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There are several plasma models intermediate in complexity between ideal magnetohydrodynamics

(MHD) and two-fluid theory, with Hall and Extended MHD being two important examples. In this

paper, we investigate several aspects of these theories, with the ultimate goal of deriving the nonca-

nonical Poisson brackets used in their Hamiltonian formulations. We present fully Lagrangian

actions for each, as opposed to the fully Eulerian, or mixed Eulerian-Lagrangian, actions that have

appeared previously. As an important step in this process, we exhibit each theory’s two advected

fluxes (in analogy to ideal MHD’s advected magnetic flux), discovering also that with the correct

choice of gauge they have corresponding Lie-dragged potentials resembling the electromagnetic

vector potential, and associated conserved helicities. Finally, using the Euler-Lagrange map, we

show how to derive the noncanonical Eulerian brackets from canonical Lagrangian ones. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4952641]

I. INTRODUCTION

Ideal magnetohydrodynamics (MHD), that reliable

workhorse of plasma physics, has long been cast into nonca-

nonical Hamiltonian form.1 So has the theory from which it

is usually derived, the two-fluid model.2 There are many

advantages to a Hamiltonian form: the discovery and classifi-

cation of invariants; the development of numerical algo-

rithms that automatically preserve such invariants; easily

finding the equations of motion in curved coordinates; con-

ducting equilibrium and stability analysis. However, there

are many theories intermediate in complexity between two-

fluid theory and ideal MHD; Kimura and Morrison3 describe

eleven of them. Two are particularly important: Hall MHD,

which accounts for the difference between the motion of the

two species in a typical plasma, and L€ust’s Extended MHD,4

which includes all terms of first order in the ratio l of species

masses in the derivation from two-fluid electron-ion theory.

Recently, Yoshida and Hameiri5 formulated a noncanonical

Poisson bracket for Hall MHD, and shortly later Abdelhamid

et al. did so for Extended MHD;6 however, as often happens

when working with Hamiltonian systems, they had to simply

posit a bracket and prove it satisfied all the desired attributes,

such as antisymmetry and the Jacobi identity. We will show

how to derive these brackets, starting from action principles

for each theory.

These action principles have a long and distinguished

history in fluids, originating with the work of Lagrange in

the 18th century.7 The action principle formulation has also

been employed in plasma physics since the second half of

the 20th century, as evident from the works of Refs. 8–15.

For ideal magnetohydrodynamics (MHD), the first action

principle formulation was provided by Newcomb in Ref. 16,

shortly followed by other works in the same area.17–19 For

Extended MHD, an Eulerian action principle was proposed

in Ref. 20 which was subsequently generalized to a Eulerian-

Lagrangian action in Ref. 21. For recent overviews of action

principle formulations of plasma models, we refer the reader

to Refs. 22–24. The noncanonical Hamiltonian formulations

for these models can be found in the works of Refs. 1, 5, 6,

and 25–28.

In principle, there is an easy process to construct a non-

canonical Poisson bracket, which goes as follows. First, con-

struct an action whose variations give the correct equations

of motion in some coordinate system. From this tangent-

space action principle, derive a Hamiltonian function via a

Legendre transform, and produce the corresponding phase-

space action principle using the canonical momenta of the

original action. The Poisson bracket accompanying the

phase-space action will be canonical. Then simply change

coordinates in order to produce the desired noncanonical

bracket. This procedure is, indeed, what we use, but there are

many complications along the way.

To begin with, the canonical bracket for fluid theories

requires Lagrangian coordinates: those in which every fluid

element is given a distinct label, and the equations of motion

are expressed for a given labelled element, despite the fact

that the element is changing position. However, fully

Lagrangian actions for Hall and Extended MHD have not yet

been given. The closest are the mixed Lagrangian-Eulerian

actions of Ref. 21, “Eulerian” coordinates being ones that

observe fluid quantities at a fixed point rather than following

a given element. In this paper, we present fully Lagrangian

actions. Another complication arises because the Legendre

transform fails to be invertible for either theory, and an

expression for one of the velocities in terms of the phase-

space variables must be inserted by hand. Finally, the Euler-

Lagrange map producing the noncanonical brackets requires

prior knowledge of the generalized vorticities advected by
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the theories, so we must devote some time to their discovery

and elucidation.

These generalized vorticities turn out to be crucial to the

structure of every Hamiltonian MHD model. There are n
advected vorticities for a theory with n distinct charged spe-

cies, n being two in our case. “Advected” in this case means

that the flux elements defined by the vorticities are carried

along with the fluid, their corresponding two-forms obeying

a Lie-dragging equation. For ideal MHD, both generalized

vorticities collapse down to the same quantity, the magnetic

field, which is advected by the fluid velocity. For Hall MHD,

one generalized vorticity is the magnetic field, whose fluxes

are carried along with the electron velocity, and the other is

the magnetic field plus kinetic vorticity r� v, advected by

the ion velocity.29 For Extended MHD, they turn out to be

almost the same, but differing from the Hall MHD ones by

terms of order l in the curl of the current. Both our actions

and our derivations of noncanonical brackets would be

impossible, but for the fact that we can eliminate the

Eulerian magnetic field terms in both the action and the

Euler-Lagrange map in favor of fully Lagrangian terms, an

elimination wholly dependent on the existence of these

advected fluxes.

Before moving on, we note a few ways in which our

present work can be readily extended along the lines of past

works that utilized these methods. One can incorporate finite

Larmor radius (FLR) effects, such as the Braginskii gyrovis-

cosity.30 FLR effects for reduced MHD24 and generalized

fluid models31 were implemented via an action principle for-

mulation, and evidently a similar treatment can be under-

taken via our Extended MHD action principles. Further

extensions include stability analyses,32,33 the systematic deri-

vation of reduced Extended MHD models (with potential

applications in collisionless reconnection), linear and nonlin-

ear waves via a Lagrangian approach,34 and MHD-like mod-

els (ideal, Hall, or extended) for quasineutral plasmas with

more than two charged species.

The paper is organized as follows. Section II A reviews

the basic framework of Hamiltonian systems, while Section

II B presents a specific example of that framework for ideal

MHD, allowing comparisons with the related, but more com-

plex constructions for Hall and Extended MHD. We begin

our new material by focusing on the simpler theory, Hall

MHD, in Section III. Section III A lays out the needed termi-

nology and facts about Hall MHD, which are then used in

Section III B to construct both tangent-space and phase-

space actions. Section III C is an interesting digression in

which we lay out a useful gauge, producing not only

advected fluxes but also the corresponding advected one-

forms. Finally, we reach the goal which motivates our entire

paper, the derivation in Section III D of the noncanonical

bracket. This derivation is carried out in more algebraic

detail than might be necessary, in light of its unfamiliarity to

many readers. We then pivot to Extended MHD in Section

IV, starting with a derivation of its fluxes in Section IV A.

We give its actions in Section IV B and derive its noncanoni-

cal bracket in Section IV C. This derivation takes more work

than that in III D, but the procedure is identical, so this time

we omit the details. We conclude in Section V.

II. OVERVIEW

A. Hamiltonian systems

As mentioned, all four models have been put into

Hamiltonian form. By that we mean that there is a functional

H and a bracket {f, g} so that the time derivative of an arbi-

trary functional is given by

df

dt
¼ f ;Hf g: (1)

The functionals are integral expressions of the field varia-

bles; for instance, the Hamiltonian functional is H ¼
Ð
Hd3x,

where H is an energy density. To separate out the time evo-

lution of the field variables (like a momentum mi), one can

use a test functional such as

@mi

@t

����
x0

¼
ð

mi xð Þd x� x0ð Þd3x;H

� �
:

The bracket can be expressed as

f ; gf g ¼
ð

df

dzi
J ij zð Þ dg

dzj
d3x; (2)

where the d=dzi denotes functional differentiation and the

components of z represent the field variables. The differential

operators J ijðzÞ must be chosen so that the bracket satisfies

its usual properties (here, f, g, and h are functionals, and a
and b are real numbers)

faf þ bg; hg ¼ aff ; hg þ bfg; hg;

ff ; gg ¼ �fg; fg;

fff ; gg; hg þ ffg; hg; fg þ ffh; fg; gg ¼ 0:

Of these, only the last, the Jacobi identity, proves difficult

to confirm. Thankfully, the method of this paper provides a

relatively easy way to confirm it. In Lagrangian coordi-

nates, where every fluid element is given a distinct label a
and the equations of motion are evaluated at fixed label

(i.e., for a given fluid element), the bracket will be

canonical

f ; gf g ¼
ð

df

dqi

dg

dpi
� dg

dqi

df

dpi

� �
d3a;

where qi is the coordinate at fixed label a, and pi is its conju-

gate momentum, which can be obtained via an action. This

paper has such actions for each of its models.

