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An explicit high-order noncanonical symplectic algorithm for ideal two-fluid systems is developed.

The fluid is discretized as particles in the Lagrangian description, while the electromagnetic fields

and internal energy are treated as discrete differential form fields on a fixed mesh. With the assis-

tance of Whitney interpolating forms [H. Whitney, Geometric Integration Theory (Princeton

University Press, 1957); M. Desbrun et al., Discrete Differential Geometry (Springer, 2008); J.

Xiao et al., Phys. Plasmas 22, 112504 (2015)], this scheme preserves the gauge symmetry of the

electromagnetic field, and the pressure field is naturally derived from the discrete internal energy.

The whole system is solved using the Hamiltonian splitting method discovered by He et al. [Phys.

Plasmas 22, 124503 (2015)], which was been successfully adopted in constructing symplectic

particle-in-cell schemes [J. Xiao et al., Phys. Plasmas 22, 112504 (2015)]. Because of its structure

preserving and explicit nature, this algorithm is especially suitable for large-scale simulations for

physics problems that are multi-scale and require long-term fidelity and accuracy. The algorithm is

verified via two tests: studies of the dispersion relation of waves in a two-fluid plasma system and

the oscillating two-stream instability. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4967276]

I. INTRODUCTION

The ideal two-fluid model, a basic non-dissipative model

of plasma physics, has been widely used to study fusion and

astrophysical plasmas. In this model, the electrons and ions

are treated as ideal fluids separately, with coupling to the

electromagnetic fields through the charge and current carried

by them. Although this system is easily generalized to any

number of different charged species, the terminology “two-

fluid” will be used here in lieu of “multi-fluid,” as is typically

done. Because the ideal two-fluid system has noncanonical

Hamiltonian form,5,6 as was shown in Ref. 7, its dynamics

preserves the geometric structure and there is no dissipation

of invariants such as the total energy and momentum in the

system. Conventional numerical algorithms for the ideal

two-fluid system generally do not preserve the geometric

structure and thus the truncation error can accumulate coher-

ently over simulation time-steps. This is a serious drawback

when solving most electron-ion systems whose behaviors are

naturally multi-scale. For example, the ion cyclotron period

is thousands of times longer than that of the electron.

Symplectic methods, discovered in the 1980s,8–23 have

proven to be efficient for solving finite-dimensional canonical

Hamiltonian systems. Such methods preserve the symplectic

geometric structure (2-form) associated with the original

canonical Hamiltonian system, and the numerical error of all

invariants can be globally bounded by small values through-

out simulations.24 In plasma physics, accelerator physics, and

fluid dynamics, many of the finite-dimensional Hamiltonian

systems and most of the infinite-dimensional Hamiltonian

systems are noncanonical; for example, this is the case for

guiding center dynamics,25–27 the Euler fluid and magnetohy-

drodynamics (MHD) equations,28 the Vlasov-Maxwell and

Vlasov-Poisson systems,5,6,29–31 and drift and gyrokinetic

theories.32–36 The development of geometric algorithms for

these systems can be challenging. However, recently signifi-

cant advances have been achieved in the development of

structure preserving geometric algorithms for charged particle

dynamics,37–50 the Vlasov-Maxwell systems,3,4,51–61 com-

pressible ideal MHD,62,63 and incompressible fluids.64,65 All

of these methods have demonstrated unparalleled long-term

numerical accuracy and fidelity compared with conventional

methods. As a side note, we point out that for infinite-

dimensional Hamiltonian systems, an alternative viewpoint is

to treat them as multi-symplectic systems,66,67 and corre-

sponding multi-symplectic algorithms68–74 have also been

developed.

