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The rattleback is a boat-shaped top with an asymmetric preference in spin. Its dynamics can be described 
by nonlinearly coupled pitching, rolling, and spinning modes. The chirality, designed into the body as a 
skewed mass distribution, manifests itself in the quicker transition of +spin → pitch → −spin than that 
of −spin → roll → +spin. The curious guiding idea of this work is that we can formulate the dynamics 
as if a symmetric body were moving in a chiral space. By elucidating the duality of matter and space in 
the Hamiltonian formalism, we attribute asymmetry to space. The rattleback is shown to live in the space 
dictated by the Bianchi type VIh<−1 (belonging to class B) algebra; this particular algebra is used here 
for the first time in a mechanical example. The class B algebra has a singularity that separates the space 
(Poisson manifold) into asymmetric subspaces, breaking the time-reversal symmetry of nearby orbits.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

The rattleback has amused and bemused people of all walks 
of life. For this boat-shaped top (Fig. 1) to be a rattleback it is 
sufficient that inertia and geometry be misaligned—that the axes 
of the ellipsoid of inertia be skewed with respect to the principal 
curvature directions of the contact surface. The chirality in motion, 
one spin more prominent than the opposite spin, points to an ef-
fect that may occur in complex dynamical systems. The minimal 
model that captures this chiral dynamics is the prototypical rattle-
back system, PRS [1]. We shall see that the non-dissipative version 
of PRS admits an odd-dimensional, degenerate Hamiltonian formu-
lation. This is puzzling for two reasons. i) A linearized Hamiltonian 
system has symmetric spectra, so should be time-reversible; yet 
chiral dynamics is not. ii) PRS has an extra conserved quantity 
besides energy, which hitherto has received no intuitive interpre-
tation. The key to the puzzles is a peculiar Lie-algebraic structure 
behind the Hamiltonian formulation, a so-called Bianchi class B al-
gebra.

This paper is organized as follows. After reviewing PRS, we 
write it as a Hamiltonian system and relate it to the Bianchi 
class B type VIh<−1 algebra. We visualize the orbits in the phase 
space, and remark that this algebra has a singularity, which distorts 
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nearby Casimir leaves. In Darboux coordinates (as canonical as 
manageable in an odd-dimensional space), the system is revealed 
to be a 1-dimensional oscillator in disguise, having an asymmetric 
potential. The asymmetry renders intuitive the rattleback’s chiral 
behavior; geometrically it comes from the distortion of the Casimir 
leaves, so ultimately from the singularity. All Bianchi class B al-
gebras have singularities, which hint at where we may look for 
further examples of chiral dynamics.

2. Prototypical rattleback system

The PRS equation, without dissipation, is

d

dt

⎛
⎝ P

R
S

⎞
⎠ =

⎛
⎝ λP S

−R S
R2 − λP 2

⎞
⎠ . (1)

Compared with Eq. 5.5 of [1], we adopted a more felicitous nota-
tion where P , R, S stand for the pitching, rolling, spinning modes 
of the motion. We denote the state vector by X = (P R S)T ∈ R3. 
The parameter λ encodes the aspect ratio of the rattleback shape. 
Throughout we choose λ > 1. This means that P corresponds to 
lengthwise oscillations along the keel of the boat, R to sideways 
oscillations. When λ = 1, the rattleback has an umbilic on the con-
tact surface, so chirality disappears.

Let us examine a number of phenomenological features charac-
teristic of the rattleback.

http://dx.doi.org/10.1016/j.physleta.2017.06.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/pla
mailto:yoshida@ppl.k.u-tokyo.ac.jp
mailto:tokieda@stanford.edu
mailto:morrison@physics.utexas.edu
http://dx.doi.org/10.1016/j.physleta.2017.06.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2017.06.039&domain=pdf


Z. Yoshida et al. / Physics Letters A 381 (2017) 2772–2777 2773
Fig. 1. (a) A rattleback. Three modes, pitch, roll, and spin, constitute a nonlinearly coupled dynamics. Pitch and roll are oscillations, whose intensities are P and R . Spin S
takes signs in which the chirality manifests itself: spinning in the non-preferred sense S > 0 induces strong P -instability, resulting in a quick reversal, whereas spinning 
in the preferred sense S < 0 induces weak R-instability, resulting in a sluggish reversal. (b) Typical solution of PRS, performing repeated spin reversals (from Fig. 1 of [1]). 
λ = 4, P (0) = R(0) = 0.01, S(0) = 0.5. The blue curve is pitch P , the red dotted curve is roll R , the brown thick curve is spin S . (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
2.1. Chiral dynamics