The Jacobi identity is fairly easy to prove for the canoni-

cal bracket, relying only on the commutation of functional

derivatives, d2f=dzidzj ¼ d2f=dzjdzi. However, the map con-

verting Lagrangian to Eulerian coordinates, in which equa-

tions are expressed at fixed spatial coordinates, produces a

noncanonical bracket; for example, even the straightforward

definition,

miðx; tÞ ¼
ð

piða; tÞdðx� qða; tÞÞd3a;
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gives an Eulerian momentum dependent on both Lagrangian

position and momentum. The Jacobi identity can be directly

proved for the Eulerian bracket, as was done in Ref. 35 for

relativistic MHD and Ref. 27 for Hall MHD. However, when

such a bracket is produced from the canonical Lagrangian

one, the Jacobi identity is assured, as it is invariant under

coordinate changes and reductions.

B. Hamiltonian MHD models

In this section, we exhibit the already-discovered

Hamiltonian forms for ordinary, Hall, and Extended MHD. It

will be our goal in Secs. III and IV to derive the latter two.

These theories are all expressed here in terms of Eulerian

variables, and Lagrangian equivalents will be postponed

until our later discussion of their actions, where they occur

more naturally.

In MHD the Eulerian field variables are density q, spe-

cific entropy s, fluid velocity v, and magnetic field B. In the

barotropic case, one can express s as a function of q and

thereby eliminate it, but we consider the more general case.

One can also use as a supplementary variable the current

density ð4p=cÞj ¼ r� B, using Amp�ere’s law in the ab-

sence of displacement current.

Particle number and entropy are conserved and

advected, respectively,

@q
@t
þ r � qvð Þ ¼ 0;

@s

@t
þ v � rs ¼ 0:

The fluid velocity obeys the following momentum equation:

q
@v

@t
þ v � rv

� �
¼ �rpþ j� B

c
; (3)

while the magnetic field’s evolution is determined by Ohm’s

law for a perfect conductor

Eþ v� B

c
¼ 0;

as can be seen by taking its curl and applying Faraday’s law

@B

@t
¼ r� v� B

c

� �
:

In Hamiltonian MHD, while one can express the

Hamiltonian and bracket in terms of v and s (along with B

and q), their derivation turns out to be simpler when using

the momentum density m � qv and the entropy density

r � qs. In terms of these variables, the Hamiltonian is the

total energy

H ¼
ð

m2

2q
þ qU q;

r
q

� �
þ B2

8p

 !
d3x;

and the bracket is

ff ; ggMHD ¼ �
ð

q
df

dmi

@

@xi

dg

dq

� �
� q

dg

dmi

@

@xi

df

dq

� �� �

þ r
df

dmi

@

@xi

dg

dr

� �
� r

dg

dmi

@

@xi

df

dr

� � !

þ mj
df

dmi

@

@xi

dg

dmj

� �
� mj

dg

dmi

@

@xi

df

dmj

� �� �

þ Bj df

dmi

@

@xi

dg

dBj

� �
� Bj dg

dmi

@

@xi

df

dBj

� � !

þ Bj @

@xj

df

dBi

� �
dg

dmi
� Bj @

@xj

dg

dBi

� �
df

dmi

 !
d3x:

This bracket also constitutes the bulk of the Hall and

Extended MHD brackets. It was first given in Ref. 1, and the

sign convention used is from that paper.

Hall MHD differs from ordinary MHD in that the differ-

ence between ion and electron velocities is no longer

neglected in the Ohm’s law. The derivation then modifies

that law to

Eþ v� B

c
¼ j� B

nec
�rpe

ne
; (4)

where n ¼ q=m is the number density, m is the particle mass

(here equal to the ion mass), and pe is the electron pressure.

The entropy, continuity, and momentum equations are

unchanged, as is the Hamiltonian. The bracket, in turn, now

has the additional term

ff ; gg ¼ ff ; ggMHD þ ff ; ggHall

¼ ff ; ggMHD �
ð

c

ne
B � r � df

dB

� ��

� r� dg

dB

� ��
d3x: (5)

This bracket was first described in Ref. 5, and it requires the

assumption of a barotropic electron pressure. Later we will

see that this assumption gives us an advected magnetic flux,

while barotropic ion pressure gives a second advected quan-

tity. These will be a necessary part of our construction of the

bracket.

In Extended MHD, one additionally retains terms of first

order in l � me=mi during the derivation, producing a new

momentum equation

nm
@v

@t
þ v � rv

� �
¼ �rpþ j� B

c
� me

e2
j � r j

n

� �
; (6)

and a new version of the Ohm’s law

Eþ v� B

c
¼ me

e2n

@j

@t
þr � vjþ jvð Þ

� �

� me

e3n
j � r j

n

� �
þ j� B

enc
�rpe

en
: (7)

Here, the term vjþ jv refers to the symmetric tensorial outer

product.
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The bracket and Hamiltonian, however, are more com-

pactly expressed in terms of B? � Bþ ðmec=eÞr � v. The

Hamiltonian, which now includes a term for the electron ki-

netic energy, is

H ¼
ð

m2

2q
þ nme

2

j

ne

� �2

þ qU q; sð Þ þ
B2

8p

 !
d3x

¼
ð

m2

2q
þ qU q; sð Þ þ

1

8p
B � B?

 !
d3x;

in light of the MHD Amp�ere’s law r� B ¼ ð4p=cÞj. Its

bracket, in turn, is

ff ; gg ¼ ff ; ggMHD þ ff ; ggExt

¼ ff ; ggMHD �
ð

c

ne
B? �

mec

e
r�m

q

� �

� r � df

dB?

� �
� r� dg

dB?

� �� �
d3x: (8)

This bracket was first given in Ref. 6. It also requires baro-

tropic electron pressure pe ¼ peðnÞ. The structural similarity

between the Hall and Extended MHD Poisson brackets was

investigated in Refs. 27 and 28 and will be elucidated further

below.

III. HALL MHD

A. Flux conservation

The essential difference between the various MHD mod-

els lies in their flux conservation laws, each one having a dif-

ferent version. The archetypal flux conservation law is that of

ordinary MHD, B � d2q ¼ B0 � d2a.16 Here, the a variables

are coordinates in a label space A, whose continuous values

identify fluid elements at t¼ 0 (this condition can be relaxed,

as in Ref. 36). Meanwhile, the coordinates q(a, t) describe the

point to which a specific element flows; thus, qða; 0Þ ¼ a. In

addition, B � Bðq; tÞ while B0 ¼ B0ðaÞ � Bðq; 0Þ. More ex-

plicitly, we write the flux conservation law as

�ijkBiðq; tÞdqjdqk ¼ �ijkBi
0ðaÞdajdak: (9)

This expression can be manipulated into a transformation

rule for the magnetic field

Bi ¼ Bj
0

J
@qi

@aj
; (10)

where J � j@q=@aj is the Jacobian determinant of the in-

vertible transformation from a to q.

There are two distinct ways one can modify the flux

conservation law (9). First, one can advect a flux different

from that of B; with an appropriate choice of this flux, one

then gets 2D inertial MHD.26 Second, the same flux can be

advected, but along a path distinct from that of the fluid.

This second approach gives Hall MHD. Specifically, while

the fluid itself flows from a to a point q(a, t), the flux element

moves from a to a distinct point qf ða; tÞ, as illustrated in

Figure 1. Flux conservation is now

�ijkBidqj
f dqk

f ¼ �ijkBi
0 dajdak;

which gives rise to the transformation rule

Bi ¼ Bj
0

J f

@qi
f

@aj
: (11)

The flux Jacobian J f is also invertible and can be written

J f ¼ �ijk�
lmn
@qi

f

@al

@qj
f

@am

@qk
f

@an
;

from which one can derive the expression dJ f=dt
¼ J @ _qi

f =@qi
f .