In the present work, an explicit, high-order, noncanoni-

cal symplectic algorithm for integrating the compressible
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ideal two-fluid system is developed. We discretize the fluid

as particles in the Lagrangian description, which naturally

guarantees conservation of the density. The electromagnetic

fields and internal energy are discretized over a cubic mesh

by using the theory of discrete exterior calculus (DEC).75

High-order Whitney interpolating forms3 are used to ensure

the gauge symmetry of Maxwell’s equations. The discrete

Poisson bracket for the ideal two-fluid system is obtained by

a similar technique that is used in obtaining the discrete

Vlasov-Maxwell bracket,3 and the final numerical scheme is

constructed by the powerful Hamiltonian split method.3,4,47

We note that for the existing structure preserving method for

the compressible fluid,62 all fields are discretized over a

moving mesh, which does not apply to cases where the mesh

deforms significantly during the evolution, such as in a rotat-

ing fluid. This difficulty is overcome by using a fixed mesh

rather than a moving one for discretizing the electromagnetic

and internal energy fields in our method. The conservation of

symplectic structure guarantees that the numerical errors of

all invariants such as the total energy and momentum are

bounded within a small value during the simulations.24

Therefore, this method is most suitable for solving long-term

multi-scale problems.

The paper is organized as follows. In Sec. II, the

Hamiltonian theory of the ideal two-fluid system is reviewed

and the geometric structure preserving method is developed.

Two numerical examples, the dispersion relation of waves in

an ideal two-fluid system and the oscillating two-stream

instability, are given in Sec. III. Finally, in Sec. IV we

conclude.

II. STRUCTURE PRESERVING DISCRETIZATION FOR
IDEAL TWO-FLUID SYSTEMS

The starting point of our development is the Lagrangian

of the ideal two-fluid system, written in terms of Lagrangian

variables, which is quite similar to the Lagrangian for the

Vlasov-Maxwell system except for the addition of internal

energy terms (see, e.g., Ref. 76). This Lagrangian is given as

follows:

L¼
X

s

ð
dx0

1

2
ns0 x0ð Þmsj _xsj2þ qsns0 x0ð Þ _xs �A xsð Þ

�

�Ums

ns0 x0ð Þms

J xsð Þ

 !!
þ 1

2

ð
d3x j _A xð Þj2� jr�A xð Þj2
� �

;

(1)

where ms, qs, and ns0 are the mass, charge, and initial number

density distribution of species s, respectively, xs and _xs are

current position and velocity of fluid elements for species s
labeled by x0, which we take to be the initial value of xs in

the configuration space, J ðxsÞ is the Jacobian of the coordi-

nate transformation from the initial value x0–xs, Ums is the

internal energy per unit mass for species s, and A is the elec-

tromagnetic vector potential. In the arguments of the fields

xs and A we suppress the time variable. In this Lagrangian,

we have ignored the entropy term in the internal energy,

assuming barotropic fluids, and adopted the temporal gauge

with / ¼ 0. The permittivity and permeability are set to

unity for simplicity.

Evolution equations are obtained upon variation of the

action S as in Hamilton’s principle

dS½xs;A� ¼ d
ð

dtL ¼ 0; (2)

giving rise the equations of motion via

dS

dxs
¼ 0 and

dS

dA
¼ 0; (3)

which yield

ms€xs x0ð Þ ¼ qs _xs � B xsð Þ þ E xsð Þ
� �

� 1

ns0 x0ð Þ

@Ums

ns0 x0ð Þms

J xsð Þ

 !

@xs
; (4)

_EðxÞ ¼ r � BðxÞ �
X

s

ð
dx0 qsns0ðx0Þ _xsdðx� xsÞ; (5)

where E ¼ � _A and B ¼ r� A are the electromagnetic

fields. These equations are exactly the ideal two-fluid equa-

tions in the Lagrangian variable description.

Now we discretize the Lagrangian using a method very

similar to that for the discretization of the Vlasov-Maxwell

system in Ref. 3. The electromagnetic fields and internal

energy are sampled over a cubic mesh, while the fluid is

discretized into finite-sized smooth particles3,53,77 moving

between mesh grids. Modeling fluids using a set of

Lagrangian particles is also the key idea of the smoothed-

particle-hydrodynamics (SPH) method.77–79 However, the

difference is that our internal energy fields are calculated on

fixed mesh grids. Therefore, the method developed in the

present study more closely resembles the structure-

preserving symplectic particle-in-cell (PIC) method of

Ref. 3. The resulting discrete Lagrangian is

Ld ¼
X
s;p

1

2
msn0;spj _xspj2 þ qsn0;sp _xsp �

X
J

AJWr1J
xspð Þ

 !