Fig. 1 depicts a typical solution. Energy cycles in the order 
+S → P → −S → R → +S , where the signs ± distinguish be-
tween the two senses of spin. The chirality manifests itself in the 
transition +S → P → −S happening quicker than the transition 
−S → R → +S . You can think of −S as the sense induced by P , 
of +S as that induced by R . In terms of the skewness of the mass 
distribution, the spin from the long axis of the ellipsoid of inertia 
to the small principal curvature direction has the + sign

The widespread belief that ‘one spin is stable and the opposite 
spin is unstable’ is wrong. A handy way to check experimentally 
that in reality both spins are unstable is to start from rest: if we 
excite pitch by tapping on the prow of the boat, the rattleback goes 
into one spin (this is our +); if, however, we excite roll by tapping 
on a side, it spontaneously goes into the opposite spin.

Both spins are unstable, but the exponents of instability are un-
equal. Linearizing (1) around the spinning equilibrium (0 0 Se)

T at 
any constant value Se , we find

d

dt

⎛
⎝ �P

�R
�S

⎞
⎠ =

⎛
⎝ λSe�P

−Se�R
0

⎞
⎠ . (2)

where � denotes perturbations, P = Pe + �P = �P , etc. Dur-
ing Se > 0, �P grows exponentially at a large (quick) rate λSe

while �R decays exponentially at a small (sluggish) rate Se . Dur-
ing Se < 0, �R grows at a sluggish rate |Se | while �P decays at a 
quick rate λ|Se|.

Witness the unequal exponents experimentally by placing a rat-
tleback on a vibrating floor. Though both pitch and roll get excited, 
soon pitch dominates and the rattleback ends up with a −spin. We 
can also shake an ensemble of rattlebacks and create a ‘chiral gas’ 
[2] or a ‘chiral metamaterial’ [3–5]. Such systems have a chance of 
motivating innovation of various technologies. For example, chiral 
‘particles’ may be used for energy harvesting, in a manner sim-
ilar to the mechanism of automatic wristwatch winding, where 
they convert ambient thermal fluctuations to some lower-entropy 
energy. The following formulation and analysis provides a basic 
picture for designing such devices.

It can be shown that given the above phenomenological fea-
tures, subject to the hypothesis that the model be 1st-order and 
quadratic in P , R, S , the form of the equation of motion is es-
sentially unique. Thus PRS is actually the minimal model of the 
rattleback.
Fig. 2. Orbits are the intersections of an energy sphere H = 1
2 (P 2 + R2 + S2) = const

(green) and a Casimir leaf C = P Rλ = const (red). The sphere H = 1 and the leaves 
C = −1, −0.01, +0.01, +1 are depicted. The aspect ratio is λ = 4. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

2.2. Conservation laws

In experiments we seldom see the −spin go into roll and re-
verse, because dissipation (friction on the floor) tends to kill the 
motion before this weak instability kicks in. The +spin, whose in-
stability is strong, goes into pitch vigorously and reverses quickly. 
If dissipation is absent or not too severe, the rattleback keeps re-
versing back and forth. Indeed, thanks to the following 2 conserved 
quantities [1], PRS is integrable and the orbits are periodic:

H(X) = 1

2

(
P 2 + R2 + S2

)
, (3)

C(X) = P Rλ. (4)

The intersection of a level surface (sphere) of H and of a level 
surface (leaf) of C delineates the orbit in the 3-dimensional phase 
space R3; see Fig. 2 (the picture is extended to P < 0, R < 0).

The orbit may reduce to an equilibrium. In Fig. 2 we notice, for 
each value of H , 4 points at which the energy sphere is tangent 
to a Casimir leaf. Physically we mix just the right balance of pitch 
and roll, R/P = √

λ, for a given energy so that the rattleback rocks 
with zero spin. This is expected: pure pitch induces S < 0, pure 
roll induces S > 0, so at some azimuth in-between we must be 
able to induce S = 0. These rocking equilibria (physically 2) are 
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stable, because again by Fig. 2, if we perturb the values of H or C , 
periodic orbits appear nearby.

2.3. Theoretical problems

However, the conclusion of the eigen-modal analysis is puzzling 
when viewed against the general Hamiltonian theory (as about 
to be shown, PRS is Hamiltonian). Every linear Hamiltonian sys-
tem has time-reversible symmetric spectra (Krein’s theorem): if 
μ ∈ C is an eigenvalue, so are −μ, μ∗, −μ∗ . The unequal expo-
nents λSe �= Se violate this symmetry. The culprit for this violation 
is that our Hamiltonian system is singular (meaning ‘not regular’, 
rather than ‘infinite’) at (0 0 Se)

T. The original nonlinear sys-
tem (1) has a parity-time symmetry (invariant under t �→ −t and 
(P R S)T �→ (P R − S)T).

Another puzzling issue is that in (3) and (4), H is the energy, 
but the extra conserved quantity C seems to come from nowhere 
(its spotting in [1] was serendipitous).

