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Abstract The conservation of the enstrophy (L2 norm of the vorticity ω) plays an
essential role in the physics and mathematics of two-dimensional (2D) Euler fluids.
Generalizing to compressible ideal (inviscid and barotropic) fluids, the generalized
enstrophy

∫
Σ(t) f (ω/ρ)ρd2x ( f an arbitrary smooth function, ρ the density, andΣ(t)

an arbitrary 2D domain co-moving with the fluid) is a constant of motion, and plays
the same role. On the other hand, for the three-dimensional (3D) ideal fluid, the
helicity

∫
M V·ω d3x (V the flow velocity, ω = ∇ × V , and M the three-dimensional

domain containing the fluid) is conserved. Evidently, the helicity degenerates in a
2D system, and the (generalized) enstrophy emerges as a compensating constant.
This transition of the constants of motion is a reflection of an essential difference
between 2D and 3D systems, because the conservation of the (generalized) enstrophy
imposes stronger constraints, than the helicity, on the flow. In this paper, we make a
deeper inquiry into the helicity-enstrophy interplay: the ideal fluid mechanics is cast
into a Hamiltonian form in the phase space of Clebsch parameters, generalizing 2D
to a wider category of epi-2D flows (2D embedded in 3D has zero-helicity, while
the converse is not true – our epi-2D category encompasses a wider class of zero-
helicity flows); how helicity degenerates and is substituted by a new constant is
delineated; and how a further generalized enstrophy is introduced as a constant of
motion applying to epi-2D flow is described.
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1 Introduction

The aim of this paper is to elucidate, from the perspective of Hamiltonian dynam-
ics [11], how two-dimensional (2D) flow is different from general three-dimensional
(3D) flow. Phenomenologically, 2D flow is often very different from 3D flow in that
the former is less-turbulent and is more capable of generating and sustaining large-
scale vortical structures—typhoons, jet streams, polar vortexes being spectacular
examples of such structures created in atmospheric 2D flow. If we could delineate
the root cause of such special behavior in 2D, we might be able to obtain a flow
“intermediate” between 2D and 3D, where the “regularity” of 2D flow is maintained.
As we will show, such is indeed possible.

We invoke the helicity as the key parameter for characterizing the transition from
3D to 2D (see Section2). As is well known, the helicity is a constant of motion in
an “ideal” flow (in this paper ideal means inviscid and barotropic). In 2D geometry,
however, the helicity degenerates to zero; but as a compensation, the enstrophy (or
its generalization, cf. Remark1) becomes a nontrivial constant (see Sections2.2 and
3.3). The conservation of the (generalized) enstrophy is a most essential property
for distinguishing 2D from 3D. The enstrophy is a higher order functional in com-
parison with the helicity, and its conservation is deemed to be the reason for the
aforementioned difference between 2D and 3D systems. Even when the constancy
of the enstrophy or the helicity is broken by the inclusion of dissipation, the macro-
scopic structure of the fluid system is strongly influenced by these ideal constants of
motion (cf. [4]).

Needless to say, zero-helicity flow is not necessarily 2D. In Section4,we introduce
our category of “epi-2D” flow that maintains the basic properties of zero-helicity
and enstrophy conservation, while not necessarily being 2D. Having cast ideal fluid
mechanics into a Hamiltonian form in the phase space of Clebsch parameters (e.g.
[1, 5, 8, 10, 14, 18]), the category of epi-2D flow is, then, defined as a reduction of
the phase space. One of the reduced parameter used is a phantom [15, 16], by which
we define a generalized enstrophy. In Section5, we introduce the notion of an epi-2D
particle to elucidate our theory.

2 Preliminaries

2.1 Three-Dimensional Fluid Mechanics

We start by reviewing the basic equations of fluid mechanics and the associated
conservation laws. Here we use the conventional notation of 3D vector analysis,
with vector fields denoted by bold-face symbols.

Let M be a 3D domain containing an ideal fluid. For simplicity, we assume
M = T 3, the 3-torus, and ignore the effect of boundaries. We denote by ρ the mass
density, V the fluid velocity, and P the pressure. Thus, the governing equations are
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∂tρ = −∇ · (Vρ), (1)

∂tV = −(V · ∇)V − ρ−1∇ P. (2)

Assuming a barotropic relation P = P(ρ), with ρ−1∇ P = ∇h for h = h(ρ), the
energy of the system is

H =
∫

M

[
1

2
|V |2 + ε(ρ)

]

ρ d3x, (3)

where ε(ρ) is the specific thermal energy, satisfying ∂(ρε(ρ))/∂ρ = h(ρ). Evidently,
dH/dt = 0.