�
X

s;I

Us qsIð Þ þ
1

2

X
J

j _AJj2 � jcurldAJj2
� �

; (6)

where

qsI ¼
X

p

msn0;spWr0I
ðxspÞ: (7)

Here, the subscript sp denotes the p-th particle of species s,

Wr0I
and Wr1J

are Whitney interpolating maps for discrete 0-

forms and 1-forms,1–3,75 Us is discrete internal energy per

unit volume for species s, curld is the discrete curl operator

that is defined in Eq. (15), I; J; K are indices for the discrete

0-form, 1-form, 2-form, respectively. To simplify the nota-

tion, the grid size Dx has been set to unity. The Whitney

maps are defined as follows:
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X
i;j;k

Wr0;i;j;k
ðxÞ/i;j;k �

X
i;j;k

/i;j;kW1ðxÞW1ðyÞW1ðzÞ;

X
i;j;k

Wr1;i;j;k
ðxÞAi;j;k �

X
i;j;k

Axi;j;kW
ð2Þ
1 ðx� iÞW1ðy� jÞW1ðz� kÞ

Ayi;j;kW1ðx� iÞWð2Þ1 ðy� jÞW1ðz� kÞ
Azi;j;kW1ðx� iÞW1ðy� jÞWð2Þ1 ðz� kÞ

2
6664

3
7775

T

;

X
i;j;k

Wr2;i;j;k
ðxÞBi;j;k �

X
i;j;k

Bxi;j;kW1ðx� iÞWð2Þ1 ðy� jÞWð2Þ1 ðz� kÞ
Byi;j;kW

ð2Þ
1 ðx� iÞW1ðy� jÞWð2Þ1 ðz� kÞ

Bzi;j;kW
ð2Þ
1 ðx� iÞWð2Þ1 ðy� jÞW1ðz� kÞ

2
6664

3
7775

T

;

X
i;j;k

Wr3;i;j;kðxÞqi;j;k �
X
i;j;k

qi;j;kW
ð2Þ
1 ðx� iÞWð2Þ1 ðy� jÞWð2Þ1 ðz� kÞ;

W
ð2Þ
1 ðxÞ ¼ �

W01ðxÞ þW01ðxþ 1Þ þW01ðxþ 2Þ ;�1 � x < 2;

0 ; otherwise :

(

where the one-dimensional interpolation function W1 is chosen in this paper to be

W1 xð Þ ¼

0; x � �2;

� x6

48
� x5

8
� 5 x4

16
� 5 x3

12
þ xþ 1; �2 < x � �1;

x6

48
� x5

8
� 5 x4

16
� 5 x3

12
� 5 x2

8
þ 7

12
; �1 < x � 0;

x6

48
þ x5

8
� 5 x4

16
þ 5 x3

12
� 5 x2

8
þ 7

12
; 0 < x � 1;

� x6

48
þ x5

8
� 5 x4

16
þ 5 x3

12
� xþ 1; 1 < x � 2;

0; 2 < x :

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(8)

The equations of motion arising from the action with Lagrangian Ld of (6) are the following:

msn0;sp€xsp ¼ qsn0;sp _xsp � r�
X

J

AJWr1J
ðxspÞ

� �
� _AJWr1J

ðxspÞ
� �

�
X

I

U0sðqsIÞmsn0;sprWr0I
ðxspÞ; (9)

€AJ ¼ �curlT
d curldAJ þ

X
s;p

qsn0;spxspWr1J
ðxspÞ: (10)

Next, we introduce two discrete fields EJ ¼ � _AJ and BK ¼
P

Jcurld KJAJ , which are discrete electromagnetic fields. We will

make use of the following properties of the interpolating forms1,3,75

r
X

I

Wr0I
ðxÞ/I ¼

X
I;J

Wr1J
ðxÞrdJI/I; (11)

r�
X

J

Wr1J
ðxÞAJ ¼

X
J;K

Wr2K
ðxÞcurldKJAJ; (12)

r �
X

K

Wr2K
ðxÞBK ¼

X
K;L

Wr3L
ðxÞdivdLKBK; (13)

ðrd/Þi;j;k ¼ ½/iþ1;j;k � /i;j;k;/i;jþ1;k � /i;j;k;/i;j;kþ1 � /i;j;k�: (14)

