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The paper describes the unique geometric properties of ideal magnetohydrodynamics (MHD), and 
demonstrates how such features are inherited by extended MHD, viz. models that incorporate two-fluid 
effects (the Hall term and electron inertia). The generalized helicities, and other geometric expressions 
for these models are presented in a topological context, emphasizing their universal facets. Some of 
the results presented include: the generalized Kelvin circulation theorems; the existence of two Lie-
dragged 2-forms; and two concomitant helicities that can be studied via the Jones polynomial, which 
is widely utilized in Chern–Simons theory. The ensuing commonality is traced to the existence of an 
underlying Hamiltonian structure for all the extended MHD models, exemplified by the presence of a 
unique noncanonical Poisson bracket, and its associated energy.
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1. Introduction

Ideal magnetohydrodynamics (MHD) is the simplest model in 
plasma physics, and is used extensively in the arenas of fu-
sion, space and astrophysical plasmas; see e.g. [1] and references 
therein. From a mathematical perspective, ideal MHD represents a 
natural extension of ideal hydrodynamics (HD) as it is endowed 
with geometric properties that mimic those of ideal HD. Much of 
this geometric structure arises from the flux freezing condition, 
which is intimately linked with the conservation of magnetic and 
cross helicities.

It is a widely accepted maxim that topological invariants play 
a key role in several areas of physics. In HD, the fluid helicity 
plays a similar role, as it constitutes a measure of the Gauss link-
ing number of vortex lines, as shown in the pioneering work of 
[2]. In MHD, an equivalent role is played by the magnetic helic-
ity, whose topological properties were extensively investigated in 
[3]. Subsequently, the topological formulations of HD and MHD, 
especially their attendant helicities, underwent increasing math-
ematical sophistication; representative examples in this category 
include [4–19]. Fluid/magnetic helicities also emerge naturally as 
a consequence of the underlying relabeling symmetry of HD and 
MHD, on account of Noether’s theorem [20,21]. It is worth noting 
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that the relativistic version of helicity [22], and its concomitant 
topological properties have been studied in [22–25].

We emphasize that this topological nature has come under 
greater experimental scrutiny [26–28] demonstrating that helicity 
is converted from links/knots to coils. In addition to the impor-
tance of these helicities as topological invariants, they are also in-
dispensable in understanding the self-organization and relaxation 
of fluids/plasmas [29–36]. In the astrophysical context, (magnetic) 
helicity has played a pivotal role in solar physics [37–40], helicity 
injection [41,42], reconnection [43,44], turbulence [45,46] and dy-
namo theory [46,47]. We observe that concurrent applications and 
uses of helicity in fusion plasmas also abound; some examples are 
listed in [48].

Although MHD is endowed with several unique properties, it 
is also inapplicable in several domains. Hence, several extensions 
of ideal MHD have been studied, such as Hall MHD [49], electron 
MHD [50], and extended MHD [51]. There has been much inter-
est in Hall MHD, as it possesses helicities and relaxed states akin 
to that of ideal MHD [52,53], and has been widely studied as a 
model of fast reconnection [54]. Hall MHD can be further gener-
alized to include the effects of electron inertia, thereby resulting 
in extended MHD. Alternatively, a model with electron inertia, but 
lacking the Hall terms, was proposed in [55,56] with the accompa-
nying title of inertial MHD.

In this paper, we propose to highlight the commonality of all 
the extended MHD models through several avenues. These include 
the delineation of the appropriate conserved helicities and the ap-
propriate frozen-in fluxes. Furthermore, we demonstrate that all 
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of these models possess a virtually identical Hamiltonian structure 
[57,58] – the latter refers to the existence of a suitable (conserved) 
energy and a noncanonical Poisson bracket. Such Poisson brack-
ets were first constructed for ideal HD and MHD in [59], and are 
quite different in structure as the physical Eulerian fields (such as 
density, velocity, etc.) are not canonical in nature. An extended dis-
cussion of these brackets, and the advantages of the Hamiltonian 
description of fluids/plasmas can be found in [60–62].

The outline of the paper is as follows. The common Hamilto-
nian structure of different extended MHD models is presented in 
Section 2. In Section 3, we sketch the unifying topological aspects 
of the various extended MHD models. Finally, we summarize our 
results in Section 4, and indicate how they could play an important 
role in fusion and astrophysical plasmas.