Taking a full time derivative of Bðqf ; tÞ in Equation (11)

gives

dBi

dt
¼ @Bi

@t
þ _qj

f

@Bi

@qj
¼ Bj

0

J f

@ _qi
f

@aj
� Bj

0

J f

@qi
f

@aj

@ _qk
f

@qk
f

¼ Bk
0

J f

@ql
f

@ak

@am

@ql
f

@ _qi
f

@am
� Bj

0

J f

@qi
f

@aj

@ _qk
f

@qk
f

¼ Bj
@ _qi

f

@qj
� Bi

@ _qk
f

@qk
f

:

This equation shows that B is advected along qf as the vector

dual to a 2-form, as desired. Since B is divergenceless, we

can add a term proportional to ðr � BÞ _qf and put the equa-

tion in the more familiar Faraday form

@B

@t
¼ rq � _qf � B

� �
: (12)

So far, so good. However, complications arise when you

look for the other equations of motion. Some fluid attributes

(density and specific entropy) are transported along the flow

lines q, not qf: mass conservation is described by nðq; tÞd3q
¼ n0ðaÞd3a, and entropy conservation by sðq; tÞ ¼ s0ða; tÞ,
recalling that no dissipative terms have been added. As a

FIG. 1. Starting from label a, the fluid moves to q(a, t), while the magnetic

flux is dragged to qf ða; tÞ. Their difference is qdða; tÞ.
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result, the label corresponding to the magnetic field will differ

from the label on the other quantities. This situation is shown

in Figure 2. In this figure, the fluid element labelled by a flows

to q(a, t), while a different label a0 shows the origin of the flux

element that has been advected to qða; tÞ ¼ qf ða0; tÞ.
For future use we will need two additional quantities:

the point qða0; tÞ, to which the a0 element flows, and the dif-

ference qdða0; tÞ between qf ða0; tÞ and qða0; tÞ. All these quan-

tities are related via

qða; tÞ ¼ qf ða0; tÞ ¼ qða0; tÞ þ qdða0; tÞ:

More relations are available, for example, a0ða; tÞ
¼ q�1

f ðqða; tÞ; tÞ. In principle, we could eliminate all but two

of the quantities, but it is simpler to keep the extras around.

We also note that, for Hall MHD, q corresponds to ion flow

and qf to electron flow, so they might also have been written

qi and qe; however, in Extended MHD, we will use similar

quantities, but they will now differ slightly from the electron

and ion paths. Thus we use a convention that will be appro-

priate for both models.

We will also adopt the convention of using superscripts

to show vectorial indices, and subscripts to show other attrib-

utes, like species identity or initial condition. There are cases

where the distinction between vectors and covectors (and

thus raised and lowered indices) matters, such as when using

curved coordinates, but it may easily be reinstated when

needed. We have, however, left the distinction intact in the

expressions qi
;j and dij

kl, where it improves readability.

B. Lagrangian actions

Every point corresponds to two labels. In Hall MHD,

using the convention described above, unprimed labels will

denote ion quantities: for example, the number density is

advected along the fluid lines, which in our approximation

are the ion flow lines. Meanwhile, primed labels will denote

electron quantities, such as the magnetic flux density

advected along electron flow lines. In light of Fig. 2, the vari-

able q will appear as both q(a, t) and qða0; tÞ, as will some

quantities (namely, the potentials / and A) dependent on

them. To simplify expressions, we will write q0 �
qða0; tÞ; q0d � qdða0; tÞ; ðq0Þi;j � @ðq0Þ

i=@ða0Þj and ðq0dÞ
i
;j �

@ðq0dÞ
i=@ða0Þj, with unprimed expressions such as q denoting

unprimed quantities like q(a, t).
If we treat primed and unprimed quantities separately,

then the full Euler-Lagrange equations, using Lagrangian

density L, will be

"
d

dt

@L
@ _qi

� �
þ d

dt

@L
@ _q0
� �i

 !
þ @

@aj

@L
@qi

;j

 !

þ @

@ a0ð Þj
@L

@ q0ð Þi;j

 !
� @L
@qi
� @L
@ q0ð Þi

#
a0¼q�1

f
q a;tð Þ;tð Þ

¼ 0;

(13)

with a similar expression for qd. Many of the terms in the

Euler-Lagrange equations are superfluous: only the first four

terms will contribute in the q variation, and only the second

and fourth terms in the qd one. These Euler-Lagrange equa-

tions can be obtained via Dirac delta function manipulations

on a six-dimensional label space

S ¼
ð ð ð

Lðq; qd; _q; _qd; q0; q0d; _q0; _q0dÞdða0

� q�1
f ðqða; tÞ; tÞÞd3a0d3adt ; (14)

but for the most part, we will omit this consideration and work

with (13). However, we emphasize one peculiarity of the

action (14): it only works if the delta function integral is per-

formed after the variations. If one does so before varying, col-

lapsing back down to a single label space, the variational

principle no longer gives the correct expressions. This peculi-

arity is shared by the mixed Lagrangian-Eulerian approach of

Ref. 21.

If it were written in terms of ion and electron velocities

qi and qe, the Lagrangian density would be standard

L ¼ 1

2
min0 _q2

i þ
en0

c
_qi � A q; tð Þ � en0/ q; tð Þ

� n0Ui
n0

J ; s 0ð Þi

� �
þ 1

2
men0 _q0e

� �2 � en0

c
_q0e � A q0 þ q0d; t

� �
þ en0/ q0 þ q0d; t

� �
� n0Ue

n0

J f
; s 0ð Þe

� �
: (15)

In Hall MHD, we treat electron velocity as being different

from ion velocity (unlike in regular MHD), but nonetheless

neglect terms of order me=mi. The variables used will be cen-

ter-of-mass velocity _q, and the drift velocity of electrons rela-

tive to ions, _qd. In terms of ion and electron velocities, we

have

_q ¼ mi _qi þ me _qe

mi þ me
_qd ¼ _qe � _qi:FIG. 2. The fluid moves to a point q(a, t), where a flux has also flowed from

a different initial point a0; thus qf ða0; tÞ ¼ qða; tÞ.
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Inverting these equations and neglecting terms of the order of the mass ratio, we have

_qi ¼ _q � me

mi þ me
_qd � _q

_qe ¼ _q þ mi

mi þ me
_qd � _q þ _qd: (16)

Thus, rewriting (15), setting m � mi þ me � mi, and noting the distinction between primed and unprimed labels, the

Lagrangian density becomes

L ¼ 1

2
mn0 _q2 þ en0

c
_q � A q; tð Þ � _q0 � A q0 þ q0d; t

� �
� _q0d � A q0 þ q0d; t

� �	 

�en0 / q; tð Þ � / q0 þ q0d; t

� �	 

� n0 Ui

n0

J ; s 0ð Þi

� �
þ Ue

n0

J f
; s 0ð Þe

� �" #
: (17)

In the q equation of motion, the terms arising from /ðq; tÞ � /ðq0 þ q0d; tÞ cancel, plus most of the terms coming from
_q � Aðq; tÞ � _q0 � Aðq0 þ q0d; tÞ, due to the q ¼ q0 þ q0d evaluation. The only surviving term comes from the advective parts of

dA=dt, which are different for the two terms. An additional term arises from the q0 partial derivative on q0d � Aðq0 þ q0dÞ.
Setting pe ¼ n2@Ue=@n; pi ¼ n2@Ui=@n, and p ¼ pe þ pi, we have, for the q equation of motion

mn0 €qi � en0

c
_q0d
� �j

@jAi q0 þ q0d; t
� �

þ en0

c
_q0d
� �j

@iAj q0 þ q0d; t
� �

þ J @ip

� �
a0¼q�1

f
q a;tð Þ;tð Þ

¼ 0;

which can, by multiplying with 1=J and using j ¼ �en _qd, be simplified to

q€q ¼ �rq pþ 1

c
j� B; (18)

which is the Lagrangian equivalent of (3).

In the qd equation of motion, the three final terms come from the full derivative dAðq0 þ q0d; tÞ=dt, and the pressure term

comes from the q0d dependence of J f

en0

c
_q0
� �j

@iAj q0 þ q0d; t
� �

þ _q0d
� �j

@iAj q0 þ q0d; t
� �
 �

� en0@
i/ q0 þ q0d; t
� �

þJ @ipe �
en0

c
_q0
� �j

@jAi q0 þ q0d; t
� �

þ _q0d
� �j

@jAi q0 þ q0d; t
� �
 �

� @Ai

@t
¼ 0;

with the whole thing evaluated at qða; tÞ ¼ qða0; tÞ þ qdða0; tÞ as usual. Reordering and simplifying, one finds

Eþ
_q � B

c
¼ �

_qd � B

c
�rpe

ne
; (19)

which is the Ohm’s law (4) for Hall MHD. Finally, the canonical momenta are

p ¼ dL

d _q
¼ mn0 _q pd ¼

dL

d _qd

¼ � en0

c
A; (20)

with the Lagrangian function L defined by S ¼
Ð

Ldt. The expression for pd will allow us to convert the thus-far omitted field

term B2=8p into a term expressed by fluid quantities, once we switch to a phase-space action.