The vorticityω = ∇ × V obeys the vorticity equation, obtained by taking the curl
of (2), i.e.,

∂tω = ∇ × (V × ω). (4)

Evidently, the total mass N = ∫
M ρ d3x is a constant of motion, along with another

conserved quantity, the helicity:

C =
∫

M
V · ω d3x . (5)

Using (2) and (4), we easily verify dC/dt = 0.1

2.2 Two-Dimensional Fluid Mechanics

To compare 2D and 3D systems, it is convenient to immerse a 2D system into 3D
space. For simplicity, we consider a flat torus T 2, on which we define Cartesian
coordinates x and y. We add a “perpendicular” coordinate z and extend T 2 to T 3,
with ez = ∇z, which we call the perpendicular vector. Now we may define a 2D
system by the reduction of the 3D system with ez · = 0 and ∂z = 0. Indeed, a 2D
fluid model is formulated by such a reduction.2 We interpret a 2D flow v = (vx , vy)

T

as a special 3D flow such that V = (vx , vy, 0)T. The vorticity can be defined as
ω = ∇ × V = ωez with ω = ∂x vy − ∂yvx . In which case the vorticity equation (4)
reduces to a single-component equation:

∂tω = −∇ · (vω). (6)

1In this work, we do not argue for the existence of regular solutions of the model equations. The
conservation laws discussed are, therefore, a priori relations satisfied by all regular solutions if they
exist.
2We note that ∂z = 0 does not mean that the system extends in the z-direction homogeneously;
instead, we consider a thin system in which variation of physical quantities in the z-direction is
much larger than in the x and y directions. Thus, ∂z can be separated from ∂x and ∂y .
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BecauseV · ω = 0, the helicity conservation is now trivial,C ≡ 0; however, inter-
estingly, a new constant emerges that replaces the degenerated helicity.3 By (6) and
the mass conservation law, which now reads ∂tρ = −∇ · (vρ), we obtain, the fol-
lowing equation for the potential vorticity, ϑ = ω/ρ:

∂tϑ = −v · ∇ϑ, (7)

and we define the generalized enstrophy by

Q =
∫

M
f (ϑ)ρ d2x, (8)

where f is an arbitrary C1-class function. Using (7) and the mass conservation law,
we can easily verify that dQ/dt = 0.

Remark 1. For an incompressible flow (∇ · v = 0), we may assume ρ = constant,
and then, (8) has a special form of

∫
M ω2d2x , which is the usual enstrophy.

We end this introductory section by drawing attention to the fact that all constants
of motion, i.e., the total mass N , the helicity C , and the generalized enstrophy Q
are defined by the spatial integrals over the 3D or 2D domain. This means that the
integrand of a constant of motion defines an n-form (n the spatial dimension) in
the language of differential geometry. In the following analysis, this fact guides our
formulation of generalized enstrophy.

3 Topological Invariants in Fluid Motion

3.1 Hamiltonian Formalism of Ideal Fluid Motion

For the study of geometrical properties of fluid mechanics, we reformulate the gov-
erning equations in the framework of differential geometry.Wefirst introduce a phase
space X that hosts the underlying state vectors ξ ; the physical quantity u = (ρ, V )T

(∈ V , the space of physical variables) is some function parameterized by ξ . Let

ξ = (�, ϕ, p, q, r, s)T ∈ X, (9)

where ξ1 = �, ξ3 = p, ξ5 = r are n-forms and ξ2 = ϕ, ξ4 = q, ξ6 = s are 0-forms
in the base space M = T 3. We assume ξ j ( j = 1, · · · , 6) are smooth (i.e., C∞-
class) functions. The dual space X∗ is the Hodge-dual of X , i.e., the odd number
components of η ∈ X∗ are 0-forms and the even number components are n-forms.