ðcurldAÞi;j;k ¼
ðAzi;jþ1;k � Azi;j;kÞ � ðAyi;j;kþ1 � Ayi;j;kÞ
ðAxi;j;kþ1 � Axi;j;kÞ � ðAziþ1;j;k � Azi;j;kÞ
ðAyiþ1;j;k � Ayi;j;kÞ � ðAxi;jþ1;k � Axi;j;kÞ

2
64

3
75

T

; (15)

ðdivdBÞi;j;k ¼ ðBxiþ1;j;k � Bxi;j;kÞ þ ðByi;jþ1;k � Byi;j;kÞ þ ðBzi;j;kþ1 � Bzi;j;kÞ; (16)

which hold for any /I; AJ , and BK . With these identities, Eqs. (9) and (10) can be expressed as

msn0;sp€xsp ¼ qsn0;sp _xsp �
X

K

BKWr2K
ðxspÞ þ EJWr1J

ðxspÞ
� �

�
X

I

U0iðqsIÞmsn0;sprWr0I
ðxspÞ ; (17)
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_EJ ¼
X

K

curlT
d JKBK �

X
s;p

qsn0;sp _xspWr1J
ðxspÞ; (18)

_BK ¼ �
X

J

curldKJEJ: (19)

The continuity equations for the densities are automatically

satisfied, as can be shown by directly calculating the time

derivative of qsI

_qsI ¼
X

p

msn0;sp _xsp � rWr0I ðxspÞ; (20)

¼
X

p

msn0;sp _xsp �
X

J

Wr1J
ðxspÞrdJI; (21)

¼
X

J

rdJI

X
p

msn0;sp _xsp �Wr1J
ðxspÞ; (22)

¼
X

J

rdJIMsJ; (23)

where MsJ can be viewed as the discrete momentum density

over mesh grids, and
P

JrdJI is a discrete version of �r�.
So, Eq. (23) is essentially a kind of discrete continuity equa-

tion. Using a similar technique, we can also prove the dis-

crete charge conservation propertyX
s

qs

ms
_qsI ¼

X
s;J

rdJI
qs

ms
MsJ: (24)

With this property and using Eq. (18) we can see that the dis-

crete Gauss’s lawX
J

rdJIEJ þ
X
s;p

qs

ms
qsI ¼ 0; (25)

is satisfied for all times if it is satisfied initially. The charge

conservation has close relation to the gauge invariance. Squire

et al.52 first constructed a discrete system for PIC simulations

with gauge invariance and showed that gauge invariance guar-

antees the charge conservation for the discrete system.

Recently, Burby and Tronci80 found that in the field theory for

hybrid models, the gauge invariance of the theory is necessary

and sufficient to ensure charge conservation for the system.

To construct the geometric structure preserving algo-

rithm, the Hamiltonian theory for the discretized system is

considered. Note that the only difference between the two-

fluid Lagrangian and the Vlasov-Maxwell Lagrangian is the

internal energy term, which can be written as a function of

xsp. Thus, the discrete Poisson structure of the ideal two-fluid

system can be chosen to be the same as that for the Vlasov-

Maxwell system,3 which is

F;Gf g¼
X

J

@F

@EJ
�
X

K

@G

@BK
curldKJ�

X
K

@F

@BK
curldKJ �

@G

@EJ

 !

þ
X
s;p

1

msn0;sp

@F

@xsp
� @G

@ _xsp
� @F

@ _xsp
� @G

@xsp

� �
þ
X
s;p

qs

ms

� @F

@ _xsp
�
X

J

Wr1J
xspð Þ

@G

@EJ
� @G

@ _xsp
�
X

J

Wr1J
xspð Þ

@F

@EJ

 !

