f ,K} + eT−1E · {T−1x, f })−

∫
r

(
δF
δB
−∆BF

)
· (c∇×E)

+

∫
r

(
δF
δE
−∆EF

)
· [c∇×B− 4πTJ(r)]

≡

∫
Z

δF
δf
∂f
∂t
+

∫
r

(
δF
δE
·
∂E
∂t
+
δF
δB
·
∂B
∂t

)
, (4.42)

where we used ∫
r
[∆EF · (c∇×B− 4πTJ)+∆BF · (−c∇×E)]

=

∫
r

∫
Z

(
∂E
∂t
· ∂Ef +

∂B
∂t
· ∂Bf

)
δF
δf

=

∫
Z

T−1

(
∂(TZα)
∂t

)
∂f
∂Zα

δF
δf
≡

∫
Z

∂ Zα

∂t
∂f
∂Zα

δF
δf
. (4.43)

We have thus shown that, as a result of a general phase-space transformation T ,
the transformed Vlasov–Maxwell equations possess a Hamiltonian structure that is
constructed by operators (T , T−1) and meta-operators (T, T−1) derived from the
phase-space transformation. Here, the transformed Hamiltonian functional (4.25) is
defined as the meta-push-forward of the Hamiltonian functional H ≡ TH, while the
transformed Vlasov–Maxwell bracket (4.39) is defined as [F , G] ≡T([T−1F ,T−1G]).

5. Local Vlasov–Maxwell equations

Reduced Vlasov–Maxwell equations are often derived through a preliminary phase-
space transformation T0 from the particle phase-space coordinates (x, p) to the local
phase-space coordinates (x, p‖, p⊥, ζ ) derived from the local magnetic field B(x)≡Bb̂,
where p‖ ≡ p · b̂ denotes the parallel component of the particle’s momentum along
the (local) magnetic-field unit vector at the particle’s position x, and p⊥ ≡ |p × b̂|
denotes the magnitude of the perpendicular component of the particle’s momentum.
It is also convenient to express p⊥≡ (2mµB)1/2 in terms of the lowest-order magnetic
moment µ(x, p)≡ |p× b̂|2/(2mB) for guiding-centre (Littlejohn 1983) and gyrocentre
applications (Brizard & Hahm 2007). The local gyroangle ζ denotes the orientation of
the particle’s perpendicular momentum in the (local) plane perpendicular to b̂, which
is defined in terms of the differential equation ⊥̂ ≡ ∂ρ̂/∂ζ , where the plane locally
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Lifting of the Vlasov–Maxwell bracket by Lie-transform method 15

perpendicular to b̂ ≡ ⊥̂ × ρ̂ is defined in terms of two arbitrary rotating unit vectors
(⊥̂, ρ̂). The local momentum is, thus, decomposed under the action of T0 as

T0(x, p)≡ (x, p‖(x, p)b̂(x)+ p⊥(x, p)⊥̂(x, ζ )). (5.1)

With the local phase-space coordinates (x, p‖, µ, ζ ), the Jacobian is J0 =mB. Lastly,
we note that, at constant (x, p), the local momentum coordinates (p‖, µ, ζ ) are
time-dependent functions through their dependence on B. The results presented in
this section unify the results presented in the recent paper by Morrison et al. (2013)
and highlight the notation introduced in § 4.

5.1. Local Hamiltonian dynamics
Local particle Hamiltonian dynamics is expressed in terms of the local kinetic energy
K0 = p2

‖
/2m+µB and a local Poisson bracket constructed as follows. We begin with

the local non-canonical one-form γ0 = [(e/c)A(x) + p‖b̂(x) + p⊥(µ, x)⊥̂(ζ , x)] · dx,
from which we obtain the local Lagrange two-form ω0 = dγ0 ≡ (1/2)ω0αβ dzα0 ∧ dzβ0 :

ω0 =
e
2c

B∗k0 εijk dxi
∧ dxj

+ dp‖ ∧ b̂ · dx+
∂p⊥
∂µ

dµ∧ ⊥̂ · dx− p⊥ dζ ∧ ρ̂ · dx, (5.2)

where the divergenceless local canonical magnetic field

B∗0 ≡ ∇×
[
A+

c
e
(p‖b̂+ p⊥(µ, B)⊥̂)

]
= B+

cp‖
e
∇× b̂+

cp⊥
e

(
∇× ⊥̂−

1
2
⊥̂ ×∇ ln B

)
(5.3)

includes contributions from the local kinetic particle momentum. Next, we derive the
local Poisson matrix (with components Jαβ0 ) as the inverse of the Lagrange matrix
(with components ω0αβ), which yields the local Poisson bracket

{ f , g}0 ≡
∂f
∂zα0

Jαβ0
∂g

∂zβ0
=∇f · ∂g− ∂f · ∇g+

e
c

B∗0 · (∂f × ∂g)

=
1
J0

∂

∂zα0
(J0 f {zα0 , g}0), (5.4)

where ∂ denotes the local momentum-space gradient:

∂f ≡ b̂
∂f
∂p‖
+ ⊥̂

p⊥
mB

∂f
∂µ
−
ρ̂

p⊥

∂f
∂ζ
≡ b̂∂‖ f + ∂⊥ f . (5.5)

We note that the local Poisson bracket (5.4) automatically satisfies the Jacobi property
since the local Jacobi condition ∇ ·B∗0 = 0 is automatically satisfied by (5.3).