2. Hamiltonian structure of extended MHD models

In this Section, we shall present the dynamical equations of 
different extended MHD models, demonstrate the existence of a 
common Hamiltonian structure, and thereby construct the associ-
ated helicities and generalized frozen-in fluxes.

2.1. Mathematical preliminaries

We begin with the equations of extended MHD, which comprise 
of the continuity equation

∂ρ

∂t
+ ∇ · (ρV) = 0, (1)

the equation for the momentum density

ρ

(
∂V

∂t
+ (V · ∇)V

)
= −∇p + J × B − me

e2 (J · ∇)

(
J

n

)
, (2)

and the Ohm’s law

E + V × B − J × B − ∇pe + δ∇pi

en

= me

ne2

[
∂J

∂t
+ ∇ ·

(
VJ + JV − 1

en
JJ
)]

. (3)

The variables ρ , V and J serve as the total mass density, cen-
ter-of-mass velocity and the current respectively. The variable n
appearing in (2) and (3) is the number density, and is defined as 
n = ρ/ (mi + me), with mi and me representing the ion and elec-
tron masses respectively. In the above expressions, observe that 
μ0J = ∇ × B, the total pressure is represented by p whilst pi and 
pe denote the ion and electron pressures respectively, δ = me/mi
is the mass ratio, and mλ represents the mass of the species ‘λ’. 
Broadly speaking, the above set of equations are derived from the 
standard two-fluid theory of plasma physics [1] by neglecting the 
displacement current, imposing quasineutrality, and carrying out a 
systematic expansion in δ. We refer the reader to [1,51,63], where 
a detailed, and rigorous, derivation of extended MHD from two-
fluid theory is presented (see also [57]). The regimes of validity for 
extended MHD, and the specific conditions under which certain 
terms can be eliminated to obtain simpler models, are described 
in [1,55,63].

If one adopts the standard Alfvén units, and introduces the dy-
namical variable

B� = B + d2
e∇ ×

[∇ × B

ρ

]
, (4)

which is well-known from electron MHD [50] and collisionless 
(two-fluid based) reconnection studies [64,65], we observe that (2)
and (3) can be recast into
∂V

∂t
+ (∇ × V) × V = −∇

(
h + V 2

2

)
+ (∇ × B) × B�

ρ

− d2
e∇

[
(∇ × B)2

2ρ2

]
, (5)

∂B�

∂t
= ∇ × (

V × B�
) − di∇ ×

(
(∇ × B) × B�

ρ

)

+ d2
e∇ ×

[
(∇ × B) × (∇ × V)

ρ

]
, (6)

where the assumption of a barotropic equation of state was used 
in simplifying the equations. The total enthalpy h, in this scenario, 
is related to the pressure p via the relation ∇h = ρ−1∇p, whilst 
di = c/ 

(
ωpi L

)
and de = c/ 

(
ωpe L

)
serve as the normalized electron 

and ion skin depths respectively. The quantities ωpi and ωpe are 
the ion and electron plasma frequencies respectively, defined via 
ωpλ =

√
nλ0q2

λ/ε0mλ with ‘λ’ denoting the species label. Here, qλ

and mλ are the charge and mass of the given species, whilst nλ0 is 
a characteristic number density; for this reason, one must view di
and de as normalization constants expressed in terms of the fidu-
cial values of the ion and electron plasma frequencies respectively. 
The intermediate steps involved in deriving (5) and (6) from (2)
and (3) have been presented in [57].

Furthermore, it can be shown that (5) and (6), in conjunction 
with (1), conserve the energy:

H =
∫
D

d3x

[
ρV 2

2
+ ρU (ρ) + B2

2
+ d2

e
(∇ × B)2

2ρ

]
. (7)

Observe that the above expression does depend on de but is in-
dependent of di . We observe that the last term in the above 
expression, proportional to d2

e , is absolutely necessary for energy 
conservation and emerges via the last term on the RHS of (2). The 
latter is often neglected in textbook treatments, leading to erro-
neous conclusions; see [55] for a detailed discussion of the same.

2.2. Common Hamiltonian structure of the extended MHD models and 
associated properties

We are now in a position to commence our analysis of the dif-
ferent extended MHD models.