3Fukumoto [3] points out that the helicity and the generalized enstrophy can be unified by the
concept of cross helicity.
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The pairing of X∗ and X is 4

〈η, ξ 〉 =
∑

j

∫

M
η j ∧ ξ j , η ∈ X∗, ξ ∈ X. (10)

On the space C∞(X) of observables, we define a canonical Poisson bracket

{F, G} = 〈∂ξ F, J∂ξ G〉, (11)

where F, G ∈ C∞(X), ∂ξ F is the gradient of F defined by

F(ξ + εζ ) − F(ξ) = ε〈∂ξ F, ζ 〉 + O(ε2) (∀ζ ∈ X), (12)

and J : X∗ → X is the symplectic operator

J = Jc ⊕ Jc ⊕ Jc, Jc =
(

0 I
−I 0

)

. (13)

We denote by C∞
{ , }(X) the Poisson algebra of observables on X . The adjoint repre-

sentation of Hamiltonian dynamics is, for a given Hamiltonian H ,

d

dt
F = {F, H}, (14)

which is equivalent to Hamilton’s equation of motion

d

dt
ξ = J∂ξ H. (15)

We relate the physical quantity u ∈ V and ξ ∈ X by ρ ⇔ �∗ (i.e., �∗voln = �

with the volume n-form voln; here n = 3),5 and

V ⇔ ℘ = dϕ + p̌dq + řds,
(

p̌ = p∗/�∗, ř = r∗/�∗) . (16)

Writing a vector as (16) is called the Clebsch parameterization. The five Clebsch
parameters (ϕ, q, p̌, s, ř) are sufficient to represent every 3-vector (1-form in 3D
space) [14]. Inserting (16) into the fluid energy (3), we obtain a Hamiltonian

4Here the phase space (function space) X may be viewed as a cotangent bundle of Xq =
{(ξ2, ξ4, ξ6)T; ξ j ∈ 0(M)}. For F ∈ C∞(X), ∂ξ F ∈ X∗ (to be defined in (12))may be regarded as
a “1-form” on X . Hence, the duality of X∗ and X corresponds to that of “co-vectors” and “vectors.”
At the same time, the components of the field ξ ∈ X are differential forms (0-forms and n-forms)
on the “base space” M ; the “Hodge-duality” of X∗ and X is in the sense of the differential forms
on M , while the duality (10) is in the sense of “co-vectors” and “vectors” on the function space X .
5Here we denote by α∗ the Hodge-dual of a differential form α.
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H(ξ) =
∫

M

[
1

2

∣
∣dϕ + (p∗/�∗)dq + (r∗/�∗)ds

∣
∣2 + ε(�∗)

]

�. (17)

With this H , the equation of motion (15) reads

L̃Vϕ = h − V 2/2, (18)

L̃Vq = 0, L̃V s = 0, (19)

L̃V� = 0, L̃V p = 0, L̃Vr = 0, (20)

where we denote
L̃V = ∂t + LV , (21)

withLV being the conventional Lie derivative along the vector V ∈ T M .6,7

The first equation of (20) is nothing but the mass conservation law (1). Evaluating
∂tV by inserting (16) and using (18)–(20), we obtain (2). Hence, Hamilton’s equation
(15) with the Hamiltonian (17) describes the fluid motion obeying (1) and (2).8

3.2 Gauge Symmetry and Helicity

In (16), the Clebsch parameters are apparently a redundant representation of a 3-
vector V . In fact, the map X → V is not an injection (although a surjection) [14].
For example, the transformation

ϕ �→ ϕ + ε (ε ∈ R) (22)

does not change the physical quantity u ∈ V . Such a map is called a gauge transfor-
mation. We find that the map (22) is a Hamiltonian flow generated by the constant
of motion N = ∫

M �, i.e., the map (22) may be written as (I + εJ∂ξ N ). Or, the
co-adjoint orbit Ad∗

N (ε) is a gauge transformation group of the Clebsch parameteri-
zation.

The helicity C , which now reads

C =
∫

M
℘ ∧ d℘, (23)

6Here V is regarded as a vector ∈ T M through the following identification. By (16), V ⇔ ℘ ∈
T ∗M . In the Hamiltonian (17), |℘|2 ⇔ V † · V with the dual V † = V ∈ T M .
7When considering a relativistic fluid, we generate a diffeomorphism group eτU (τ the proper time),
acting on a space-time manifold M̃ = R × M , by a space-time velocity U ∈ T M̃ . Then, the space-
time derivative L̃V is replaced by the natural Lie derivativeLU . WhenLU applies to a differential
form α on M̃ , the temporal and spatial components are mixed up (cf. [17]).
8See [6] for the underlying action principle that yields the canonical system of Hamilton’s equation
(18)–(20). See also [10] for the comparison of the noncanonical bracket in terms of the fluid variables
and the canonical bracket in terms of the Clebsch (potential) variables.
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yields a different gauge group Ad∗
C(ε) (see [13] for the explicit form the correspond-

ing gauge transformation).