The Hamilton equations (3.16) are given in local particle phase space in terms of
the local kinetic energy K0 and the local Poisson bracket (5.4) as

żα0 ≡ {z
α
0 ,K0}0 + eE · {x, zα0 }0, (5.6)

where we used T−1
0 x≡ x and T−1

0 E≡E. We note that (5.6) satisfies the local Liouville
theorem ∂(J0żα0 )/∂zα0 = 0. We also note that when µ̇0 is averaged with respect to the
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local gyroangle ζ : 〈µ̇0〉 ≡
∮
µ̇0 dζ/(2π), we find 〈µ̇0〉 = −µ0[(p‖/mB)(∇ · B)] = 0,

which is a necessary requirement for the adiabatic invariance of the guiding-centre
magnetic moment (Cary & Brizard 2009).

Using (5.6), the local Vlasov equation is now expressed as

∂0 f0

∂t
≡
∂f0

∂t
+
∂0zα0
∂t

∂f0

∂zα0
=−ẋ0 · ∇f0 − ṗ‖0

∂f0

∂p‖
− µ̇0

∂f0

∂µ
− ζ̇0

∂f0

∂ζ
, (5.7)

where the local time partial derivative ∂0/∂t ≡ T−1
0 (∂T 0/∂t) is derived below

(see (5.20)), with ∂0zα0/∂t evaluated at constant (x, p). We note that, since the
local Hamilton equations (5.6) depend explicitly on the local gyroangle ζ , the local
Vlasov function f0 evolves rapidly on the gyromotion time scale.

Lastly, the local Maxwell equations are

∂E
∂t
= c∇×B− 4πe

∫
z0

δ3(x− r)J0 f0ẋ0 ≡ c∇×B− 4πJ0, (5.8)

∇ ·E(r)= 4πe
∫

z0

δ3(x− r)J0 f0 ≡ 4π%0, (5.9)

while the source-free Maxwell equations (3.12) and (3.14) remain unchanged. We
now show that the local Vlasov–Maxwell equations (3.12) and (5.7)–(5.8) possess a
Hamiltonian formulation.

5.2. Local coordinate and field variations
The particle velocity is represented in terms of components of the local magnetic field
and, thus, the local particle phase-space coordinates acquire an explicit dependence on
the magnetic field (Morrison et al. 2013).

5.2.1. Local coordinate variations
Since the definition of the local phase-space coordinates depends on the local

magnetic field B ≡ Bb̂, they are susceptible to variations δB ≡ δBb̂ + Bδb̂ in the
magnetic field B = Bb̂. Hence, at fixed (x, p), we can calculate T−1

0 [δ(T 0zα0 )] ≡ δ0zα0
for each local coordinate zα0 , with δ0x≡ 0.

We begin with δ0p‖: first, T 0p‖ ≡ p · b̂, so that δ(T 0p‖)≡ p · δb̂; next,

T−1
0 [δ(T 0p‖)] ≡ (T−1

0 p) · δb̂= (p‖b̂+ p⊥⊥̂) · δb̂. (5.10)

By using the identity b̂ · δb̂≡ 0, where δb̂≡ δ(B/B)= (I− b̂b̂) · δB/B, we thus find

δ0p‖ = p⊥⊥̂ · δb̂. (5.11)

Similarly, we find

δ0p⊥ = T−1
0 [δ(T 0p⊥)] = T−1

0 [p× δb̂ · (p× b̂/|p× b̂|)] =−p‖⊥̂ · δb̂, (5.12)

and, thus, the local variation of the magnetic moment is

δ0µ= δ0

(
p2
⊥

2mB

)
=

p⊥
mB

δ0p⊥ −µb̂ ·
δB
B
≡−

(p⊥p‖
mB
⊥̂ +µb̂

)
·
δB
B
. (5.13)
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We note that the variations (5.11)–(5.13) satisfy the energy conservation law

δ0K0 =
p‖
m
δ0p‖ + δ0µB+µδB≡ 0. (5.14)

The expression for the gyroangle variation δ0ζ is derived as follows. From the
identity δ0(T

−1
0 p)≡ 0, we find the vector identity

0≡ δ0p‖b̂+ p‖δb̂+ δ0p⊥⊥̂ + p⊥δ0⊥̂. (5.15)

Using (5.11), the parallel component of (5.15) yields the identity p⊥δ0(b̂ · ⊥̂) ≡ 0,
while its component along ⊥̂ is identically zero from (5.12). The remaining
component is along ρ̂: p‖δb̂ · ρ̂ + p⊥δ0⊥̂ · ρ̂ ≡ 0. Using the definition ρ̂ ≡ −∂⊥̂/∂ζ ,
we thus find

δ0ζ ≡
p‖
p⊥
ρ̂ · δb̂. (5.16)

Lastly, we note the local coordinate variations (5.11), (5.13) and (5.16) satisfy the
divergence property ∂(δ0zα0 )/∂zα0 = −δ ln B. We also have the local partial-time
derivatives ∂0zα0/∂t, which are obtained from the expressions for δ0zα0 by substituting
δb̂ with ∂ b̂/∂t. These local partial derivatives satisfy the divergence property
∂(∂0zα0/∂t)/∂zα0 =−∂ ln B/∂t, which yields ∂J0/∂t= ∂(J0∂0zα0/∂t)/∂zα0 (with J0=mB)
as a special case of the general equation (4.12) for the transformed Jacobian J .