Hall MHD: Hall MHD (HMHD) is a model that neglects electron 
inertia, and it amounts to letting de → 0 in (5), (6) and (7). Alter-
natively, it can be viewed as the model wherein the last term on 
the RHS of (2) is neglected, along with the last term in the first 
line of (3), and all the terms on the second line of (3). The current 
formulation of barotropic Hall MHD was presented in [66], and we 
shall reproduce it below, as it constitutes a core part of our inves-
tigations:

{F , G}H M H D = −
∫
D

d3x

{[
Fρ∇ · GV + FV · ∇Gρ

]

− (∇ × V)

ρ
· (FV × GV)

− B

ρ
· (FV × (∇ × GB))

+ B

ρ
· (GV × (∇ × FB))

}

− di

∫
d3x

B

ρ
· [(∇ × FB) × (∇ × GB)] , (8)
D
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and we shall represent this noncanonical bracket as

{F , G}H M H D = {F , G}M H D + {F , G}Hall, (9)

where (i) {F , G}M H D comprises of the first four lines on the RHS 
of (8) and is the ideal MHD bracket first derived in [59], and (ii) 
{F , G}Hall is the last term on the RHS of (8), and is characterized 
by the presence of the factor di . We observe that the Jacobi iden-
tity for this (noncanonical) bracket was first shown in [57], and an 
alternative, more detailed, version was presented in [58]. Through 
the suitable use of (8), it is easy to establish that there are two 
helicities for Hall MHD, which serve as Casimir invariants of the 
model; Casimirs are special invariants which satisfy the property 
{F , C} = 0 for all arbitrary choices of F . The two Casimirs of inter-
est are

CI =
∫
D

d3x A · B, (10)

CI I =
∫
D

d3x (A + diV) · (B + di∇ × V) , (11)

which represent the magnetic and ion canonical helicities respec-
tively [67]. Hall MHD exhibits two frozen-in quantities, which be-
have as Lie-dragged 2-forms. These correspond to dynamical equa-
tions of the form[

∂

∂t
+LV

]
(B + di∇ × V) · dS = 0, (12)[

∂

∂t
+LVe

]
B · dS = 0, (13)

where LX indicates the Lie-derivative with X serving as the flow 
field, Ve = V −di∇ ×B/ρ denotes the electron velocity, whilst B ·dS
and (B + di∇ × V) · dS constitute the magnetic and ion canonical 
vorticity fluxes respectively; here dS represents an area element. 
For a discussion of the Lie derivative (and the phenomenon of Lie 
dragging) in ideal HD and MHD, we refer the reader to [11,68]. The 
two expressions are equivalent to the statement that the canonical 
vorticity (curl of the canonical momenta) flux of each species is 
Lie-dragged by the corresponding velocity of that species. We shall 
return to this issue in greater detail in Section 3.

Inertial MHD: Inertial MHD (IMHD) arises upon setting di → 0
in (6). The astute reader may wonder why di → 0 does not au-
tomatically imply de → 0 as well since me � mi . However, we 
emphasize that the two parameters are independent. In particu-
lar, inertial MHD is valid when the time scale for changes in the 
current is much shorter than the electron gyro period [55]. A prac-
tical use of inertial MHD stems from the fact that a simplified and 
reduced version yields the famous Ottaviani–Porcelli reconnection 
model [64]. Alternatively, inertial MHD amounts to dropping the 
terms on the RHS of the first line of (3). A Hamiltonian formula-
tion for the 2D version was presented in [56], and the full structure 
was determined in [57]. An independent bracket for the model was 
constructed in the latter, but [58] showed that the inertial MHD 
bracket could be mapped to the Hall bracket as follows:

{F , G}I M H D ≡ {F , G}H M H D [∓2de; B±] , (14)

and this indicates that the inertial MHD bracket is exactly identical 
to the Hall MHD bracket provided that B → B± = B� ±de∇ ×V and 
di → ∓2de in (8). It is evident from (14) that there exist two dif-
ferent transformations that map the Hall MHD bracket to inertial 
MHD.