Inquiry into these questions reveals an interesting, and possibly 
general, mathematical structure that imparts chirality to a dynam-
ical system.

3. Analysis

We shall now see that the geometry of the phase space and the 
underlying Lie–Poisson algebra allow us to go some way toward 
a more fundamental explanation of the dynamic chirality and an 
interpretation of C , as follows.

3.1. Hamiltonian structure

Despite the odd-dimensionality of the phase space R3, it proves 
possible to write the PRS (1) as a Hamiltonian system whose Pois-
son bracket on the phase-space functions (observables) realizes 
some known Lie algebra. Such a bracket is known as a Lie–Poisson 
bracket [6]. There is a large literature on the Hamiltonian structure 
of generalized tops and associated Lie algebra constructions; see 
e.g. [7–9] and references therein.

Denoting by 〈 , 〉 the usual inner product on R3, we define a 
bracket on observables

{F , G} J = 〈∂X F , J∂X G〉 (5)

with a Poisson matrix

J =
⎛
⎝ 0 0 λP

0 0 −R
−λP R 0

⎞
⎠ . (6)

This bracket is Lie–Poisson, realizing the Bianchi type VIh (h = −λ) 
Lie algebra on the space of observables (see Table 1 and Ap-
pendix A). The unfamiliarity of this algebra attests to the strange 
behavior of the rattleback and vice versa. We have rank J = 2 ex-
cept along the singular locus, the S-axis P = R = 0, where rank J
drops to 0. We also have J∂X C = 0 so {C, G} J = 0 for every observ-
able G , i.e. C is a Casimir. In Fig. 2 the Casimir leaves are colored 
red. With H as the Hamiltonian, (1) becomes Hamilton’s equation

d

dt
X = {X, H} J . (7)

For every orbit, there exists a leaf on which that orbit lies entirely. 
A Casimir leaf is the effective phase space for that value of C .

3.2. Dual formalism

In our formalism (after rescaling), the Hamiltonian H of (3) was 
symmetric, the Casimir of (4) was asymmetric: it is as if a sym-
Table 1
3-dimensional Lie–Poisson algebras (Bianchi classification). To avoid re-
dundancy, for type IVh we impose h �= 0, 1. The Casimir of type VIIh �=0
requires further classification: |h| > 2 gives CVIIh �=0 = λ− log(−λ− X1 −
X2) −λ+ log(λ+ X1 + X2); h = ±2 gives CVIIh �=0 = ±X2

X1∓X2
+ log(X1 ∓ X2); 

−2 < h < 2 gives, putting a = −h/2 and ω = √−h2/4 (i.e. λ± = a ± iω), 
CVIIh �=0 = 2a arctan aX1+X2

ωX1
− ω log[(aX1 + X2)2 + (ωX1)2].

Type Poisson matrix Casimir

I

⎛
⎝ 0 0 0

0 0 0
0 0 0

⎞
⎠

⎧⎨
⎩

X1

X2

X3

II

⎛
⎝ 0 0 0

0 0 X1

0 −X1 0

⎞
⎠ X1

III

⎛
⎝ 0 0 X1

0 0 0
−X1 0 0

⎞
⎠ X2

IV

⎛
⎝ 0 0 X1

0 0 X1 + X2

−X1 −X1 − X2 0

⎞
⎠ X2

X1
− log X1

V

⎛
⎝ 0 0 X1

0 0 X2

−X1 −X2 0

⎞
⎠ X2

X1

VI−1

⎛
⎝ 0 0 X1

0 0 −X2

−X1 X2 0

⎞
⎠ X1 X2

VIh �=−1

⎛
⎝ 0 0 X1

0 0 h X2

−X1 −h X2 0

⎞
⎠ X2

Xh
1

VII0

⎛
⎝ 0 0 X2

0 0 −X1

−X2 X1 0

⎞
⎠ X2

1 + X2
2

VIIh �=0

⎛
⎝ 0 0 X2

0 0 −X1 + h X2

−X2 X1 − h X2 0

⎞
⎠ G(X1, X2, X3)