5.2.2. Local field variations
We now introduce the pull-back and push-forward operators associated with the

local phase-space transformation: f ≡ T 0 f0 and f0 ≡ T−1
0 f . Using these operators, we

construct the relation between the variation δf in particle phase space and the variation
δf0 in local particle phase space.

For this purpose, we begin with the push-forward expression

T−1
0 (δf )= δ(T

−1
0 f )+ ([T−1

0 , δ]T 0)T
−1
0 f ≡ δf0 + ([T

−1
0 , δ]T 0) f0, (5.17)

where, using (5.11)–(5.16), the commutation operator [T−1
0 , δ]T 0 is defined as

([T−1
0 , δ]T 0) f0 ≡ δ0 f0 = δ0p‖

∂f0

∂p‖
+ δ0µ

∂f0

∂µ
+ δ0ζ

∂f0

∂ζ

= δB ·
(
δ0p‖
δB

∂f0

∂p‖
+
δ0µ

δB
∂f0

∂µ
+
δ0ζ

δB
∂f0

∂ζ

)
=
δB
B
·

[
(p⊥⊥̂∂‖f0 − p‖∂⊥ f0)− b̂µ

∂f0

∂µ

]
≡ δB · ∂ (0)B f0. (5.18)

By inserting (5.18) into (5.17), the push forward T−1
0 (δf ) is now expressed in terms

of δf0 and δB as
T−1

0 (δf )= δf0 + δB · ∂ (0)B f0, (5.19)

which agrees with (12) and (32) of Morrison et al. (2013).
Another application of the push-forward relation (5.17) involves replacing the

operator δ with ∂/∂t in order to derive an expression for the local partial-time
derivative ∂0/∂t used in (5.7):

∂0 f0

∂t
≡ T−1

0

(
∂f
∂t

)
≡
∂f0

∂t
+

([
T−1

0 ,
∂

∂t

]
T 0

)
f0 ≡

∂f0

∂t
+
∂B
∂t
· ∂

(0)
B f0. (5.20)
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Returning to the local Vlasov equation (5.7), we therefore find

∂f0

∂t
+
∂B
∂t
· ∂

(0)
B f0 =−ẋ0 · ∇f0 − ṗ‖0

∂f0

∂p‖
− µ̇0

∂f0

∂µ
− ζ̇0

∂f0

∂ζ
. (5.21)

Next, we use the identity (∂B/∂t) · ∂ (0)B f0 = (∂0zα0/∂t)∂f0/∂zα0 and we define the total
local time derivative

d0zα0
dt
≡
∂0zα0
∂t
+ żα0 ≡

∂0zα0
∂t
+ {zα0 ,K0}0 + eE · {x, zα0 }0, (5.22)

with ∂x/∂t≡ 0, so that the local Vlasov equation (5.21) becomes

∂f0

∂t
=−

d0zα0
dt

∂f0

∂zα0
, (5.23)

which can also be expressed in divergence form as ∂(J0 f0)/∂t=−∂(J0f0 d0zα0/dt)/∂zα0 .

5.3. Local functionals
Our next step is now to define a transformation from functionals F [ f , E, B] to
functionals F0[ f0, E, B] based on the scalar-covariance property: F [ f , E, B] =
F0[ f0,E,B]. Using (4.22)–(4.24), we find

T−1
0

[
1
J
δF0[T

−1
0 f ,E,B]
δf (z)

]
≡

1
J0

δF0

δf0(z0)
, (5.24)

δF0[T
−1
0 f ,E,B]
δE(r)

≡
δF0

δE(r)
, (5.25)

δF0[T
−1
0 f ,E,B]
δB(r)

≡
δF0

δB(r)
−

∫
z0

δ3(x− r)
δF0

δf0(z0)
∂
(0)
B f0

≡
δF0

δB(r)
−∆

(0)
B F0(r). (5.26)

As an application of (5.24)–(5.26), we consider the local Hamiltonian functional

H0 =

∫
r

(
|E|2

8π
+
|B|2

8π

)
+

∫
z0

J0 f0K0, (5.27)

from which we obtain δH0/δf0 =J0K0 and δH0/δE=E/4π, while

δH0

δB(r)
=

B(r)
4π
+

∫
z0

δ3(x− r) f0
δ(J0K0)

δB

=
B(r)
4π
+

∫
z0

δ3(x− r)J0 f0

[
b̂

B
(K0 +µB)

]
. (5.28)

On the other hand, equation (5.26) yields

δH0[T
−1
0 f ,E,B]
δB(r)