It turns out to be easy to translate the mixed Eulerian-Lagrangian terms of Ref. 21 into the appropriate terms of (4), when

one minds the difference between primed and unprimed labels. We translate that paper’s Q and D into our variables using

q¼Q and qd ¼ �D=en0. Then its mixed ion terms in the Lagrangian are

ð ð
en0

1

c
_q � A x; tð Þ � / x; tð Þ

� �
d x� q a; tð Þð Þd3xd3a

¼
ð ð ð

en0

1

c
_q � A x; tð Þ � / x; tð Þ

� �
d x� q a; tð Þð Þd a0 � q�1

f q a; tð Þ; tð Þ

 �

d3xd3ad3a0

¼
ð ð

en0

1

c
_q � A q; tð Þ � / q; tð Þ

� �
d a0 � q�1

f q a; tð Þ; tð Þ

 �

d3ad3a0;
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and its electron terms are

ð ð
en0

1

c
_q þ _qdð Þ � A x; tð Þ � / x; tð Þ

� �
d x� q a0; tð Þ � qd a0; tð Þ
� �

d3xd3a0

¼
ð ð ð

en0

1

c
_q þ _qdð Þ � A x; tð Þ � / x; tð Þ

� �
d x� q a0; tð Þ � qd a0; tð Þ
� �

d a0 � q�1
f q a; tð Þ; tð Þ


 �
d3xd3a0d3a

¼
ð ð

en0

1

c
_q þ _qdð Þ � A q0 þ q0d; t

� �
� / q0 þ q0d; t

� �� �
d a0 � q�1

f q a; tð Þ; tð Þ

 �

d3ad3a0:

However, the action in Ref. 21 also contains a fully Eulerian term

ð�1

8p
jr � A x; tð Þj2d3x;

which is used to produce �ð4p=cÞ _qd ¼ r� B, a missing piece in our fully Lagrangian tangent space action. We also cannot

perform the usual Legendre transform, because we have no expression _qdðq; qd; p; pdÞ. Fortunately, we can solve these prob-

lems by switching to a phase space action and invoking (11). The four variations of this action give all the needed equations.

The needed action density is

p � _q þ pd � _qd �
1

2mn0

p2 þ e

mc
p � A q; tð Þ � p � A q0 þ q0d; t

� �� �

� 1

8pJ f

c

n0e

� �2

ra � p 0ð Þd
� �i ra � p 0ð Þd

� �j @ q0ð Þk

@ a0ð Þi
þ
@ q0d
� �k

@ a0ð Þi

 !
@ q0ð Þk

@ a0ð Þj
þ
@ q0d
� �k

@ a0ð Þj

 !

þ n0e / q0 þ q0d; t
� �

� / q; tð Þ
� �

� n0 Ui
n0

J ; s 0ð Þi

� �
þ Ue

n0

J f
; s 0ð Þe

� �" #
: (21)

The middle term, note, is simply B2=8p. We have expanded

it using (11) to express the magnetic field in terms of its ini-

tial value, and then applying (20) to express this initial value

as the curl of that of a canonical momentum.

There are four phase space variations; as when using

(13), one sets q ¼ q0 þ q0d after taking variations. Thus the p
variation gives

_q ¼ p
mn0

: (22)

The pd variation involves an integration by parts on the mid-

dle term of the density (21), giving

_qd ¼ �
c

4pn0e
r� B; (23)

i.e., ð4p=cÞj ¼ r� B, the missing piece of our earlier tan-

gent space action. Note that the B2=8p term requires varying

pð0Þd , which is the value of pd on the boundary at t¼ 0. This

is permitted since the action principle only requires dq ¼
dqd ¼ 0 on the boundary in order to perform an integration

by parts, while the momenta are free to vary at t¼ 0.

Once again, most of the terms vanish in the q variation.

The @q=@a terms in the middle term of (21) give two factors

of @jðBiBj=2Þ, and the J f in the same term gives a factor of

@iðB2=2Þ. The remaining terms proceed similarly as in our

tangent space calculation. The overall result is

� _pi � Ckj

4p
@

@ak
BiBj � B2

2
dij

� �
þ J @ip ¼ 0; (24)

where Cjk is the cofactor matrix to @qi=@aj. Given j ¼
ðc=pÞr � B and the �-� identity, (24) is the same as (18).

Finally, the qd variation gives

� _pi
d �

e

mc
pj@iAj þ

Ckj

4p
@

@ak
BiBj � B2

2
dij

� �
þ n0e@i/þ J f@

ipe ¼ 0: (25)

Considering that pd ¼ �ðen0=cÞAðq; tÞ, and _pd will thus

have two terms, this equation is identical to (4).

However, the action (21) is still slightly unsatisfactory,

because we use the quantities A and /, which are not fully

determined by (11): namely, their gauge freedom remains.

We did use the relation (20), viz., pd ¼ �ðen0=cÞAðq; tÞ,
from the tangent space action (17) to construct the phase

space action (21); however, (21) does not produce this rela-

tion, and neither action gives us the evolution of /. Section

III C develops a gauge condition which resolves this problem

in an elegant manner.

C. The Lie gauge and advection of the vector potential

Look at the Hall MHD Ohm’s law (4) in Eulerian

coordinates
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Eþ v� B

c
¼ j� B

nec
�rpe

ne
:

Using E ¼ �r/� ð1=cÞ@A=@t and reordering, it becomes

@A

@t
¼ v� j

ne

� �
� Bþ c

ne
rpe � cr/; (26)

and, for a barotropic plasma in which pe ¼ peðnÞ, taking the

curl renders it into the form

@B

@t
¼ r� vf � Bð Þ;

with vf ¼ v� j=ne. This equation is in the form of (12),

showing that the components of B are dual to those of a two-

form which is Lie-dragged by vf .

It would be even more convenient for A to be the com-

ponents of a Lie-dragged one-form, with B dual to the com-

ponents of its exterior derivative. Because the last two terms

of (26) are curl-free, they can be expressed as a gradient:

r/0 ¼ r/� ð1=neÞrpe. We then use the gauge freedom in

/ to set

r/0 ¼ r vf � A
c

� �
; (27)

which we call the Lie gauge, due to the fact that it will pro-

duce a Lie-dragging equation. With this gauge equation (26)

becomes

@A

@t
¼ vf � r� Að Þ � r vf � Að Þ

¼ v fð Þj@iAj � v fð Þj@jAi � @iv fð Þj
� �

Aj � v fð Þj @iAj

� �
¼ �v fð Þj@jAi � @iv fð Þj

� �
Aj;

or

@A

@t
þ £vf

A ¼ 0;

so that the vector potential is now a Lie-dragged one-form,

as desired.

In fact, there exists an entire family of gauges that result

in a Lie-dragged one-form. Suppose A is one such member

(like that already provided), and w is a Lie-dragged zero-

form, so that wðqf ; tÞ ¼ w0ðaÞ and

@w
@t
þ vf � rw ¼ @w

@t
þ £vf

w ¼ 0: (28)

Let A ¼ A0 þ rw. Then, starting from

@A

@t
¼ vf � r� Að Þ � r vf � Að Þ;

we have

@A0

@t
þ @rw

@t
¼ vf � r� A0ð Þ � r vf � A0

� �
�r vf � rwð Þ

� �
:

Collecting the w terms inside an overall gradient operator

and applying (28) eliminates all of them, showing that A0 is

also an advected one-form.

Lie-dragging of A as a one-form implies that Aidqi
f

¼ Ai
0dai, thus

Aj @qj

@ai
¼ Ai

0 ) Ai ¼ Aj
0

@aj

@qi
f

¼
Aj

0Cji
f

J f
; (29)

where Cji
f is the cofactor matrix of the coordinate transforma-

tion @qj
f =@ai. Because of the relation A ¼ �ðc=en0Þpd, the

canonical momentum also transforms as a one-form

pi
d ¼ pj

0;d

Cji
f

J f
: (30)

Using the Lie gauge (27), one can eliminate / from the

phase space action (21), and using (30) one can also elimi-

nate Aðq0 þ q0d; tÞ in favor of its initial value A00 at t¼ 0.

However, the other appearance of the vector potential is

Aðq; tÞ in (17) is written in terms of “ion quantities” (i.e.,

unprimed variables), whereas (29) expresses it using solely

the “electron quantity” (i.e., primed variable) q0f � q0 þ q0d.

Thus, we have only solved half the problem: we have

expressed Aðq0 þ q0d; tÞ in terms of A0ða0; tÞ and eliminated

/ðq0 þ q0d; tÞ with a gauge condition, but we are still left with

A(q, t) and /ðq; tÞ. Thankfully, there is a general result show-

ing that, in a system of n charged fluid species with baro-

tropic equations of state, there are n conserved helicities37

and n Lie-dragged two-forms.38 In MHD, this duality is of

no concern, because the two collapse and give rise to a single

magnetic helicity
Ð

A � Bd3x; however, in more general mod-

els they remain distinct. We can use the other helicity to

eliminate the last two extraneous variables.