Remark 2. If we denote by {F, G}V the Poisson bracket of (11) evaluated only for
observables F and G in which ξ appears in terms of the Clebsch parameterized
u ∈ V , we obtain

{G, N }V = 0, {G, C}V = 0 ∀G. (24)

Hence, N andC are the Casimir elements of the reduced Poisson algebra C∞
{ , }V (V ).

See e.g. [9] for general discussion on reduction of Poisson brackets. The existence
of Casimir elements is characteristic of noncanonical Poisson brackets [11, 12]. We
note that C∞

{ , }V (V ) has much more (in fact, infinitely many) topological constraints
(constants of motions) that are not integrable, i.e., do not define Casimir elements
(see [15]).

3.3 Two-Dimensional System and Generalized Enstrophy

In a 2D system (M = T 2), we can parameterize a general 2D velocity as

V ⇔ ℘ = dϕ + p̌dq. (25)

Now only three Clebsch parameters ϕ, p̌, and q suffice [14]. Hence, the phase space
is

Z = {ζ = (�, ϕ, p, q)T; ϕ, q ∈ 0(T 2), �, p ∈ 2(T 2)}. (26)

All other formalisms are the same as the case of 3D systems. However, because the 3-
form℘ ∧ d℘ cannot be defined in 2D space we do not have the helicity conservation
law.

As mentioned in Section2.2, a different constant of motion emerges in 2D, the
generalized enstrophy, which is a spatial (2D) integral of a 2-form that involves
the vorticity ω = d℘. In preparation for the development of the next section, we
reformulate the generalized enstrophy in the language of differential geometry (with
a slight extension), and re-prove its conservation. Let

Q =
∫

Σ(t)
f (ω∗/�∗)�, (27)

where f is an arbitrary smooth function, and Σ(t) ⊂ M is a co-moving “volume”
(in fact, a 2D surface). Notice that the integral is evaluated on a subset Σ(t) that is
moved by the group action of etv.

By the following Lemma1 and the mass conservation law L̃v� = 0, we find
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d

dt
Q =

∫

Σ(t)
L̃v[ f (ω∗/�∗)�]

=
∫

Σ(t)

[
f ′�L̃v(ω

∗/�∗) + f L̃v�
] = 0. (28)

Lemma 1. Let α and β be a pair of n-forms defined on a smooth manifold M
of dimension n. Denoting α = α∗voln and β = β∗voln, we define ϑ = α∗/β∗. If
L̃Vα = 0 and L̃Vβ = 0 for a vector V ∈ T M, then L̃Vϑ = 0.

Proof. By the definition,

L̃Vα = (L̃Vα∗)voln + α∗(L̃Vvol
n) = (L̃Vα∗)voln + α∗(div V )voln.

When L̃Vα = 0, we may write L̃Vα∗ = −α∗div V . The same formula applies to
L̃Vβ∗. We thus have

L̃V

(
α∗

β∗

)

= L̃Vα∗

β∗ − α∗L̃Vβ∗

β∗2 = −α∗div V
β∗ + α∗β∗div V

β∗2 = 0.

�

Wewant to generalize Q to a class of 3D systems by considering a 3-form integral
of the form

Q =
∫

V (t)
f (ϑ)�, (29)

for some scalar ϑ that reflects ω.

4 Epi-Two-Dimensional Flow

4.1 Reduction of the Phase Space

A thought, drawn from the foregoing observation, is that the degeneration of one
constant of motion (i.e., the helicity) must be compensated by a new constant of
motion (i.e., the generalized enstrophy). Although we have seen that the degeneracy
of the helicity is usual for 2D systems, it may occur in a more general situation.
Then, it is conceivable that the compensation should also occur simultaneously. If
so, a generalized enstrophy may exist as a topological constraint in a wider class of
ideal flows, which we call epi-2D flows.