=
δH0

δB(r)
−∆

(0)
B H0(r), (5.29)
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and thus (5.28)–(5.29) yield

δH0[T
−1
0 f ,E,B]
δB(r)

=
δH0

δB(r)
−∆

(0)
B H0(r)≡

B
4π
, (5.30)

where we used the identity

∆
(0)
B H0=

∫
z0

δ3(x− r)J0K0∂
(0)
B f0=

∫
z0

δ3(x− r)J0 f0

[
b̂

B
∂(µK0)

∂µ

]
≡
δH0

δB(r)
−

B
4π
. (5.31)

5.4. Local Vlasov–Maxwell bracket
Now that we have calculated the local functional variations (5.24)–(5.26), we can
transform the Vlasov–Maxwell bracket (3.2) and obtain the local Vlasov–Maxwell
bracket

[F0, G0]0 ≡ T0([T−1
0 F0,T−1

0 G0])

=

∫
z0

J0 f0

{
1
J0

δF0

δf0
,

1
J0

δG0

δf0

}
0

+ 4πc
∫

r

[
δF0

δE
· ∇×

(
δG0

δB
−∆

(0)
B G0

)
−
δG0

δE
· ∇×

(
δF0

δB
−∆

(0)
B F0

)]
− 4πe

∫
z0

J0 f0

(
δF0

δE
·

{
x,

1
J0

δG0

δf0

}
0

−
δG0

δE
·

{
x,

1
J0

δF0

δf0

}
0

)
. (5.32)

We note that this form is generic to all phase-space transformations that depend on the
magnetic field only. In addition, because the local Poisson bracket { }0 also depends
on magnetic-field gradients (e.g. ∇ × b̂ in B∗0), the Jacobi identity (3.7) for the local
bracket [ , ]0 might be difficult to prove explicitly.

We now show that the local Vlasov–Maxwell equations (3.12) and (5.7)–(5.8) can
be formulated in Hamiltonian form as

∂F0

∂t
= [F0,H0]0 ≡

∫
z0

δF0

δf0

∂f0

∂t
+

∫
r

(
δF0

δE
·
∂E
∂t
+
δF0

δB
·
∂B
∂t

)
. (5.33)

First, we calculate the local bracket with the local Hamiltonian functional (5.27):

[F0,H0]0 =

∫
z0

J0 f0

{
1
J0

δF0

δf0
,K0

}
0

+ 4πc
∫

r

[
δF0

δE(r)
· ∇×

B(r)
4π
−

E(r)
4π
· ∇×

(
δF0

δB(r)
−∆

(0)
B F0(r)

)]
− 4πe

∫
z0

J0 f0

(
δF0

δE(x)
· {x,K0}0 −

E(x)
4π
·

{
x,

1
J0

δF0

δf0

}
0

)
, (5.34)

where we used (5.30). Next, after integrating by parts, we obtain

[F0,H0]0 = −

∫
z0

δF0

δf0(z0)
({ f0,K0}0 + eE(x) · {x, f0}0 − c∇×E(x) · ∂ (0)B f0)

+

∫
r

[
δF0

δE
· (c∇×B− 4π J0)+

δF0

δB
· (−c∇×E)

]
, (5.35)
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from which we recover (5.33) when the local Vlasov–Maxwell equations (3.12) and
(5.7)–(5.8) are substituted. Here, we used the relation

−c∇×E(x) · ∂ (0)B f0 =
∂B
∂t
· ∂

(0)
B f0 ≡

∂0zα0
∂t

∂f0

∂zα0
(5.36)

to recover the local Vlasov equation (5.23).

6. Dynamical reduction by phase-space transformation
We have seen in § 5 that, while the local Vlasov–Maxwell equations (3.12) and

(5.7)–(5.8) possess a Hamiltonian structure defined in terms of the local Hamiltonian
functional (5.27) and the local Vlasov–Maxwell bracket (5.32), the local Vlasov
function f0 evolves rapidly on a short gyromotion time scale that needs to be
removed for practical (e.g. numerical) applications. The asymptotic elimination of the
gyromotion time scale from the local Vlasov–Maxwell equations proceeds with the
guiding-centre transformation (x, p‖, µ, ζ )→ (X, p

‖
, µ, ζ ), where the guiding-centre

Hamiltonian dynamics is now decoupled from the gyromotion time scale (Littlejohn
1983; Cary & Brizard 2009).

The guiding-centre phase-space transformation, however, is a non-local transfor-
mation involving displacements in local particle phase space that are expressed as
asymptotic expansions in powers of an ordering parameter ε � 1. It is precisely
this non-local feature of the guiding-centre transformation that allows the explicit
introduction of guiding-centre polarization and magnetization effects in guiding-centre
Vlasov–Maxwell theory (Brizard 2013; Tronko & Brizard 2015). Since the guiding-
centre transformation becomes the identity transformation in the limit ε→ 0, we now
consider the transformation of the local Vlasov–Maxwell Hamiltonian structure under
the action of a general near-identity phase-space transformation.