We see that the new variables B± , which empower us to tran-
sition between the two brackets, are closely related to the two 
helicities of inertial MHD, which have the form
CI,I I =
∫
D

d3x
(
A� ± deV

) · (B� ± de∇ × V
)
. (15)

The difference of the above two helicities leads to the Casimir:

CI I I =
∫
D

d3x V · B�, (16)

which resembles the cross-helicity invariant of ideal MHD, after 
performing the transformation B → B� . Hence, this highlights the 
commonality of inertial and ideal MHD. Just as in Hall MHD, there 
exist two Lie-dragged 2-forms, given by[

∂

∂t
+LV±

]
B± · dS = 0, (17)

where V± = V ± de∇ × B/ρ and B± has already been previously 
introduced.

Extended MHD: Finally, we consider extended MHD (XMHD), 
which was first derived correctly in [51]; the reader is referred 
to [55] where several sources that use incorrect versions of this 
model are discussed. Extended MHD comprises of (1), (5) and (6)
in their entirety, and its Hamiltonian formulation was first pre-
sented in [57]. However, the bracket for extended MHD can be 
mapped to Hall MHD, as in inertial MHD, as follows:

{F , G}X M H D ≡ {F , G}H M H D [di − 2κ±; B±] , (18)

indicating that the extended MHD bracket is simply recovered via 
B → B± := B� + κ±∇ × V and di → di − 2κ± in (8), the Hall MHD 
bracket [58]. We observe that κ± is determined via the quadratic 
equation κ2 − diκ − d2

e = 0, implying the existence of two such so-
lutions (κ+ and κ−). As a result, it is worth emphasizing that there 
are two possible mappings from the Hall MHD bracket to extended 
MHD in (18). Upon taking the limits di → 0 and de → 0, and map-
ping to the original variables, it is straightforward to verify that 
one recovers the inertial and Hall MHD brackets respectively. We 
also note that the above definition of B± reduces to the inertial 
MHD definition for B± when di → 0.

Extended MHD is also endowed with two helicities, given by

CI,I I =
∫
D

d3x
(
A� + κ±V

) · (B� + κ±∇ × V
)
, (19)

and one can verify the existence of two Lie-dragged 2-forms, which 
are governed via[

∂

∂t
+LV±

]
B± · dS = 0, (20)

where V± = V −κ∓∇ × B/ρ and B± = B� +κ±∇ × V. We note that 
V± and B± duly reduce to their Hall and inertial MHD counter-
parts upon taking de → 0 and di → 0 respectively.

From the preceding analysis, it is possible to draw the following 
conclusions:

• There exists a clear hierarchy of models starting from extended 
MHD. Upon neglecting the Hall terms via di → 0, we arrive at 
inertial MHD. Similarly, neglecting electron inertia via de → 0
leads to Hall MHD, and neglecting both of them concurrently 
yields ideal MHD.

• This hierarchy is best encapsulated by (18) which demon-
strates the application of the above limits leads to the emer-
gence of inertial, Hall and ideal MHD brackets from the over-
arching extended MHD noncanonical bracket.

• The commonality between all the extended MHD models has 
been highlighted through the existence of a common bracket, 
whose basic structure takes the form of (8).
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• Owing to this commonality, all extended MHD models are en-
dowed with two helicities, which also serve as Casimir invari-
ants. This feature is clearly inherited from the parent 2-fluid 
model, whose bracket exhibits similar properties [69].

• All of the extended MHD models possess two Lie-dragged 
2-forms, indicating that generalizations of the frozen-flux con-
dition of ideal MHD can be easily built. Consequently, this 
implies that these quantities serve as the analogs of the mag-
netic field in ideal MHD, enabling the generalizations of the 
Cauchy formula for the latter.

• The above property makes it possible to construct a unified 
(Lagrangian variable) action principle for these models, by 
building the constraints into the model a priori, akin to the 
ideal MHD action [70]. By employing the reduction procedure, 
we can also derive the noncanonical bracket (8) in a rigorous 
manner. We note that both these aspects have been success-
fully tackled in [71].

• The unified action principle delineated in [71] is complemen-
tary to the approach espoused in [63], where an alternative 
(Eulerian–Lagrangian variable) action principle was studied.

3. Geometric and topological properties of the extended MHD 
models

Hitherto, our analyses have not considered the explicit conse-
quences of the commonalities described in Section 2, and have, 
instead, focused primarily on highlighting them. Now, we shall 
present a few applications of our (unified) Hamiltonian formula-
tion, and highlight its advantages. Henceforth, we shall adopt a 
coordinate independent language wherever possible, as it simpli-
fies and generalizes our discussion.