Definition 1 (epi-2D flow). Let Y be a phase space of smooth Clebsch parameters
such that

Y = {η = (�, ϕ, p, q)T; ϕ, q ∈ 0(T 3), �, p ∈ 3(T 3)}. (30)
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The corresponding physical fields ρ ⇔ �∗ and

V ⇔ ℘ = dϕ +
(

p∗

�∗

)

dq (31)

are called epi-two-dimensional (epi-2D) flows.

Notice the difference between Y of (30) and Z of (26); in particular, the epi-2D
flows are defined on the 3D domain T 3. The reduced phase space Y is a closed subset
of X . We denote by 〈 , 〉Y the reduced pairing of Y ∗ and Y (cf. (10)). By restricting
observables in Y , we define a canonical Poisson algebraC∞

{ , }Y
(Y ), where the Poisson

bracket is
{F, G}Y = 〈∂η F, JY ∂ηG〉Y , JY = Jc ⊕ Jc. (32)

Epi-2D flow may have a finite vorticity d℘ = d p̌ ∧ dq, where p̌ = p∗/�∗. How-
ever, we observe

℘ ∧ d℘ = dϕ ∧ d p̌ ∧ dq = d(ϕ ∧ d p̌ ∧ dq),

i.e., the helicity density ℘ ∧ d℘ is an exact 3-form. Hence, we have

Proposition 1. Epi-2D flow has zero-helicity, i.e., C = ∫
M ℘ ∧ d℘ = 0.

A vortex line is a curve determined by

d

dτ
x = ω(x), (33)

where ω is the vorticity. For epi-2D flow, ω = ∇ p̌ × ∇q (⇔ d℘ = d p̌ ∧ dq). Evi-
dently, the level-sets of p̌ and q are the “integral surfaces” of vortex lines:

d

dτ
p̌(x(τ )) = ∇ p̌ · d

dτ
x = ∇ p̌ · ω(x) = 0,

d

dτ
q(x(τ )) = ∇q · d

dτ
x = ∇q · ω(x) = 0.

This well-known fact can be stated as

Proposition 2. The vortex line equation of epi-2D flow is integrable; two Clebsch
parameters p̌ and q define the integral surfaces. We call the surface spanned by d p̌
and dq the vortex surface.

The epi-2D flow generated by a reduced Hamiltonian

H(η) =
∫

M

[
1

2

∣
∣dϕ + (p∗/�∗)dq

∣
∣2 + ε(�∗)

]

� (34)

satisfies the 3D fluid equations (1) and (2).
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We may observe the epi-2D dynamics in the larger phase space X . Since the
reduced Hamiltonian H(η) does not include the variables r and s, the flow velocity
V is independent of r and s. However, they obey the same equations (19) and (20),
i.e.,

L̃Vr = 0, L̃V s = 0. (35)

Such fields, co-moving with the epi-2D flow, are called phantom fields [15, 16].
Every functional such as F(r, s) is a constant of motion: {F(r, s), H(η)} = 0.

Remark 3. The epi-2D class absorbs the conventional 2D flows as well as their
moderate generalizations pertinent to some symmetry group. For example, we may
consider “helical flows” in an axisymmetric domain.9 Let ι be a real constant, and

T (δ)

⎛

⎝
x
y
z

⎞

⎠ =
⎡

⎣ι

⎛

⎝
cos δ sin δ 0

− sin δ cos δ 0
0 0 1

⎞

⎠ +
⎛

⎝
0 0 0
0 0 0
0 0 δ

⎞

⎠

⎤

⎦

⎛

⎝
x
y
z

⎞

⎠ ,

which we call the helical transformation. We denote the cylindrical coordinates
(r, θ, z) = (

√
x2 + y2, arctan(y/x), z). Evidently, r and ψ = mθ + kz (m ∈ Z and

k = mι) are invariant under the group action of T (δ). When all field variables are
functions of only r and ψ , we say the system has helical symmetry. The vector
h = (ιy,−ιx, 1)T is tangent to the symmetry lines. Every helical flow vector V (r, ψ)

that is perpendicular to h (i.e., h · V = 0) may be cast into the form of dϕ + p̌dψ ,
i.e., it is epi-2D. Such helical flows enjoy the 2D properties, especially the vanishing
of vortex stretching; see [2].