6.1. Near-identity phase-space transformation
The dynamical reduction of the Vlasov–Maxwell equations (3.10)–(3.14) is carried
out by a near-identity phase-space transformation T ε

: z0→ Z = T εz0, where ε � 1
denotes an ordering parameter associated with the dynamical reduction. The ordering
parameter ε ≡ ω τ is often chosen by comparing a short orbital time scale τ with a
long dynamical time scale ω−1

� τ of interest.
Each reduced phase-space coordinate Zα is expressed as an asymptotic expansion

in powers of ε involving components of the generating vector fields (G1,G2, . . .) on
particle phase space:

Zα(z0; ε)= zα0 + εGα
1 (z0)+ ε

2

(
Gα

2 (z0)+
1
2

Gβ

1 (z0)
∂Gα

1 (z0)

∂zβ

)
+ · · ·, (6.1)

where Zα(z0; ε= 0)= zα0 (i.e. to lowest order, the reduced phase-space coordinates are
local). We note that this transformation is invertible (since ε� 1), i.e. T −ε :Z→ z0=

T −εZ, where each particle coordinate zα0 is expressed as an asymptotic expansion in
terms of the same generating vector fields (G1,G2, . . .) on reduced phase space.

The reduced Jacobian of the transformation (6.1) is constructed from the local
Jacobian J0 =mB and the generating vector fields (G1,G2, . . .) as

J ≡J0 −
∂

∂zα0

[
J0(εGα

1 + ε
2Gα

2 + · · ·)−
ε2

2
Gα

1
∂

∂zβ0
(J0Gβ

1 + · · ·)+ · · ·

]
. (6.2)
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We note that, while the local particle phase-space coordinates z0 are independent of
the electric field E, the reduced phase-space coordinates Z(z0;E,B), and the reduced
Jacobian (6.2), generally depend on the electromagnetic fields (but not the local
Vlasov distribution f0).

6.2. Push-forward and pull-back operators
The reduction phase-space transformation (6.1) and its inverse induce transformations
in function space (Littlejohn 1982), where the push-forward operator

T−ε : f0→ f = T−ε f0 ≡ f0 ◦ T −ε (6.3)

transforms a function f0 on local particle phase space into a function f on reduced
phase space, while the pull-back operator

T ε
: f → f0 = T εf ≡ f ◦ T ε (6.4)

transforms a function f on reduced phase space into a function f0 on local particle
phase space. These induced transformations satisfy the scalar-covariance property, e.g.
f0(z0)=T εf (z0)= f (T εz0)= f (Z). Moreover, the action of the push-forward operator on
the phase-space infinitesimal volume yields the Jacobian transformation T−ε(J0 d6z0)≡
J d6Z, from which we obtain the Jacobian expansion (6.2). It is also useful to express
the reduced Jacobian (6.2) as

J ≡ (T−εJ0)
[
1− ε d ·G1 − ε

2d ·
(
G2 −

1
2 G1 · dG1

)
+ · · ·

]
≡ (T−εJ0)J ε, (6.5)

where J ε is defined by the identity T−ε(d6z0)≡J ε d6Z.
The reduced Poisson bracket { , }ε is constructed from the local Poisson bracket
{ , }0 in terms of the push-forward and pull-back operators:

{f , g}ε = T−ε({T εf , T εg}0)≡
∂f
∂Zα

Jαβ
∂g

∂Zβ
≡

1
J

∂

∂Zα
(J f {Zα, g}ε), (6.6)

where the divergence form uses the reduced Liouville property ∂(J Jαβ)/∂Zα ≡ 0.
Lastly, since the reduced Poisson matrix (with components Jαβ ≡ {Zα, Zβ}ε) is

defined as the inverse of the reduced Lagrange matrix (with components ωαβ defined
as the components of an exact two-form ω = T−εω0 in reduced phase space), the
Jacobi property of the reduced Poisson bracket (6.6) is guaranteed by the identity
dω ≡ 0, i.e. the exterior derivative of an exact two-form ω ≡ dΓ is automatically
zero. A direct proof of the Jacobi identity for the reduced Poisson bracket (6.6)
follows from the push-forward transformation T−ε{ f , {g, h}0}0 ≡ {f , {g, h}ε}ε , where
the definition (6.6) for the reduced Poisson bracket has been used twice. Hence, since
the local Poisson bracket { , }0 satisfies the Jacobi identity, then so does the reduced
Poisson bracket (6.6).

6.3. Reduced phase-space displacements
We now define two complementary phase-space displacements in terms of push-
forward and pull-back operators as follows. The local particle phase-space displacement
∆α is defined in terms of the pull-back operator as

∆α(z0)≡ zα0 − T εZα =−εGα
1 (z0)− ε

2

(
Gα

2 (z0)+
1
2

Gβ

1 (z0)
∂Gα

1 (z0)

∂zβ0

)
+ · · ·, (6.7)

while the reduced phase-space displacement ∆
α
(Z)≡ T−εzα0 − Zα is defined in terms

of the push-forward operator as ∆
α
≡ T−ε∆α. Lastly, we note that the Jacobian J ε

defined in (6.5) can be expressed as J ε = 1+ ∂∆
α
/∂Zα ≡ ∂(T−εzα0 )/∂Zα.
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6.4. Reduced partial-time derivative
Since the phase-space transformations considered here are time-dependent transfor-
mations (which nonetheless preserve time), the operation of time differentiation does
not commute with the push-forward and pull-back operators (6.3)–(6.4). Hence, we
define the reduced partial-time derivative