�
X
s;p

qs

m2
s n0;sp

@F

@ _xsp
�
X

K

Wr2K
xspð ÞBK

� 	
� @G

@ _xsp
:

And the two-fluid Hamiltonian is

H ¼ 1

2

X
J

E2
J þ

X
K

B2
K þ

X
s;p

msn0;spj _xspj2
� �

þ
X

sI

Us qsIð Þ: (26)

It is straightforward to check that the following Hamiltonian

equations are identical to Eqs. (17)–(19)

_xsp ¼ fxsp;Hg; (27)

€xsp ¼ f _xsp;Hg; (28)

_EJ ¼ fEJ;Hg; (29)

_BK ¼ fBK;Hg: (30)

Now the discrete algorithm can be developed. Using a

Hamiltonian splitting technique similar to that in Refs. 3 and

4, H can be split into 6 parts

H ¼ HE þ HB þ Hx þ Hy þ Hz þ HU; (31)

where

HE ¼
1

2

X
J

E2
J ; (32)

HB ¼
1

2

X
K

B2
K; (33)

Hr ¼
1

2

X
s;p

msn0;sp _r2
sp; for r 2 x; y; zf g; (34)

HU ¼
X

s;I

UsðqsIÞ: (35)

It turns out that the exact solutions for all sub-systems can be

found and computed explicitly. The exact solutions for HE,

HB, Hx, Hy, and Hz have been derived in Ref. 3. They are

HE :

EJ tþ Dtð Þ ¼ EJ tð Þ;
BK tþ Dtð Þ ¼ BK tð Þ � Dt

X
J

curld KJEJ tð Þ;

xsp tþ Dtð Þ ¼ xsp tð Þ;

_xsp tþ Dtð Þ ¼ _xsp tð Þ þ qs

ms
Dt
X

J

Wr1J
xsp tð Þ
� �

EJ tð Þ;

8>>>>>>>>><
>>>>>>>>>:

(36)

HB :

EJðtþ DtÞ ¼ EJðtÞ þ Dt
X

K

curld KJBKðtÞ;

BKðtþ DtÞ ¼ BKðtÞ;
xspðtþ DtÞ ¼ xspðtÞ;
_xspðtþ DtÞ ¼ _xspðtÞ;

8>>>>>>><
>>>>>>>:

(37)
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Hx :

EJ tþ Dtð Þ ¼ EJ tð Þ �
ðDt

0

dt0
X
s;p

qsn0;sp _xsp tð ÞexWr1J
xsp tð Þ þ _xsp tð Þt0ex

� �
BK tþ Dtð Þ ¼ BK tð Þ;
xsp tþ Dtð Þ ¼ xsp tð Þ þ Dt _xsp tð Þex;

_xsp tþ Dtð Þ ¼ _xsp tð Þ þ qs

ms
_xsp tð Þex �

ðDt

0

dt0
X

K

Wr2K
xsp tð Þ þ _xsp tð Þt0ex

� �
BK tð Þ:

8>>>>>>>>>><
>>>>>>>>>>:

(38)

The solutions Hy and Hz are similar to Hx. For HU, the exact

evolution equations are
_EJ ¼ fEJ;HUg ¼ 0; (39)

_BK ¼ fBK;HUg ¼ 0; (40)

_xsp ¼ fxsp;HUg ¼ 0; (41)

€xsp ¼ f _xsp;HUg ¼ �
X

I

Us
0ðqsIÞrWr0I

ðxsIÞ: (42)

Using the property Eq. (11) of the Whitney interpolating

forms, the exact solution can be written as

HU :

EJðtþ DtÞ ¼ EJðtÞ;
BKðtþ DtÞ ¼ BKðtÞ;
xspðtþ DtÞ ¼ xspðtÞ;
_xspðtþ DtÞ ¼ _xspðtÞ � Dt

X
I;J

rdJIU
0
sðqsIÞWr1J

ðxspÞ:

8>>>>>><
>>>>>>:

(43)

Here, HU can be interpreted as a discrete version of the con-

tinuous Newton’s second law

€xs ¼ �rxs
U0s

msns0

J s

� �
: (44)

At first look, it seems different from Newton’s law in the

Lagrangian form derived in Ref. 6, i.e.