Remark 4. When a flow in a 3D domain has some continuous symmetry (i.e., invari-
ant under some Lie group action), it is often called a 2.5D flow[2]. For example,
a general helical flow (see Remark3), not necessarily restricted by the orthogonal-
ity condition h · V = 0, is 2.5D (when ι = 0, it is the combination of the usual 2D
flow v(x, y) and a vertical flow Vz(x, y)ez). Such 2.5D flows are not included in the
epi-2D class (evidently, a general 2.5D flow has a finite helicity). However, there are
some similarities between 2D and 2.5D flows; see [7] for discussion of helical flows
in the Navier–Stokes system.

4.2 Generalized Enstrophy of Epi-2D Flow

In light of the above, it is not surprising that we have a family of conservation laws
for epi-2D fluid motion:

9While we have started the discussion with the assumption of the boundary-less domain M = T 3

(in order to avoid complexities in formulating the Hamiltonian mechanics), the definition of the
epi-2D flow is independent of the boundary condition, so we may consider an arbitrary domain.
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Theorem 1. Let η(t) be an epi-2D flow generated by the reduced Hamiltonian H(η)

of (34), and s(t) be a co-moving phantom. We define a generalized enstrophy (denot-
ing ω = d p̌ ∧ dq)

Q =
∫

Ω(t)
f (ϑ) �, ϑ = (ω ∧ ds)∗

�∗ (36)

with an arbitrary smooth function f and an arbitrary co-moving 3D volume element
Ω(t) ⊂ M. Then, dQ/dt = 0.

Proof. Since L̃V� = 0, what we have to prove is L̃Vϑ = 0. We have

L̃V (d p̌ ∧ dq ∧ ds) = (L̃Vω) ∧ ds + ω ∧ L̃Vds

= ω ∧ d(L̃V s) = 0.

By Lemma1, we obtain L̃Vϑ = 0. �

The generalized enstrophy (36) is a three-dimensional generalization of the two-
dimensional one (27). About its application, we have the following remarks:

Remark 5. In a general 3D flow, Q is also a constant of motion. However, it does not
fully characterize the vorticity, sinceωmust be inflated to d℘ = d p̌ ∧ dq + dř ∧ ds.

Remark 6. In the case of 2D flow, we may first immerse the system into 3D by
adding a perpendicular coordinate z (see Section2.2), and take the phantom s = z
(this s is stationary). Then, Theorem1 reproduces the result of Section3.3.

Remark 7. Suppose that ω �= 0. Then, we may choose the initial value of s so that

(d p̌ ∧ dq ∧ ds)∗ = D( p̌, q, s)

D(x, y, z)
�= 0. (37)

Hence, the generalized enstrophy can bemade nontrivial. Analogous to the 2D gener-
alized enstrophy, such an s is a coordinate co-moving with the fluid, which penetrates
the vortex surface (see Proposition2).

5 A Particle Picture

5.1 Epi-2D “Particles”

We can exploit local epi-2D regions in order to define particle-like behavior. In the
general 3D parameterization V ⇔ ℘ = dϕ + p̌dq + řds, a region in which ř = 0
may be called an epi-2D domain. Since ř co-moves with the fluid, every infinitesimal
volume element (denoted by Ω j (t) with j an index for each such volume element)
included in an epi-2D domain may be viewed as a quasiparticle, which we call an
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epi-2D particle. The generalized enstrophy evaluated forΩ j (t), which we denote by
Q1(Ω j ) is a constant of motion, characterizing the vorticity included there. We call
Q1(Ω j ) the charge of the epi-2D particle Ω j .

A symmetric epi-2D particle can be defined by a domain in which p̌ = 0, with
the corresponding generalized enstrophy given by

Q2(Ω j ) =
∫

Ω j (t)
f (ϑ2) �, ϑ2 = (ω2 ∧ dq)∗

�∗ ,

measuring the vorticity ω2 = dř ∧ ds.
As noted in Remark5, both Q1 and Q2 can be evaluated in a general co-moving

domain (particle) Ω(t) ⊂ M , and they are ubiquitous constants. However, they do
not represent the “enstrophy” of an actual vorticity when the vorticity exists in a
mixed state d p̌ ∧ dq + dř ∧ ds. Hence, we may interpret Q1 and Q2 as “potential”
quantities, which become “observable” when one of ω1 = d p̌ ∧ dq or ω2 = dř ∧ ds
alone occupies a domain.