3.1. Generalized circulation and helicity conservation theorems

Firstly, we begin by noting that one can define a generalized 
vector potential from B± := B�+κ±∇×V via B± = ∇×A± := ∇×
(A� + κ±V). After some extensive algebra, it is possible to show 
that

∂A±
∂t

= ∇A± · V± − V± · ∇A± + ∇ψ±, (21)

where V± = V − κ∓∇ × B/ρ was defined earlier, and

ψ± := κ∓he −
(
κ± + d2

e

di

)
hi − φ + κ∓d2

e
J 2

2ρ
− d2

e
J · V

ρ
. (22)

In (22), note that hλ is the enthalpy of species λ, φ is the electro-
static potential and J is the current. It is more intuitive to rewrite 
(21) as[

∂

∂t
+LV±

]
A± = dψ±, (23)

where A± is the 1-form associated with the components of A± . 
Similarly, we can introduce the 2-form B± = dA± , whose evolution 
is determined by applying the exterior derivative ‘d’ to (23). We 
use the fact that d2 = 0, along with the commutative property of 
the exterior derivative and the Lie derivative [72], thereby leading 
us to the relations[

∂

∂t
+LV±

]
B± = 0, (24)

and this is identical to (20). In other words, in our (new) nota-
tion, B± ≡B± · dS. Hence, it is possible to undertake a consistency 
check, and verify that (24) leads to

∂B± = ∇ × (V± ×B±), (25)

∂t
upon using ∇ · B± = 0 and noting that the vector density B± is 
dual to the 2-form B± [68]. We can also introduce the 3-form 
K± = A± ∧ dA± , which we shall return to shortly hereafter.

From fluid mechanics, the conservation of circulation has been 
known since the 19th century. It is now straightforward to show 
that one can derive a generalized circulation theorem.

d

dt

∫
L±(t)

A± · dl

∣∣∣∣
t=t0

= d

dt

∫
L±(t)

A±(t)

∣∣∣∣
t=t0

= d

dt

∫
L±(t0)

�∗
V±,tA±(t)

∣∣∣∣
t=t0

= d

dt

∫
L±(t0)

A±(t) + (t − t0)LV±A± +O
(
(t − t0)

2) ∣∣∣∣
t=t0

=
∫

L±(t0)

∂A±
∂t

+LV±A±
∣∣∣∣
t=t0

=
∫

L±(t0)

dψ± = 0, (26)

where �∗
V±,t denotes the pullback with vector field V± parametr-

ized by t [73]. The integration is carried over the contour L±(t), 
and the above statement indicates that the generalized vorticity 
flux is frozen-in for a fluid moving with velocity V± – a general-
ization of the famous frozen-flux condition of ideal MHD. This can 
be explicitly worked out, as shown below

d

dt

∫
S±(t)

B± · dS

∣∣∣∣
t=t0

= d

dt

∫
S±(t)

B±(t)

∣∣∣∣
t=t0

=
∫

S±(t0)

∂B±
∂t

+LV±B±
∣∣∣∣
t=t0

= 0. (27)

The 3-forms associated with extended MHD were defined earlier 
via K± := A± ∧ dA± , and we emphasize that K± := ∫

V± Tr (K±)

represent the generalized helicities of ideal MHD, and Tr denotes 
the (ad-invariant) inner product. We shall drop this notation (Tr)
henceforth, but it is implicitly present whenever we deal with 
helicity-like quantities. We find that (23) can be duly manipulated 
to yield

∂K±
∂t

+LV±K± = dψ± ∧ dA± = d(ψ±dA±), (28)

and by invoking Stokes’ theorem, we end up with

d

dt

∫
V±(t)

K± =
∫

V±(t)

d(ψ±dA±) =
∫

∂V±(t)

ψ±dA± = 0, (29)

as long as the generalized vorticity vanishes on the boundary. It 
is evident that (29) constitutes another proof for helicity conser-
vation, thereby complementing the earlier (coordinate dependent) 
results presented in [57,58,71]. It was shown in [20,21] – see also 
[74,75] for associated treatments – that magnetic or fluid helic-
ity conservation was a natural consequence of Noether’s theorem 
on account of the (Lagrangian) particle relabeling symmetry of the 
ideal HD and MHD actions. By applying a similar procedure to the 
extended MHD action [71], the invariance of the helicities of ex-
tended MHD can be established accordingly.