€x ¼ �Jr q0

J 2
U0m

q0

J

� �� �
: (45)

This is because the Um in Eq. (45) is defined as the internal

energy per mass. Upon letting q0 ¼ msns0, the relation

between Ums and Us is

Us
msns0

J

� �
¼ msns0

J Ums
msns0

J

� �
: (46)

Consequently

�rU0s
msns0

J

� �

¼ �r Ums
msns0

J

� �
þ msns0

J U0ms

msns0

J

� �� �

¼ rJ msns0

J 2
U0ms

msns0

J

� �
�r msns0

J U0ms

msns0

J

� �� �

¼ �Jr msns0

J 2
U0ms

msns0

J

� �� �
;

which is identical to the pressure term in the right hand side

of Eq. (45). Therefore, the pressure for the species s can be

defined to be6

Ps ¼
m2

s n2
s0

J 2
U0ms

msns0

J

� �

¼ msns0

J U0s
msns0

J

� �
� Us

msns0

J

� �
¼ qsU

0
s qsð Þ � Us qsð Þ:

The final geometric structure-preserving scheme can be

constructed from these exact solutions. For example, a first-

order scheme can be chosen as

H1ðDtÞ ¼ HEðDtÞHBðDtÞHxðDtÞHyðDtÞHzðDtÞHUðDtÞ;
(47)

and a second-order scheme can be constructed as

H2ðDtÞ ¼ HxðDt=2ÞHyðDt=2ÞHzðDt=2ÞHBðDt=2Þ
�HUðD=2ÞHEðDtÞHUðDt=2ÞHBðDt=2Þ
�HzðDt=2ÞHyðDt=2ÞHxðDt=2Þ: (48)

The 2ðlþ 1Þ th-order scheme can be derived from the

2lth-order scheme by using

H2ðlþ1ÞðDtÞ ¼ H2lðalDtÞH2lðblDtÞH2lðalDtÞ; (49)

al ¼ 1=ð2� 21=ð2lþ1ÞÞ; (50)

bl ¼ 1� 2al: (51)

III. NUMERICAL EXAMPLES

To verify the practicability of our explicit high-order

noncanonical symplectic algorithm for ideal two-fluid

systems, we apply it to two physics problems. In the first

problem, we examine the dispersion relation of an electron-

deuterium plasma, while the second concerns the oscillation

two-stream instability.

For the electron-deuterium plasma, parameters of the

unperturbed uniform plasma are chosen as follows:

ni0 ¼ ne0
¼ 4:0� 1019 m�3; (52)

qe0
¼ ne0

me; (53)

qi0 ¼ ni0 mi; (54)

mi ¼ 3671me ¼ 3:344� 10�27 kg; (55)
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qi ¼ �qe ¼ 1:602� 10�19C; (56)

Ue qeð Þ ¼ Ue0

3

2

qe

qe0

� �5=3

; (57)

Ui qið Þ ¼ Ui0

3

2

qi

qi0

� �5=3

; (58)

B0 ¼ ð3:17ez þ 1:13eyÞT; (59)

where Ui0 ¼ Ue0
¼ menev2

Te=2; vTe ¼ 0:04472c, c is the

speed of light in the vacuum, B0 is the constant external

magnetic field. This plasma supports both electron waves

and ion waves, and their frequencies are very different since

the deuterium ion is much heavier than the electron. The

simulation is carried out in a 1� 1� 1536 mesh, and the

periodical boundary condition is adopted in all x, y, and z

directions. The grid size is chosen to be Dx ¼ 2� 10�4 m

and the time step is set to Dt ¼ Dx=ð2cÞ. The simulation is

initialized with stationary fluid particles being equally

spaced with 4 particles per grid cell.

To numerically obtain the dispersion relation, the simu-

lation is carried out with a small random perturbation. The

space-time dependence of one field component is trans-

formed into x� k space, and a contour plot of the field com-

ponent in the x� k space is used to make correspondence

with the linear dispersion relation of the discrete system. In

Fig. 1, such a contour plot is compared with the theoretical

dispersion relation in both high frequency and low frequency

ranges. We can see that the dispersion relation obtained by

our geometric two-fluid algorithm agrees very well with the

theory over the frequency range of the simulation. As

expected, the total energy of the system is bounded to be

within an interval of its initial value of for all simulation

time-steps, which is plotted in Fig. 2.