5.2 Discovering the Epi-2D Particle

In the preceding subsection, the notion of an epi-2D particle (or domain) was intro-
duced using the Clebsch parameters which are the potential fields lying beneath the
observables. Here we make an attempt to discover an epi-2D particle only from the
physical variable u.

We start by remembering the well-known relation:

Lemma 2 (Frobenius). Let ℘ be a C1-class 1-form on a smooth manifold M of
dimension n (≥ 3). The following two conditions are equivalent:

1. ℘ has zero-helicity density, i.e.,

℘ ∧ d℘ = 0. (38)

2. ℘ is locally (i.e., in a neighborhood Ω of every point of M) integrable, i.e., there
exist two scalars α and β by which ℘ can be written as

℘ = αdβ. (39)

Then, the Pfaffian equation ℘ = 0 foliates Ω by the level-sets of β.

We define a quotient space

Vs = 1(M)/d0(M), (40)
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which may be identified as the space of solenoidal vector fields. If we identify a
1-form ℘ ∈ Vs with a 3-vector field V , the integral

∫
M ℘ ∧ d℘ evaluates the helicity

C = ∫
M V · ∇ × V d3x . Notice that the transformation V �→ V + ∇φ (∀φ) does not

change the helicity, while the integrand (helicity density) V · ∇ × V is modified. But
by defining the helicity density ℘ ∧ d℘ on Vs , the gauge (dφ) dependence has been
removed.

If ℘ ∧ d℘ = 0 in Ω ⊂ M , we say that ℘ is “helicity free” in Ω . By Lemma2,
a helicity-free ℘ can be represented as ℘ = p̌dq (∃ p̌, q) in some Ω ′ ⊂ Ω , which
implies that ℘ ′ = ℘ + dϕ (∃ϕ) can be identified with the flow velocity V in Ω ′. To
put it in another way, we have

Proposition 3. Given that the projection onto Vs of a flow velocity V is helicity free
in Ω ⊂ M, i.e., there exists ∇φ by which we can make V − ∇φ ∼ ℘ ∈ Vs such that
℘ ∧ d℘ = 0 in Ω , then such a V is epi-2D in some ′ ⊂ Ω .

6 Conclusion

Diverse structures generated in fluids are not attributed to features of some nontrivial
energy functional. In fact, the energy of a usual fluid is quite simple, it being the
equivalent of a norm on the phase space of physical variables such as that given by
(3). This is in marked contrast to the usual situation in condensed-matter physics
where, for example, phase transitions or spinodal decompositions are modeled by
bumpy energies. The key role of fluids is, then, played by “constraints” that forbid the
dynamics from obeying simple orbits that might be determined by the energy alone.
In the ideal (no-dissipation) limit, such constraints are manifested as conservation
laws. Indeed, ideal fluid mechanics has infinitely many such constants of motion,
and some of them are essential for controlling bifurcations of diverse structures or
maintaining stability of some vertical motion. In the present work, we focused on
two well-known constants of motion: the helicity of 3D flow and the (generalized)
enstrophy of 2D flow, and we studied the basic mechanism of their creation.

In physics, a constant of motion is expected to be the product of some symmetry.
However, the energy (Hamiltonian) of the fluid, represented in terms of the usual
physical (Eulerian) variables, does not bear such symmetries to produce the helicity
or enstrophy. Therefore, we are led to consider a set of underlying basic parameters
beneath the physical quantities, and assume that some specific combinations of them
appear as observables. Here, we invoked Clebsch parameters, and showed that the
helicity is the product of gauge symmetry of the Clebsch parameterization.

We have observed that the phase space X of general 3D flows is hierarchically
foliated into submanifolds, where the smallest subsystem hosts vorticity-free (irro-
tational) flows. The next hierarchy Y hosts the epi-2D flows, which is a subset of
the zero-helicity leaf (Proposition1). The subsystem Y is foliated by the generalized
enstrophy (Theorem1), which is a 3D generalization of the conventional one for 2D
systems. Notice that the reduction from X (general 3D flow) to Y (epi-2D flow) is not
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a geometrical constraint (cf. the 2D system of Section3.3). However, epi-2D systems
have intrinsic vortex surfaces (Proposition2), which parallels the a priori base space
of the 2D system. The generalized enstrophy is the measure of the circulation on
such vortex surfaces.
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