3.2. Topological aspects of the generalized helicities of extended MHD

Now, we shall take a greater look at the topological ramifi-
cations of K± and (29), viz. the generalized helicities and their 
conservation properties respectively.

Let us begin by recalling that A+ and A− serve as 1-forms, 
appropriately constructed from A± , where the latter was defined 
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towards the beginning of Section 3.1. If one lets de → 0 and di → 0, 
we have already indicated that the vector potential A follows from 
A± . Yet, it is important to recognize that all other versions of ex-
tended MHD have, not one, but two such 1-forms. It is well known 
that the general expression for a helicity-type quantity is given by 
H = ∫

M P ∧ dP , where M is a compact 3-manifold and P is a 
1-form. We have dropped the inner product operator (Tr) as noted 
earlier. Hence, one can duly construct two helicity-like quantities 
by setting P = A± and the corresponding (generalized) helicities 
are given by K± .

We have reiterated the above steps because the crucial as-
pect of our work is that these generalized 1-forms, 2-forms and 
helicities can be seen as the exact analogues of the vector po-
tential/velocity, magnetic field/vorticity, and magnetic/fluid helicity 
respectively. As a result, we are in the remarkable position of ex-
ploiting every known topological property of ideal HD or MHD by 
generalizing it to extended MHD via the variable transformations 
introduced here, and in [58].

For instance, consider the description of the fluid helicity in 
terms of thin vortex filaments, which are represented collectively 
by an oriented knot (or link) in M. The expression for the fluid 
helicity is given by

H =
∑

i

ν2
i Lki + 2

∑
i j

νiν j Lki j, (30)

where νi denotes the vortex circulation, whilst Lki and Lkij are the 
self-linking and Gauss linking numbers respectively [6,76]. More-
over, we observe that Lki = W ri + T wi , implying that the self-
linking number can be decomposed into its writhing and twisting 
numbers; the latter duo are topologically relevant in their own 
right [6,13,14,77]. The decomposition of helicity into its various 
components has also been verified empirically through a series of 
ingenious experiments [26–28], and numerical simulations in dy-
namos [78]. If we replace the vortex filaments, circulation, etc. by 
the generalized counterparts (corresponding to B±), we find that 
the generalized helicities can be decomposed in a manner exactly 
identical to (30).

For all its elegance and utility, the linking number is beset by 
a number of limitations. The foremost amongst them is that it 
cannot distinguish between certain topological configurations, such 
as the Whitehead link and the Borromean rings [79]. The con-
ventional means of distinguishing between such configurations is 
via the Massey product [80] and its generalizations [81], or other 
higher-order invariants [82–84]. As per the correspondence be-
tween ideal MHD (or HD) and the different variants of extended 
MHD established earlier, we may be able to construct the equiv-
alent (higher-order) topological invariants for the latter class of 
models. It is at this juncture that we introduce the remarkable in-
sight provided by Witten [85] between topological quantum field 
theory (TQFT) and knot theory. In particular, Witten demonstrated 
that the Jones polynomial, a staple of knot theory, could be natu-
rally interpreted in terms of the Chern–Simons action of (2 + 1)

Yang–Mills theory. The Chern–Simons action for a non-Abelian 
field theory is given by

S =
∫
M

(
P ∧ dP + 2

3
P ∧ P ∧ P

)
, (31)