Hall MHD has the following variable as its second Lie-

dragged two-form:

B ¼ Bþ cm

e
r� v: (31)

Its advection is straightforward to prove, using Eulerian vari-

ables. Taking the time derivative, and remembering our

assumption of barotropic pressures,

@B
@t
¼ @B

@t
þ cm

e
r� @v

@t
¼ �£vf

B

þ cm

e
r� v� r� vð Þ � r 1

2
v2

� �
�rp

mn
þ j� B

mcn

� �

¼ r� v� Bþ cm

e
r� v

� �� �
¼ r� v� Bð Þ ¼ �£vB:

Since B is divergenceless, it can be expressed as the curl

of a vector A. A fully general expression for such a vector is

A ¼ Aþ cm

e
vþrw: (32)
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Just as / was for A, w can be chosen to make A a Lie-

dragged one-form, expressed as

Ai ¼
A 0ð ÞjC

j
i

J : (33)

For we have

@A
@t
¼ @A

@t
þ cm

e

@v

@t
þr @w

@t

� �

¼ vf � Bþ c

ne
rpe � cr/

� �

þ cm

e
v� r� vð Þ � r 1

2
v2

� ��

�rp

mn
þ j� B

mnc

�
þr @w

@t

� �

¼ v� r�Að Þ þ
�
r @w

@t
� c/� 1

2

cm

e
v2

� �� �

þ c

ne
rpe �rpð Þ

�
:

Following the reasoning that motivated the Lie gauge (27),

we note that the expression in square brackets is the equiva-

lent of �cr/0 from before. We can thus get a Lie-dragged

one-form A by setting

r 1

c

@w
@t
� /� 1

2

m

e
v2

� �� �
þ 1

ne
rpe �

1

ne
rp

¼ �r v � A
c

� �
: (34)

Using the Lie gauge (27), this equation simplifies to

@w
@t
þ c

e

1

2
mv2 þ j � A

ne
� p

n

� �
¼ 0;

solved by the action-like quantity

w ¼ � c

e

ðt

t0

1

2
mv2 þ j � A

ne
� p

n

� �
d3x: (35)

Just as before, you can add a Lie-dragged zero-form to w and

still have A Lie-dragged.

However, tantalizing though the action-like expression

(35) is, we needed an action expressed entirely in terms of

ion quantities and electron quantities, while the above one is

mixed due to j � A being an electron quantity. Thus we go

back to line (34), which can be simplified slightly to

@w
@t
� c/� 1

2

cm

e
v2

� �
� cpi

ne
¼ �v � A;

where pi is the ion pressure. Except for /, which is still an

electron quantity, and w, which is mixed, these are all ion

quantities. Thus, we can create the following quantity:

! � /� 1

c

@w
@t
¼ � 1

2

m

e
v2

� �
þ v � A

c
� pi

n
;

which is an ion quantity because all the terms on the right

hand side are. With the four quantities A, A; / and !, obey-

ing transformation rules like (29) and subject to the Lie

gauge, the potential terms in the action (21) can be expressed

entirely in terms of their initial conditions, solving the prob-

lem mentioned at the end of Sec. III B.

The new ion variables A and ! introduced in this sec-

tion deserve a bit more attention. By writing the expression

� @A
@t
�r! ¼ E� m

e

@v

@t
� E;

we can say, loosely, that ! is to A what / is to A. The paral-

lel is further reinforced by the equivalent of the Faraday’s

law

r� E ¼ 1

c

@B
@t
;

and an easily derived expression

E þ vf � B
c
¼ � 1

nec
j� B þrpi

ne
þ m

e
r 1

2
v2

� �
; (36)

reminiscent of the Ohm’s law, but with an extra gradient

term. Were all the time-dependent terms to be removed from

E, (36) would be a generalization of Bernoulli’s law.

We conclude this section with two observations. First,

we can combine (29), (11), and d3q0 ¼ J f d
3a0 to show that

A � B d3q0 ¼ A0 � B0 d3a0;

which is a nicely compact proof of the conservation of mag-

netic helicity. The similar expressions derivable for the ion

quantities can similarly be combined to read

A � B d3q ¼ A0 � B0 d3a:

Second, everything that has been said in this section applies

to ideal MHD as well, which simply requires one to use v

instead of vf and to remember that there is only one distinct

helicity.

D. Euler-Lagrange map and the derivation of the
Eulerian bracket

Our phase-space action principle may equivalently be

expressed as the set of Hamilton’s equations @f=@t ¼ ff ;Hg,
for arbitrary functionals f of the phase-space variables. The

bracket in this case is the canonical one

f ; gf g ¼
ð

df

dqi

dg

dpi
� dg

dqi

df

dpi
þ df

dqi
d

dg

dpi
d

� dg

dqi
d

df

dpi
d

 !
d3a:

(37)

In this section, we will show how to convert this bracket into

the noncanonical bracket (5).

The Eulerian quantities q, r, and mi are defined via

standard Euler-Lagrange maps
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qðx; tÞ ¼
ð

qða; tÞdðx� qða; tÞÞd3q ¼
ð

q0ðaÞdðx� qða; tÞÞd3a

rðx; tÞ ¼
ð

q0ðaÞs0ðaÞdðx� qða; tÞÞd3a

miðx; tÞ ¼
ð

piða; tÞdðx� qða; tÞÞd3a: (38)

The variable r is superfluous for barotropic Hall MHD, but it is included here for the sake of generality. When we induce var-

iations later on, the quantities q and r will only have dq variations (from the delta functions), while m will have a dq and dp
variation. The odd one is the magnetic Euler-Lagrange map

Bi x; tð Þ ¼
ð

Bj
0 a0ð Þ

@qi
f

@ a0ð Þj
d x� qf a0; tð Þ
� �

d3a0

¼
ð

Bj
0 a0ð Þ @qi

@ a0ð Þj
þ @qi

d

@ a0ð Þj

 !
d x� q a0; tð Þ � qd a0; tð Þ
� �

d3a0 : (39)

This will have q and qd dependence via qf, and pd dependence via pd ¼ �ðen0=cÞA.

We can now show how the Eulerian variables change under variations in the Lagrangian phase-space ones, using (38) and (39)

dq ¼ �
ð

q0 að Þ d0i x� q a; tð Þð Þ dqi d3a

dr ¼ �
ð

r0 að Þ d0i x� q a; tð Þð Þ dqi d3a

dmi ¼ �
ð

pi d0j x� q a; tð Þð Þ dqj þ d x� qð Þ dpi d3a

dBi ¼
ð
�Bj

0 a0ð Þ @qi

@ a0ð Þj
þ @qi

d

@ a0ð Þj

 !
d0k x� q a0; tð Þ � qd a0; tð Þ
� �

dqk þ dqk
d

� �

þBj
0d
0
k x� q a0; tð Þ � qd a0; tð Þ
� � @qk

@ a0ð Þj
þ @qk

d

@ a0ð Þj

 !
dqi þ dqi

d

� �

þ @Bj
0

@pk
d

dpk
d

@qi

@ a0ð Þj
þ @qi

d

@ a0ð Þj

 !
d x� q0 � q0d
� �

d3a0 : (40)

Note that the addition of qd and pd, which do not appear in regular MHD, nonetheless do not require us to add any new

Eulerian variables. They do, however, add a new term in the variation dBi that does not appear in ideal MHD, because now B

has a pd dependence via B ¼ r� A.

The variation induced by an arbitrary function f, in both Lagrangian and Eulerian variables, is

df ¼
ð

df

dq
dqþ df

dr
drþ df

dmi
dmi þ df

dBi
dBi d3x

¼
ð

df

dqi
dqi þ df

dpi
dpi þ df

dqi
d

dqi
d þ

df

dpi
d

dpi
d d3a : (41)

Substituting the various (40), except for the one term involving dpd (which will require more careful attention), into the left

side of (41) gives the expression

�
ð ð "

df

dq
q0 að Þ þ df

dr
r0 að Þ þ df

dmi
pi

� �
d0j x� q a; tð Þð Þdqj

þ df

dBi
Bj

0 að Þ
@qi

f

@aj
dqk � Bj

0 að Þ
@qk

f

@aj
dqi

� �
d0k x� q a; tð Þ � qd a; tð Þð Þ

þ df

dBi
Bj

0 að Þ
@qi

f

@aj
dqk

d � Bj
0 að Þ

@qk
f

@aj
dqi

d

� �
d0k x� q a; tð Þ � qd a; tð Þð Þ

þ df

dmi
d x� q a; tð Þð Þ

� �
dpi

#
d3x d3a :
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In this expression, the disappearance of a0 is rather startling, but it is still there implicitly via the delta functions, for at a fixed

x they will pick out values of a for the magnetic terms distinct from those of the other terms.