∂ε

∂t
≡ T−ε

(
∂0

∂t
T ε

)
≡
∂

∂t
+
∂εZ

α

∂t
∂

∂Zα
, (6.8)

where, using (6.7), we obtain the definition

∂εZ
α

∂t
≡ T−ε

[
∂0(T εZα)

∂t

]
= T−ε

(
∂0zα0
∂t
−
∂0∆

α

∂t

)
, (6.9)

and the partial-time derivative ∂J /∂t = −∂(J ∂εZ
α
/∂t)/∂Zα of the reduced Jacobian

(6.5) follows from (4.12).

6.5. Reduced Hamiltonian dynamics
Next, we transform the non-canonical Hamilton equations (3.16) to obtain

dεZ
α

dt
≡
∂εZ

α

∂t
+ {Zα,K}ε + eT−εE · {T−εx, Zα}ε, (6.10)

where the push forward of the kinetic energy is

K ≡ T−εK =K − εGα
1
∂K
∂zα
− ε2

[
Gα

2
∂K
∂zα
−

1
2

Gβ

1
∂

∂zβ

(
Gα

1
∂K
∂zα

)]
+ · · ·. (6.11)

The reduced Hamilton equations (6.10) satisfy the reduced Liouville theorem

∂J
∂t
+

∂

∂Zα

(
J

dεZ
α

dt

)
=

∂

∂Zα

[
J
(

dεZ
α

dt
−
∂εZ

α

∂t

)]
≡ 0, (6.12)

which follows from (6.10) and the reduced Liouville property ∂(J Jαβ)/∂Zα ≡ 0.

7. Reduced Vlasov–Maxwell equations
The phase-space transformation (6.1), and its associated induced operators and

meta-operators, allows us to derive the set of reduced Vlasov–Maxwell equations
(Brizard 2008). Examples of such reduced Vlasov–Maxwell equations include the
nonlinear gyrokinetic Vlasov–Maxwell equations (Brizard & Hahm 2007; Krommes
2012), which yield important numerical advantages (Garbet et al. 2010) in the
computer simulations of the turbulent evolution of magnetized fusion plasmas.

7.1. Reduced Vlasov equation
The reduced Vlasov equation is defined as the push forward of the Vlasov equation
(3.17):

0 = T−ε
(
∂0 f0

∂t
+ { f0,K0}0 + eE · {x, f0}0

)
≡
∂εf
∂t
+ {f ,K}ε + eT−εE · {T−εx, f }ε, (7.1)
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which, using (6.8), yields

∂f
∂t
=−

dεZ
α

dt
∂f
∂Zα
≡−

(
∂εZ

α

∂t
+ {Zα,K}ε + eT−εE · {T−εx, Zα}ε

)
∂f
∂Zα

, (7.2)

where the reduced Vlasov distribution f ≡ T−εf0 is defined as the push forward of the
local particle Vlasov distribution f0. The reduced Vlasov equation (7.2) can also be
written in divergence form as

0=
∂(J f )
∂t
+

∂

∂Zα

(
J f

dεZ
α

dt

)
, (7.3)

where we used the reduced Liouville theorem (6.12).

7.2. Reduced Maxwell equations
The reduced Maxwell equations are obtained from (5.8)–(5.9) by transforming the
local current and charge densities by meta-push-forward operation:

∂E(r)
∂t
− c∇×B(r) = −4πe

∫
Z
J (Z)f (Z)δ3(X+ ρε − r)

(
dεX
dt
+

dερε
dt

)
≡ − 4πTεJ0(r), (7.4)

∇ ·E(r)= 4πe
∫

Z
J (Z)f (Z)δ3(X+ ρε − r)≡ 4πTε%0(r), (7.5)

while the remaining Maxwell equations (3.12) and (3.14) are unaffected by the
dynamical reduction. In (7.4), the push forward of the particle velocity v = dx/dt is
introduced:

T−ε
(

d0x
dt

)
= T−ε

[
d0

dt
T ε(X+ ρε)

]
≡

dεX
dt
+

dερε
dt
≡ {X+ ρε,K}ε. (7.6)

In addition, the reduced charge and current densities in (7.4)–(7.6) involve the reduced
spatial displacement ρε ≡ T−εx − X, which plays an important part in the definition
of the reduced polarization and magnetization (Brizard 2008) in the reduced Maxwell
equations (7.4)–(7.5). The meta-push-forward of the (local) charge density in (7.5)
yields the transformation Tε%0 ≡ %ε − ∇ · Pε , where %ε denotes the reduced charge
density, defined as

%ε(r)≡ e
∫

Z
δ3(X− r)J (Z)f (Z), (7.7)

and the reduced polarization charge density %pol ≡ −∇ · Pε is expressed in terms of
the reduced polarization Pε , defined as (Brizard 2008, 2009)

Pε(r)≡ e
∫

Z
δ3(X− r)ρεJ (Z)f (Z)+ · · ·. (7.8)