up to constant factors. Now, suppose that the underlying gauge 
group is Abelian, and this choice eliminates the second term on 
the RHS of the above expression. Consequently, we are led to 
the striking result that the helicity is an Abelian Chern–Simons 
action [86,87]. As a result, one can employ the versatile mathemat-
ical formulations of Chern–Simons theory (a 3-dimensional TQFT) 
[88–90] in the realm of plasma and fluid models, thereby open-
ing up a potentially rich and diverse line of future research, as 
these methods are more sophisticated than standard paradigm of 
computing the linking number(s); for instance, the Jones polyno-
mial is capable of distinguishing between the Whitehead link and 
the Borromean rings (which have an identical linking number of 
zero, as previously mentioned). Despite the inherent mathemati-
cal richness of the helicity/Chern–Simons correspondence, it hasn’t 
been sufficiently exploited from a knot-theoretic perspective – the 
mathematical works by [11,91,92] on the Jones and HOMFLYPT 
polynomials in HD and MHD constitute the only such examples 
of this specific line of inquiry. Although [91,92] utilized the formal 
equivalence between the fluid (or magnetic) helicity and Abelian 
Chern–Simons theory, there have been prior studies in high en-
ergy physics and topological hydrodynamics that were cognizant 
of this concept (see e.g. [11,86]). It is also straightforward to ap-
ply this framework to non-Abelian magnetofluid models, as briefly 
stated in [87].

Thus, we are free to import the results of [11,91,92] in the 
context of the generalized helicities. In particular, following the 
mathematical reasoning delineated in [91], we are free to compute 
the Jones polynomial for a given configuration of the generalized 
helicity (of which there are two in all). The proof relies on the con-
struction of the skein relations by means of the Kauffman bracket 
polynomial, and then introducing orientation to obtain the skein 
relations of the corresponding Jones polynomial. Let us interpret 
the results from the preceding discussion for the (simpler) case 
of Hall MHD. One of the Jones polynomials would arise from the 
magnetic helicity, whilst the other arises from the canonical helic-
ity. The difference of these two helicities is the sum of the cross 
and fluid helicities. Hence, the associated Jones polynomial, arising 
from this remainder, would encapsulate the topological properties 
of the fluid and cross helicities.

Quite intriguingly, the Chern–Simons forms are odd-dimensional
differential forms [93], implying that the Chern–Simons action (31)
is meaningful only for odd dimensions, given that it is proportional 
to the integral of the Chern–Simons form. In turn, owing to its 
identification with the generalized helicities, the latter acquire this 
distinct mathematical structure only in odd dimensions. Ipso facto, 
this may imply that helicities (magnetic, fluid or generalized) of 
this form will naturally emerge in non-relativistic (3D) theories, 
but not, perforce, in the case of relativistic theories, as they are in-
trinsically four-dimensional in nature. In particular, we note that 
relativistic MHD possesses a cross helicity akin to its 3D counter-
part, but the 4D version of the conventional (3D) magnetic helicity 
has proven to be elusive from a Hamiltonian perspective [94], al-
though it has been derived through other avenues [22,23,25].

It must be recognized that knot polynomials are not the only 
means of distinguishing between different topological configura-
tions. Thus, one can easily utilize more powerful mathematical 
formalisms to study ideal and extended MHD, examples of which 
include Khovanov and Heegaard Floer homologies, and possibly 
contact topology on account of its relevance in Legendrian knots 
[95,96]. In the theory of contact structures, one deals with a plane 
field ξ on a manifold M, which can be locally represented as the 
kernel of a 1-form α (the contact form). A necessary condition for 
the plane field to be a contact structure is that α ∧ dα is non-
zero. If we identify α with A± , it is evident that K± := A± ∧ dA±
must be non-zero – as a result, a potential connection between 
the generalized helicities (constructed from the integrals of K±) 
and contact geometry arises. We also note that the relationship 
between contact topology and hydrodynamics has already been 
probed in the context of Beltrami fields by [97].

At this stage, we observe that K± = 0 also leads to several in-
teresting results that arise from the Frobenius theorem; see for e.g. 
Theorem 2.2.26 (p. 93) of [73]. The condition K± = 0 is equivalent 
to the associated plane field ξ = kerα being closed under the Lie 
bracket. Mathematically, the latter amounts to the following state-
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ment: if v1 and v2 are sections of ξ , their Lie bracket [v1, v2]
must also be a section of ξ . If a plane field is closed under the Lie 
bracket, the Frobenius theorem implies that ξ is foliated (simply 
covered) by surfaces (tangent to ξ ) [98]. Given that the Frobenius 
theorem has important ramifications for integrability, and the ev-
ident connections with the generalized helicities via K± , we shall 
defer further investigations to future publications.