Meanwhile, the term that we omitted is, by using B0 ¼ ra � A0, given by

�
ð ð

df

dBi
�jkl @

@ak

c

n0e
dpl

d;0

� � @qi
f

@aj
d x� q� qdð Þ d3a d3x ¼

ð ð
c

n0e

df

dBi
�jkl dpl

d;0

@qi
f

@aj

@qm
f

@ak
d0m x� q� qdð Þd3ad3x:

Here, the @2qf=@a@a term in the integration by parts vanishes because it is a symmetric object contracted with an antisymmet-

ric one, and the second factor of @qf =@a appears because we want the delta-function derivative to give a derivative with

respect to q (and thus x). These factors may be eliminated in the following manner:

�jkl
@qi

f

@aj

@qm
f

@ak
¼ 1

2
�jkl

@qi
f

@aj

@qm
f

@ak
�
@qi

f

@ak

@qm
f

@aj

� �

¼ 1

2
�jkl

@qa
f

@aj

@qb
f

@ak
dim

ab ¼
1

2
�jkl

@qa
f

@aj

@qb
f

@ak
�nim�nab ¼ 1

2
Cln�nim:

Thus, using (30), that portion of the df variation becomes

ð ð
c

2n0e

df

dBi
J f dpj

d�
jikd0k x� q� qdð Þd3ad3x:

Comparison of the expanded Eulerian df with the right side of (41) then gives expressions for the Lagrangian functional deriv-

atives in terms of the Eulerian ones

df

dpi
¼
ð

df

dmi
d x� q a; tð Þð Þd3x ¼ df

dmj

����
x¼q a;tð Þ

df

dqi
¼ �

ð
df

dq
q0 þ

df

dr
r0 þ

df

dmi
p

� �
d0i x� qð Þþ

df

dBj
Bk

0

@qj
f

@ak
d0i x� q� qdð Þ �

df

dBi
Bk

0

@qj
f

@ak
d0j x� q� qdð Þd3x

¼
ð

q0

@

@xi

df

dq

� �
þ r0

@

@xi

df

dr

� �
þ pj @

@xi

df

dmj

� �" #
d x� qð ÞþJ f Bj @

@xi

df

dBj

� �
� Bj @

@xj

df

dBi

� �� �
d x� q� qdð Þd3x

df

dqi
d

¼ �
ð

df

dBj
Bk

0

@qj
f

@ak
d0i x� q� qdð Þ �

df

dBi
Bk

0

@qj
f

@ak
d0j x� q� qdð Þd3x

¼
ð
J f Bj @

@xi

df

dBj

� �
� Bj @

@xj

df

dBi

� �� �
d x� q� qdð Þd3x

df

dpi
d

¼
ð

df

dBj

c

2n0e
J f �

ijkd0k x� q� qdð Þ d3x ¼ c

2ne

ð
r� df

dB

� �
i

d x� q� qdð Þd3x ¼ � c

2ne
r� df

dB

� �
i

����
x¼q a;tð Þþqd a;tð Þ

:

Finally, we can insert these functional derivatives into the canonical Lagrangian bracket (37). Evaluating the delta func-

tion introduces a factor of J�1 or J�1
f , eliminates the d3a integral and converts the remaining Lagrangian quantities into

Eulerian ones

f ;gf g ¼
ð

df

dqi

dg

dpi
� dg

dqi

df

dpi

� �
þ df

dqi
d

dg

dpi
d

� dg

dqi
d

df

dpi
d

 !
d3a

¼�
ð

q
df

dmi

@

@xi

dg

dq

� �
� q

dg

dmi

@

@xi

df

dq

� �� �
þ r

df

dmi

@

@xi

dg

dr

� �
� r

dg

dmi

@

@xi

df

dr

� �� �

þ mj
df

dmi

@

@xi

dg

dmj

� �
�mj

dg

dmi

@

@xi

df

dmj

� �� �
þ Bj df

dmi

@

@xi

dg

dBj

� �
�Bj dg

dmi

@

@xi

df

dBj

� �� �

þ Bj @

@xj

df

dBi

� �
dg

dmi
�Bj @

@xj

dg

dBi

� �
df

dmi

� �

þ c

2ne
Bj r� df

dB

� �i
@

@xi

dg

dBj

� �
�Bj r� dg

dB

� �i
@

@xi

df

dBj

� �
þBj @

@xj

df

dBi

� �
r� dg

dB

� �i

�Bj @

@xj

dg

dBi

� �
r� df

dB

� �i
" #

d3x

� ff ;ggMHDþff ;ggHall: (42)
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Here, the ff ; ggHall terms are those in the square bracket, and

the remaining ff ; ggMHD terms are familiar from ordinary

MHD.

The Hall portion of the bracket can be greatly simplified.

Take the two terms involving the curl of df=dB. They become

c

2ne
Bj r� df

dB

� �i

dkl
ij

@

@xk

dg

dBl

� �" #

¼ c

2ne
Bj r� df

dB

� �i

�mij�
mkl @

@xk

dg

dBl

� �" #

¼ � c

2ne
B � r � df

dB

� �
� r� dg

dB

� �� �
:

The other two terms give an identical expressions; together,

they eliminate the factor of 1/2 and reproduce the Hall MHD

bracket (5).

Before we move on to produce results for Extended MHD,

we should pause a moment to discuss our peculiar method of

introducing a phase-space constraint. The simplest phase-space

action is a finite-dimensional particle one extremizing

S ¼
ðtf

t0

X
i

_qðiÞ � pðiÞ � Hðq; pÞdt;

with fixed endpoints t0 and tf. When doing the q variations,

an integration by parts must be performed, so dq ¼ 0 on the

endpoints of the action integral; however, when varying p,

no integration by parts is required, so the momenta can vary

on the endpoints. In our Lagrangian density (21), the q, p,

and qd variations occur as normal. However, pd has been

expressed entirely in terms of its initial value pð0Þd. Thus,

when doing the pd variation, one only varies at the endpoints

(here, the initial surface t¼ 0), with the variation at t> 0

determined, ultimately, by (11) via (20). The same substitu-

tion for pd in terms of its initial value occurs in the magnetic

Euler-Lagrange map (39), making it crucial for the deriva-

tion of the Hall MHD bracket. We consider the successful

derivation of the bracket to be a sign of this constraint’s va-

lidity. However, viewing it as a specific instance of a more

general method (hopefully with applications elsewhere in

Hamiltonian physics), it is clear that we have not established

the full conditions under which this method may be applied.

We hope to do so in future work.

IV. EXTENDED MHD

A. Advected quantities

In the course of writing an action for Extended MHD, we

will need to write the field portions in terms of an advected

two-form, which will be a vorticity-like quantity.

Unfortunately, this time around the magnetic field B is not

such a quantity. We will thus begin by showing how to derive

a pair of vorticity equations in Extended MHD. Written in a

standard fashion, the two central equations for Extended

MHD are the momentum equation (6) and the generalized

Ohm’s law (7), rounded off with the Ampere’s law and the

continuity equation, plus the isentropy equation if needed.

Our goal will be to use these equations to derive a pair

of vorticity equations

@B6

@t
¼ r� v6 � B6ð Þ: (43)

Previous experience with ideal and Hall MHD suggests that

there should be such equations, along with the result that a

theory of n charged fluids will have n such vorticities.

Moreover, it was shown in Ref. 27 that they do exist, by

exploiting a map between the Poisson brackets for Hall and

Extended MHD. However, our purpose in this paper is to

derive those very brackets, so we should not rely on knowl-

edge drawn from those brackets. Thus, we will show how to

derive the Equation (43) directly.

In Ref. 21, the form (7) of the generalized Ohm’s law is

derived from the equivalent expression

Eþ v� B

c
¼ me

e2n

@j

@t
þ j � rv� j � r j

ne

� �
þ r � vð Þj

� �

þ j� B

enc
�rpe

en
þ me

e2
v � r j

n

� �

þ me

n2e2
j v � rð Þn;

by combining the last two terms and adding a term propor-

tional to r � j (which is zero). Instead of doing that, we com-

bine the first term, the last term, and the term proportional to

ðr � vÞj into ðme=e2Þð@=@tÞðj=nÞ by using the continuity

equation. We can then replace all occurrences of j with

u � j=ðneÞ, which has units of velocity, producing

Eþ v� B

c
¼ me

e

@u

@t
þ u � rvþ v � ru� u � ru

� �

þ u� B

c
�rpe

ne
:

We next apply the rðA � BÞ identity and switch to the new

field variable B? � Bþ ðmec=eÞr � u to produce

Eþ v� B?

c
¼ me

e

@u

@t
þr u � v� 1

2
u2

� �
� u� r� vð Þ

� �

þu� B?

c
�rpe

ne
: (44)

Performing similar operations on the momentum equation

(6) produces

@v

@t
� v� r� vð Þ ¼ �rp

nm
�r 1

2

me

m
u2 þ 1

2
v2

� �

þ e

mc
u� B?: (45)

Equations (44) and (45), being slightly more compact than

(6) and (7), suggest that u and B? are indeed more natural

variables than j and B.