The meta-push-forward of the (local) current density in (7.4) yields the transformation
TεJ0≡ Jε + ∂Pε/∂t+ c∇×Mε , where Jε denotes the reduced current density, defined
as

Jε(r)≡ e
∫

Z
δ3(X− r)

dεX
dt

J (Z)f (Z), (7.9)
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Jpol ≡ ∂Pε/∂t denotes the reduced polarization current density and the reduced
magnetization current density Jmag ≡ c∇ ×Mε is expressed in terms of the reduced
magnetization Mε , defined as (Brizard 2008, 2009)

Mε(r)≡
e
c

∫
Z
δ3(X− r)ρε ×

(
1
2

dερε
dt
+

dεX
dt

)
J (Z)f (Z)+ · · ·. (7.10)

Hence, the reduced Maxwell equations (7.4)–(7.5) may also be written as

∂Dε

∂t
− c∇×Hε =−4πJε, (7.11)

∇ ·Dε = 4π%ε, (7.12)

where the reduced electromagnetic fields are Dε ≡E+ 4πPε and Hε ≡B− 4πMε .

8. Lie-transform lift of the Vlasov–Maxwell bracket

In complete analogy with the definition of the reduced Poisson bracket (6.6), we
now define the reduced Vlasov–Maxwell bracket [ , ]ε:

[F , G]ε ≡Tε([(T−εF), (T−εG)]0), (8.1)

which acts on functionals of the reduced Vlasov distribution f and the electromagnetic
fields (E, B). The reduced bracket (8.1) satisfies the standard antisymmetry and
Leibniz properties. By introducing the double functional-bracket transformation

Tε([F0, [G0,H0]0]0) = Tε([T−ε(TεF0),T−ε(Tε[T−ε(TεG0),T−ε(TεH0)]0)]0)

= [TεF0, [TεG0,TεH0]ε]ε ≡ [F , [G,H]ε]ε, (8.2)

we note that the reduced Vlasov–Maxwell bracket [ , ]ε satisfies the Jacobi property:

[F , [G,K]ε]ε + [G, [K,F ]ε]ε + [K, [F , G]ε]ε = 0, (8.3)

since the local Vlasov–Maxwell bracket [ , ]0 satisfies the Jacobi property.

8.1. Reduced Vlasov–Maxwell bracket
In what follows, we combine the local phase-space transformation T0 and the
near-identity phase-space transformation T ε into a single phase-space transformation
Tε ≡ T ε

◦ T0. Hence, we introduce the operators T ε ≡ T 0T ε and T−1
ε ≡ T−εT−1

0 as well
as the meta-operators Tε ≡TεT0 and T−1

ε ≡T−1
0 T−ε .

The reduced Vlasov–Maxwell bracket (4.39) now becomes

[F , G]ε ≡ Tε([T−1
ε F ,T−1

ε G])

=

∫
Z
J f

{
1
J
δF
δf
,

1
J
δG
δf

}
ε

+ 4πc
∫

r

[
δ(T−1

ε F)
δE(r)

· ∇×
δ(T−1

ε G)
δB(r)

−
δ(T−1

ε G)
δE(r)

· ∇×
δ(T−1

ε F)
δB(r)

]
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− 4πe
∫

r

δ(T−1
ε F)

δE(r)
·

[∫
Z
J f δ3(X+ ρε − r)

{
X+ ρε,

1
J
δG
δf

}
ε

]

+ 4πe
∫

r

δ(T−1
ε G)

δE(r)
·

[∫
Z
J f δ3(X+ ρε − r)

{
X+ ρε,

1
J
δF
δf

}
ε

]
, (8.4)

where the reduced functional derivatives are defined as

δ(T−1
ε F)

δE(r)
=

δF
δE(r)

−

∫
Z

T−1
ε

[
δ(T εZ

α
)

δE(r)

]
∂f
∂Zα

δF
δf (Z)

≡
δF
δE(r)

−∆
(ε)
E F(r), (8.5)

δ(T−1
ε F)

δB(r)
=

δF
δB(r)

−

∫
Z

T−1
ε

[
δ(T εZ

α
)

δB(r)

]
∂f
∂Zα

δF
δf (Z)

≡
δF
δB(r)

−∆
(ε)
B F(r), (8.6)

with

T−1
ε

(
δ(T−1

ε F)
δE(x)

)
≡

∫
r
δ3(X+ ρε − r)

δ(T−1
ε F)

δE(r)
. (8.7)

We will now show that the reduced Vlasov–Maxwell bracket (8.4) can be used to
derive the reduced Vlasov equation (7.2) and the reduced Maxwell equations (3.12)
and (7.4).