Apart from the topological properties of helicity, as seen in 
isolation, one can also probe its relationship with energy. For in-
stance, a classic result by Moffatt [4] established a relation be-
tween the minimum magnetic energy Emin , the flux � and the 
volume V of a magnetic flux tube as follows:

Emin = m�2 V −1/3, (32)

where m depends on the specific properties of the knot, and it is 
a topological invariant; see also [5,8,17] for similar results. When 
dealing with extended MHD, the magnetic component of the en-
ergy density must be transformed from B2 to B · B� . As a result, 
it is natural to ask whether one generalize the result (32) to ex-
tended MHD, and we intend to pursue this line of inquiry in our 
subsequent works.

The applications we have outlined thus far barely scratch the 
surface. There are many other results from HD and MHD that 
can be imported to extended MHD involving helicity. For instance, 
one such example is helicity injection. This phenomenon has been 
widely studied in the solar context [41,42] as it has important 
ramifications, but there have been no studies dealing with general-
ized helicity injection. We shall leave such subjects for later inves-
tigations – it is our present goal to highlight the correspondence 
with HD/MHD, thereby paving the way for conducting in-depth re-
search in these areas.

4. Discussion and conclusion

In this paper, we have emphasized and exploited the inherent 
mathematical power of the unified Hamiltonian structure of sev-
eral extended MHD models. This enterprise was rendered possible 
owing to the work of [57], and the unified Hamiltonian (and its 
underlying action principle) structure was established in [58,71].

Quite evidently, a host of avenues open up for future analy-
ses. The first, and possibly, the most significant is the derivation 
of reduced extended MHD models that retain the Hamiltonian 
properties of the parent model. Such models are likely to be of 
considerable relevance in reconnection studies, thereby furthering 
the basic approach adopted in [64,65,99,100]. For this reason, it is 
equally important to conduct a detailed examination of their sta-
bility via Hamiltonian methods, analogous to the extensive study of 
ideal MHD by [101]. We also note the possibility of using extended 
MHD models to study dynamos and jets [102], as well as helicity 
injection [31], the last of which appears to be a completely un-
explored arena. Although these models are endowed with the ion 
and electron skin depths, the absence of the corresponding Lar-
mor radii is evident. To rectify this limitation, it is feasible to use 
the gyromap [103,104] in the extended MHD context, to develop a 
gyroviscous theory analogous to the one formulated by Braginskii.

From the unified Hamiltonian structure of these models, we 
demonstrated that they possess a common class of Casimir in-
variants – the generalized helicities. Motivated by these helici-
ties, we sought the generalizations of the vorticity (or magnetic 
field), and thereby established the existence of two Lie-dragged 
2-forms. Thus, the whole enterprise demonstrated that the topo-
logical properties of these models are a natural consequence of 
their Hamiltonian structure. We believe that this is a vital, but 
rather unrecognized, fact that merits further attention. By con-
structing these helicities and 2-forms, we derived properties such 
as the generalization of Kelvin’s circulation theorem in a geomet-
ric setting. Moreover, we also showed that these helicities can be 
viewed as Abelian Chern–Simons theories, and that the method-
ology introduced by Witten, for gaining insights into topological 
quantum field theory, could be employed here. Consequently, we 
concluded that the Jones polynomials may be used to characterize 
different (generalized vorticity) configurations, serving as a more 
powerful tool than the standard Gauss linking number used to 
characterize fluid or magnetic helicity. By introducing such topo-
logical methods for characterizing helicity, their relevance in the 
domains of astrophysics and fusion is self-evident. One such ap-
plication, of paramount importance, is to deploy these topological 
methods in gaining a better understanding of solar magnetic fields 
[105].

In summary, we have used the noncanonical Hamiltonian for-
mulation of extended MHD models to arrive at their common 
mathematical structure, which manifests itself via the existence 
of generalized helicities and Lie-dragged 2-forms. These helicities, 
which are topological invariants, can be further studied through a 
host of techniques, including the Jones polynomial [11,91]. From a 
conceptual point-of-view, our results are elegant, as they exemplify 
the spirit of unification common to most physical theories. On the 
other hand, we also believe that the results presented herein pos-
sess manifold concrete applications, especially since the helicities 
serve both as important topological invariants, and crucial medi-
ators of relaxation and self-organization, reconnection, turbulence, 
and magnetic field generation (dynamos) in fusion and astrophysi-
cal plasmas.
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