The various gradients in (44) and (45) are crying out for

us to take a curl, so we will. Using the Faraday’s law and

collecting the time derivative terms in one place, (44)

becomes
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@B?

@t
¼ r� mec

e
u� r� vð Þ þ v� B? � u� B?

� �
� c

ne2
rpe �rnð Þ; (46)

while (45) becomes

@

@t
r� vð Þ ¼ r � v� r� vð Þ þ e

mc
u� B?

� �
þ 1

mn2
rp�rnð Þ: (47)

Going forward we assume barotropic equations of state for both the electrons and ions, because then rps / rn and the pres-

sure terms drop.

In (46) and (47), shorn of their pressure terms, we have all the ingredients we need to make two equations of the form

(43). We assume that the quantities appearing in the vorticity equations are linear combinations of those that have appeared in

deriving (46) and (47)

B6 ¼ d6B? þ b6

mc

e
r� vð Þ

v6 ¼ c6vþ a6u: (48)

The coefficients are all unitless. Expanding (43), we have

@B6

@t
¼ r� c6d6 v� B?ð Þ þ a6d6 u� B?ð Þþb6c6

mc

e
v� r� vð Þð Þ þ b6a6

mc

e
u� r� vð Þð Þ

� �
: (49)

On the other hand, we can also use linear combinations of (46) and (47) to express @B6=@t. Equating the resulting coefficients

with what we find in (49), we have the system of equations

d6 ¼ d6c6 b6 � d6 ¼ a6d6

b6 ¼ b6c6

me

m
d6 ¼ b6a6:

One equation is redundant, which should be no surprise since B6 is only established up to an overall scale. We use this extra

freedom to set d6 ¼ 1. Then the solutions are c6 ¼ 1, and

a6 ¼
1

2
�16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l

p
 �
b6 ¼

1

2
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l

p
 �
¼ �a7; (50)

where l ¼ me=mi is the electron-ion mass ratio. This confirms what was found in Ref. 27. We can also invert (48) to get

B? ¼
bþB� � b�Bþ

bþ � b�
r � v ¼ e

mc

Bþ � B�
bþ � b�

v ¼ aþv� � a�vþ
aþ � a�

u ¼ vþ � v�
aþ � a�

: (51)

Because the B6 are divergenceless, they can each be written as the curl of a vector potential A6. Accounting for the gauge

freedom, these potentials are

A6 ¼ Aþ mec

e
uþ b6

mc

e
vþrw6: (52)

Thus, taking appropriate linear combinations of (44) and (45), we find

1

c

@A6

@t
¼ v6 � B6

c
� m

e
r 1

2
b6v2 þ me

m
u � v� me

m
1� b6ð Þu2

� �

þrpe

ne
� b6

rp

ne
�r/þ @rw6

@t
:

Taking a cue from the Hall MHD results, we set /6 ¼ /� @w6=@t and E6 ¼ �r/6 � ð1=cÞ@A6=@t. We also note

a6b6 ¼ l ¼ me=mi; 1� b6 ¼ �a6, and b6 ¼ �a7. Together, all these identities allow a considerable simplification

E6 þ
v6 � B6

c
¼ m

e
r 1

2
b6v2

6

� �
þ 1

ne
r b6pi � b7peð Þ: (53)
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Thus, instead of the differing (44) and (45), or the greatly different (6) and (7), we have two highly symmetric versions of the

Ohm’s law expressed using our beloved advected quantities. Because we derived (53) only by taking linear combinations and

applying lots of vector identities, no information has been lost, and the pleasant equations (53) are fully equivalent to the

messy (6) and (7). Finally, in the l! 0 limit, bþ ! 1 and b� ! 0, which explains why the rðv2=2Þ term appears in the Hall

MHD momentum expression (36) but not in its standard Ohm’s law (4).

B. Action

We now turn to the problem of writing a fully Lagrangian action principle for Extended MHD. As in Ref. 21, this is done

by retaining terms up to first order in l ¼ me=mi in the action, and taking l� 1 after variations. The coordinate change

expressed in (16) now becomes

_qi ¼ _q � me

mi þ me
_qd � _q � l _qd

_qe ¼ _q þ mi

mi þ me
_qd � _q þ 1� lð Þ _qd:

Expanding the standard Lagrangian (15) and keeping terms up to first order in l gives a new Lagrangian density

L ¼ 1

2
mn0 1� lð Þ _q2 � 2l _qd � _q þ l _q0

� �2 þ 2l _q0d � _q0 þ l _q0d
� �2

h i
þ en0

c
_q � A� l _qd � A� _q0 � A0 � 1� lð Þ _q0d � A0
	 


�en0 / q; tð Þ � / q0 þ q0d; t
� �	 


� n0 Ui
n0

J ; s 0ð Þi

� �
þ Ue

n0

J f
; s 0ð Þe

� �" #
: (54)

Here, A � Aðq; tÞ and A0 � Aðq0 þ q0d; tÞ.
While there are many new terms in this Lagrangian, remarkably few make it to the actual equations of motion. This is partly

due to the cancellations that occur (as in Hall MHD) after setting a0 ¼ q�1
f ðqða; tÞ; tÞ, and partly due to the ordering l� 1

imposed after variations. The q variation gives

mn0€q þrpþ n0e

c
_qd � B ¼ 0;

and the qd variation gives

mln0€qd þ en0 Eþ _q � B

c

� �
þ en0

c
_qd � Bþrpe ¼ 0:

These are the correct equations, given that €q and €qd will be complicated expressions when Eulerianized, particularly the latter.

See Sec. IV A of Ref. 21 for a detailed explanation on how to convert them into Eulerian form.

The Lagrangian density (54) produces canonical momenta

pi ¼ mn0 _qi pi
d ¼ lmno _qi

d �
en0

c
Ai:

Thus

B? ¼ �
c

n0e
r� pd B6 ¼

c

n0e
�r� pd þ b6r� pð Þ: (55)

The B6 are advected by v6, whose Lagrangian equivalents we will call _q6 � _q � a6 _qd, where the minus sign comes because

u and _qd differ by a sign (see (23)). Thus we have these fully expanded expressions for B6, in analogy with (11)

Bi
6 ¼

B
j

0ð Þ6
J 6

@qi
6

@aj
¼

B
j

0ð Þ6
J 6

@qi

@aj
� a6

@qi
d

@aj

� �
; (56)

where q6ða0; tÞ are the integral lines of _q6, and J6 are the determinants of the matrices @q6=@a.

Producing a phase-space action will involve bringing in the omitted term
Ð
ðB2=8pÞd3x (see the note about this term in the

Hall MHD section), and converting the terms _qd � A and _q2
d=2 to field terms by anticipating the relation ð4p=cÞj ¼ r� B. By

integrating by parts on the _q2
d=2 term, one can combine both of them into the single term ð1=8pÞB � B?. But first we need to

show how to actually perform a variation on such a term.
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In Eulerian variables, we have

B? ¼ Bþ mec

e
r� j

ne

� �
¼ Bþ mec

e2
r� r� B

n

� �
;

so that B? is a function of B and n. Thankfully, the situation is simpler in Lagrangian variables. The variable appears inside a

d3q integral, contracted with another vector. One can integrate by parts to remove a curl, swap in d3q ¼ J f d
3a (any term

involving B? will be an electron quantity), and integrate by parts again, so that

B? ! J f Bþ
mec

n0e2
r� r� Bð Þ;

whenever it appears inside a label space integral. Thus we have B?ðBÞ in Lagrangian variables. We assume the differential

equation can be inverted to produce

BiðqÞ ¼
ð

Bj
?ðq0ÞGijðq; q0Þd3q0; (57)

for some tensorial Green’s function Gij. Therefore, when varying ð1=8pÞB � B?, the result isð
d

B � B?