8.2. Hamiltonian formulation of the reduced Vlasov–Maxwell equations
By inserting the reduced Hamiltonian functional

H[f ,E,B] ≡TεH0 =
1

8π

∫
r
(|E|2 + |B|2)+

∫
Z
J f K(E,B) (8.8)

in the reduced Vlasov–Maxwell bracket (8.4), and integrating by parts, we obtain

[F ,H]ε = −
∫

Z

δF
δf

[
{f ,K}ε + 4πe

(∫
r
δ3(X+ ρε − r){X+ ρε, f }ε ·

δ(T−1
ε H)

δE(r)

)]

+ 4π

∫
r

δ(T−1
ε F)

δE(r)
·

[
c∇×

(
δ(T−1

ε H)
δB(r)

)
−TεJ(r)

]

− 4πc
∫

r

δ(T−1
ε F)

δB(r)
· ∇×

(
δ(T−1

ε H)
δE(r)

)
, (8.9)

where K ≡H − eT−1
ε Φ, and the meta push forward TεJ≡ Jε + ∂Pε/∂t+ c∇×Mε of

the particle-current density is given by (7.4), with δH/δf = J K and {X + ρε, K}ε ≡
dεX/dt+ dερε/dt. In addition, the functional derivatives

δ(T−1
ε H)

δE(r)
=

[
E(r)
4π
+

∫
Z

T−1
ε

(
δ(T εZ

α
)

δE(r)

)
∂f
∂Zα

J K
]
−∆

(ε)
E H≡

E(r)
4π

, (8.10)
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δ(T−1
ε H)

δB(r)
=

[
B(r)
4π
+

∫
Z

T−1
ε

(
δ(T εZ

α
)

δB(r)

)
∂f
∂Zα

J K
]
−∆

(ε)
B H≡

B(r)
4π

, (8.11)

are used in the Maxwell sub-bracket while T−1
ε [δ(T−1

ε H)/δE(x)] = T−1
ε E/4π is used

in the interaction sub-bracket.
By combining these expressions, we find

[F ,H]ε =−
∫

Z

δF
δf
[{f ,K}ε + eT−1

ε E · {X+ ρε, f }ε]

+

∫
r

[(
δF
δE
−∆

(ε)
E F

)
· (c∇×B− 4πTεJ)−

(
δF
δB
−∆

(ε)
B F

)
· (c∇×E)

]

≡

∫
Z

δF
δf
∂f
∂t
+

∫
r

(
δF
δE
·
∂E
∂t
+
δF
δB
·
∂B
∂t

)
, (8.12)

where we used the reduced Maxwell equations (3.12) and (7.4). We also substituted
the reduced Vlasov equation (7.2):

∂f
∂t
=−{f ,K}ε − eT−1

ε E · {X+ ρε, f }ε −
∂εZ

α

∂t
∂f
∂Zα

, (8.13)

where

∂εZ
α

∂t
∂f
∂Zα
≡ T−1

ε

[
∂(T εZ

α
)

∂t

]
∂f
∂Zα

=

∫
r

[
∂E
∂t
· T−ε

(
δ(T εZ

α
)

δE(r)

)
∂f
∂Zα
+
∂B
∂t
· T−ε

(
δ(T εZ

α
)

δB(r)

)
∂f
∂Zα

]
, (8.14)

so that we made use of the identity in (8.9):∫
r

(
∆
(ε)
E F ·

∂E
∂t
+∆

(ε)
B F ·

∂B
∂t

)
≡

∫
Z

∂εZ
α

∂t
∂f
∂Zα

δF
δf
. (8.15)

Hence, the reduced Vlasov–Maxwell equations can be expressed as (8.12) in terms
of the reduced Hamiltonian functional (8.8) and the reduced Vlasov–Maxwell
bracket (8.4).

9. Summary
The reduced Vlasov–Maxwell bracket (8.4) has been derived from the local Vlasov–

Maxwell bracket (5.32) by Lie-transform methods based on the dynamical reduction
associated with a near-identity phase-space transformation T ε and its inverse T −ε .
These phase-space transformations induce transformations on functions denoted by the
push-forward operator T−εf0≡ f0 ◦ T −ε and the pull-back operator T εf ≡ f ◦ T ε . These
pull-back and push-forward operators, in turn, induce transformations on functionals
denoted by the meta-push-forward operator Tε and meta-pull-back operator T−ε , which
guarantee the Jacobi property (8.3) for the reduced Vlasov–Maxwell bracket.

In future work, we will explore the Hamiltonian formulation of the guiding-centre
Vlasov–Maxwell equations, following recent works by Burby et al. (2015a) and Burby,
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Brizard & Qin (2015b), as well as the variational formulations of guiding-centre
Vlasov–Maxwell theory derived by Brizard & Tronci (2016). In particular, we will
focus on investigating how the Hamiltonian properties of the reduced Vlasov–Maxwell
bracket (8.4) survive (i) the closure problem: the process of truncation of the
guiding-centre Vlasov–Maxwell bracket at a finite order in ε (so far expressions
have been derived at all orders in ε) and (ii) the averaging problem: the process by
which the gyroangle is eliminated from the guiding-centre Vlasov–Maxwell bracket
(since guiding-centre Vlasov–Maxwell equations do not involve the fast gyromotion
time scale). In (8.4)–(8.6), since the terms ρε and ∆

(ε)
E,B are expected to contain

gyroangle-independent and gyroangle-dependent contributions resulting from the
guiding-centre transformation, the gyroangle averaging and closure problems of the
guiding-centre Vlasov–Maxwell bracket will be addressed explicitly.
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