The second example is the well-known oscillating

two-stream instability.81,82 We consider the case of an

unmagnetized cold two-fluid model and compare with stabil-

ity condition that was previously studied in Ref. 83. We sim-

ulate an electron-positron plasma, with system parameters

given as follows:

ne0 ¼ ni0 ¼ 4:0� 1015 m�3; (60)

mi ¼ me ¼ 9:1� 10�31 kg; (61)

B0 ¼ 0; (62)

with the relative drift velocity between electrons and positrons

chosen to be vd=2 ¼ ve0 ¼ �vi0 ¼ ez0:041c. The simulation

domain is a 1� 1� 256 mesh. Initial perturbations with two

different wave numbers, kz ¼ p=128 and kz ¼ p=32, are

tested. According to the theoretical prediction of Ref. 83, the

mode with kz ¼ p=32 is stable while that with kz ¼ p=128 is

unstable. Both of these predictions are confirmed by the

FIG. 1. The dispersion relation of an electron-deuterium two-fluid plasma

plotted against simulation results. The high frequency region is shown in (a)

and the low frequency region in (b), with solid lines being theoretical disper-

sion relation.

FIG. 2. Evolution of the total energy obtained from the structure preserving

two-fluid algorithm. In all 2� 106 time steps, the energy deviates from its

initial value by only a very small amount.
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simulation using our algorithm, as seen in Fig. 3. The evolution

of the perturbed electrostatic field Ez of the unstable mode is

plotted in Fig. 4, which displays the space-time dependence of

Ez during the nonlinear evolution of the instability.

IV. DISCUSSION AND CONCLUSION

The two-fluid scheme displayed here is very like a full-f

PIC scheme for Vlasov-Maxwell systems. However, there is

a difference. In full-f PIC simulations, a large number of

sample points (e.g., 1000 or more sample points per grid) are

needed to resolve the particle velocity distribution and

reduce the numerical noise. However, in our two-fluid simu-

lations, the effect of velocity distribution is represented by

the pressure term, so particles can be very sparse (e.g., 1–4

fluid particles per grid). This significantly reduces the

computation complexity as well as memory consumption.

According to our tests, the two-fluid simulation (4 fluid par-

ticles per grid) runs about 30 times faster than a full-f PIC

simulation (1000 sample points per grid) with the same

parameters.

Another thing that has not been discussed yet in this

paper is the boundary implement. We can state that the

boundary of a particle-based scheme should be treated care-

fully to avoid possible numerical errors and instabilities. For

structure preserving algorithms obtained from the variational

theory, if the boundary is physical or the Lagrangian of the

whole system is well defined, then it will be fine to obtain

the scheme without introducing numerical dissipation or

instabilities. For example, the Perfect Electrical Conductor

boundary for electromagnetic fields and reflection for par-

ticles can be implemented in the following way. We can

adopt a smaller simulation domain for particles to make sure

that all smoothing functions can be evaluated on grid points

inside the mesh and put a very steep potential in the bound-

ary layer that guarantees all particles are reflected when they

are near this boundary. However for absorbing boundaries,

the whole system is essentially open and there is no way to

guarantee conservation laws. Investigations of boundaries

for this kind of problem will be a future work.

In summary, a geometric structure preserving algorithm

for ideal two-fluid systems was developed. In this method,

fluids were discretized as Lagrangian particles, and the con-

servation of mass was seen to be naturally satisfied. The elec-

tromagnetic and internal energy fields were discretized over a

fixed cubic mesh using discrete differential forms. With the

help of high-order Whitney interpolation forms, this scheme

preserves the electromagnetic gauge symmetry. In the algo-

rithm, the discrete pressure was obtained from the discrete

internal energy field. The time integration was accomplished

by adopting a powerful high-order explicit Hamiltonian split-

ting technique, which preserves the whole symplectic struc-

ture of the two-fluid system. Numerical examples were given

to verify the accuracy and conservative nature of the geomet-

ric algorithm. We expect that this algorithm will find a wide

FIG. 4. The space-time dependence of Ez during the nonlinear evolution of

the unstable mode initiated by a perturbation with kz ¼ p=128.

FIG. 3. Simulation of the oscillating two-stream instability for an electron-

positron plasma. Simulations show that the mode with kz ¼ p=32 is

stable (a) while the kz ¼ p=128 is unstable (b), as predicted theoretically in

Ref. 83.
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range of applications, especially in physical problems that are

multi-scale and demand long-term accuracy and fidelity.
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