8p

� �
d3q ¼ 1

8p

ð ð
d Bi

? qð ÞBj
? q0ð ÞGij q; q0ð Þ


 �
d3q0d3q

¼ 1

8p

ð ð
dBi

? qð ÞBj
? q0ð ÞGij q; q0ð Þ þ Bi

? qð ÞdBj
? q0ð ÞGij q; q0ð Þ


 �
d3q0d3q

¼ 1

4p

ð ð
dBi

? qð ÞBj
? q0ð ÞGij q; q0ð Þ


 �
d3q0d3q ¼ 1

4p

ð
B � dB?d

3q; (58)

where we have used the symmetry Gijðq; q0Þ ¼ Gijðq0; qÞ of Green’s functions. The variation did not affect Gijðq; q0Þ despite

the dependence on q because the Green’s function is translation invariant, i.e., Gijðq; q0Þ ¼ Gijðq� q0Þ.
We are now in a position to write the full phase-space Lagrangian. It is

L ¼
ð ð "

pi _qi þ pi
d _qi

d �
p2

2mn0

þ e

mc
piAi q; tð Þ � piAi q0 þ q0d; t

� �
 �
� en0

�
/ q; tð Þ � / q0 þ q0d; t

� ��

�n0 Ui
n0

J ; s 0ð Þi

� �
þ Ue

n0

J f
; s 0ð Þe

� � !#
d a0 � q�1

f q a; tð Þ; tð Þ

 �

þ Jf

8p Dbð Þ2
b�
J þ
r � pd � bþr � pð Þk @qi

@ak
� aþ

@qi
d

@ak

� �
� bþ
J �
r � pd � b�r � pð Þk @qi

@ak
� a�

@qi
d

@ak

� �" #

� b�
J þ
r � pd � bþr � pð Þl @qj

@al
� aþ

@qj
d

@al

� �
� bþ
J �
r � pd � b�r � pð Þl @qj

@al
� a�

@qj
d

@al

� �" #
Gij q; q0ð Þd3ad3a0; (59)

where we have set Db � bþ � b� and expanded ð1=8pÞB � B? using (57), the first equation of (51), and (56). Thankfully, var-

iations are simplified considerably by the result (58). It is also interesting that the usual delta function is replaced by a more

specialized Green’s function in the ð1=8pÞB � B? term. It is worth pointing out that, while we assumed barotropic equations of

state in our development, the above action works for the more general equations of state Usðn; sÞ.
The p variation gives

_qi ¼ pi

mn0

: (60)

The p variations occurring in the big field term all cancel, which is not surprising since B? has no p dependence. The pd varia-

tion gives

_qd ¼ �
c

4pn0e
r� B; (61)

as it should, with the factor of J f being absorbed back into d3q when invoking (58). After some work, the q variation gives

� _pi � Ckj

8p
@

@ak
Bi
?B

j þ BiBj
? � Bk

?B
kdij

	 

þ Jrip ¼ 0:
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Imposing the l� 1 condition turns this into

� _pi � Ckj

4p
@

@ak
BiBj � B2

2
dij

� �
þ Jrip ¼ 0: (62)

Finally, the qd variation gives

0 ¼ � _pi
d �

e

mc
pj@iAj þ n0e@i/þ J f@

ipe

� Ckj

8pDb
@

@ak
½Bi aþb�Bþ � a�bþB�ð Þj

þ Bj aþb�Bþ � a�bþB�ð Þi

�Bm aþb�Bþ � a�bþB�ð Þmdij�:

To simplify this, note that

aþb�Bþ � a�bþB� ¼ aþb� � a�bþð ÞB?

þ mc

e
aþ � a�ð Þb�bþ r � _qð Þ:

Now b�bþ ¼ �l, so we end up dropping the r� _q term.

Next aþb� � a�bþ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4l
p

� �1, so we get a plain

�B? term, which again gets reduced to �B. In the end

� _pi
d �

e

mc
pj@iAj þ Ckj

4p
@

@ak
BiBj � B2

2
dij

� �
þ n0e@i/þ J f@

ipe ¼ 0: (63)

Remarkably, Equations (60)–(63) are identical to their equiv-

alents (22)–(25) from Hall MHD. This is likely the source of

the maps discovered in Ref. 27. The differences between

Hall and Extended MHD arise when you switch to Eulerian

variables.

C. Derivation of the bracket

The field variable B	 will be written as a linear combina-

tion of the two-forms B6, each of which is advected along a

linear combination of q and qd. Thus (39) will be rewritten as

Bi
? x; tð Þ ¼

ð
� b�

Db

� �
Bj

0ð Þþ að Þ @qi

@aj
� aþ

@qi
d

@aj

� �
� d x� q a; tð Þ þ aþqd a; tð Þð Þ

þ bþ
Db

Bj

0ð Þ� að Þ @qi

@aj
� a�

@qi
d

@aj

� �
� d x� q a; tð Þ þ a�qd a; tð Þð Þd3a: (64)

The coefficients a6 are given in (50), and those in front of

the Bð0Þ6 come from inverting (48), writing Db ¼ bþ � b�.

The minus signs in front of the various a6 arise because _qd

and u (via (61)) differ by a sign.

Equation (55) shows that

dB 0ð Þ6 ¼
c

n0e
�r� dp 0ð Þd þ b6r� dp 0ð Þ
� �

:

However, despite the appearance of dpð0Þ here, the expres-

sion df=dp is unchanged, because the terms arising from the

two parts of dB? cancel each other. However, df=dpd is

changed, converting ff ; ggHall into its Extended MHD

counterpart.

The following changes appear in the previous calcula-

tion: (i) All functional derivatives with respect to B are now

done with respect to B?; (ii) in the magnetic portion of

ff ; ggMHD, B is replaced by B?; (iii) in ff ; ggHall, B is

replaced by ½c=ðn0eDbÞ�ðb�aþBþ � bþa�B�Þ. This quantity

works out to be ðc=n0eÞðB? � ðmec=eÞr � _qÞ. Thus we

derive the following bracket:

ff ; ggExMHD ¼ ff ; ggMHD þ ff ; ggEx;

with ff ; ggMHD given by the first part of (42) and

ff ; ggEx ¼
ð
� c

ne

� �
B? �

mec

e
r� m

q

� �� �

� r � df

dB?

� �
� r� dg

dB?

� �� �
d3x;

matching (8). As expected, the limit l ¼ ðme=miÞ ! 0

reduces B? to B, eliminates the r� v term, and thus reduces

ff ; ggEx to ff ; ggHall.

V. CONCLUSION

We have accomplished many things in the course of

deriving the noncanonical brackets for Hall and Extended

MHD. The need for canonical momenta to serve as the back-

bone of the brackets led to actions for both theories: first the

tangent-space ones (17) and (54), then the phase-space ones

(21) and (59). Essential to the actions were the advected gen-

eralized vorticities: the magnetic field and (31) for Hall

MHD, and the two expressions (48) for Extended MHD. To

go with these advected two-forms, we found advected one-

form potentials (32) and (52). For Hall MHD, we found that

the momentum equation could be restated in the form of an

additional equation (36) resembling Ohm’s law. Similarly, in

Extended MHD, after recasting the complex original equa-

tions (6) and (7) into variables based around the various

advected forms, we could produce the equivalent, but much

simpler expressions (53). Knowing these forms, we were

also able to define the natural Euler-Lagrange maps (39) and

(64), and at last derive the noncanonical brackets (5) and (8).

A number of interesting concepts had to be used in order

to produce these results. To begin with, the actions required

a double label space in order to be fully Lagrangian, and we

may speculate that Lagrangian theories incorporating n-fluid

effects will require n label spaces. Moreover, Padhye and

Morrison39,40 showed that, in ideal MHD, magnetic helicity

is the Noether invariant corresponding to the symmetry of

relabelling. In each of Hall and Extended MHD, we have

two label spaces, and we speculate that helicities correspond-

ing to each theory’s two generalized vorticities will arise

from distinct relabelling symmetries on the doubled label

space. This is a matter for future research. Next, our

expanded inventory of two-forms and one-forms, defined by

their advection properties, allowed us to greatly simplify

Extended MHD. This shows that a firm understanding of the
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geometric nature of the objects appearing in a physical sys-

tem will allow one to cut away much of its seeming com-

plexity, as briefly noted in Ref. 27.

Finally, our implementation of the Euler-Lagrange map

(and the phase-space action principle) required an unusual

method of implementing a constraint, a method which may

turn out to have broader applicability. Prior to attempting

work such as ours, one might have objected that Hall and

Extended MHD are theories too specialized and inelegant to

be a fruitful topic for mathematical physics. Fortunately, we

have found that it is precisely when investigating such speci-

alized problems that one may discover ideas and methods

useful in a broader context.

From a practical perspective, we emphasize that our

action principle for Extended MHD (and the concomitant

noncanonical Hamiltonian formulation) can be applied to

many problems of interest and relevance in diverse areas.

We list a few examples in this category: topological invari-

ants,28 particle relabelling symmetries,39–42 reconnection

based on Hamiltonian models,43–45 tearing modes,46

Hamiltonian closures,47,48 nonlinear waves,49,50 weakly

nonlinear dynamics,51,52 the derivation of gyrofluid and

hybrid fluid-kinetic models,24,31,53–55 the properties of the

equatorial electrojet,56 and the rapidly burgeoning field of

variational integrators.57–59

Thus, our work serves to advance and flesh out the

mathematical foundations of Extended MHD, whilst also

paving the way for the applications of our methodology in

fusion, space, and astrophysical plasmas.
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