VIII

⎛
⎝ 0 X3 X2

−X3 0 −X1

−X2 X1 0

⎞
⎠ X2

1 + X2
2 − X2

3

IX

⎛
⎝ 0 X3 −X2

−X3 0 X1

X2 −X1 0

⎞
⎠ X2

1 + X2
2 + X2

3

metric body were moving in an asymmetric phase-space. But an 
orbit is just the intersection of two level surfaces and does not 
know which is Hamiltonian and which is Casimir. Hence, there 
ought to be a dual Lie–Poisson formalism that exchanges the roles 
of H and C , as if an asymmetric body were moving in a symmetric 
phase space. Though this sounds pleasant—after all, the rattleback 
is an asymmetric body—the calculations are less so. The Poisson 
matrix

K =
⎛
⎝ 0 R1−λ S −R2−λ

−R1−λ S 0 P R1−λ

R2−λ −P R1−λ 0

⎞
⎠ (8)

is found by the requirement that (7) with C replacing H should re-
cover the PRS (1). Since K is nonlinear in X , the bracket {F , G}K =
〈∂X F , K∂X G〉 is not Lie–Poisson (unless λ = 1). But a change of co-
ordinates

X �→ Y =
⎛
⎝

√
P 2 + S2 cos[ R1−λ arctan(S/P ) ]

R√
P 2 + S2 sin[ R1−λ arctan(S/P ) ]

⎞
⎠

turns K into an so(3)-matrix

L =
⎛
⎝ 0 Y3 −Y2

−Y3 0 Y1
Y −Y 0

⎞
⎠ , (9)
2 1
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Fig. 3. The asymmetric potential Uλ,C (Z1) = 1
2 (e−2Z1 + C2e2λZ1 ) of the canonized 

equation of motion; λ = 4, (a) C = 1, (b) C = 0.1, (c) C = 0.01, (d) C = 0.001.

and we have a Lie–Poisson bracket {F , G}L = 〈∂Y F , L∂Y G〉, type IX. 
The Hamiltonian is

C(Y ) = ±
Y λ

2

√
Y 2

1 + Y 2
3

cos[ Y λ−1
2 arctan(Y3/Y1) ] . (10)

3.3. Casimir leaf—skewed effective space

Return to the Lie–Poisson bracket {F , G} J of (5). The natural 
thing to do is to bring it into a normal form. This is achieved by 
Darboux’s theorem: J is equivalent to

J D =
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠ (11)

under a change of coordinates in which the Casimir serves as one 
coordinate and the other two coordinates are a canonically conju-
gate pair that parametrize the Casimir leaves. Explicitly,

X �→ Z =
⎛
⎝ − log R

S
P Rλ

⎞
⎠ (12)

defines the normal form of the (still degenerate) Poisson bracket 
{F , G} J D = 〈∂Z F , J D∂Z G〉 = {F , G} J . In these almost canonical Dar-
boux coordinates Z the Hamiltonian of (3) takes the form

H(Z) = 1

2
Z 2

2 + Uλ,C (Z1) (13)

with

Uλ,C (Z1) = 1

2

(
e−2Z1 + C2e2λZ1

)
. (14)

It is sensible to regard Z1 as the position and Z2 as the velocity 
of an oscillator, because dZ1/dt = Z2 by the equation of motion. 
Then the first and second terms on the right of (13) are kinetic 
and potential energies. λ and C are constants, the value of the 
Casimir C = Z3 being fixed by the initial condition.

It is now easy to read off the rattleback’s behavior from the 
asymmetric shape of the potential energy Uλ,C (Z1). As graphed 
in Fig. 3, for λ > 1 and C �= 0 the potential has gentle slopes 
toward negative Z1 and steep cliffs toward positive Z1. Suppose 
we send the rattleback toward positive Z1. It runs up a steep 
cliff and sharply reverses the spin, turning Z2 = S from positive 
to negative (cf. Fig. 1). As it moves toward negative Z1, it trots 
up a gentle slope and eventually turns from negative to positive 
Z2, but the reversal is not so sharp. The bottom of the potential, 
Z1 = log(C2λ)−1/(2λ+2) , is the rocking equilibrium. When λ < 1, 
the asymmetry is mirrored, the negative-to-positive turn being 
sharper than the positive-to-negative turn. The value of C has no 
bearing on chirality.

Ultimately the asymmetry of Uλ,C (Z1) is imputable to the 
asymmetry of the Casimir P Rλ against the background of the 
Hamiltonian 1

2 (P 2 + R2 + S2) symmetric in the 3 variables. The 
Casimir leaves in Fig. 2 are distorted near the S-axis, the singu-
larity. The presence of a singularity and the asymmetric distortion 
of Casimir leaves near the singularity are common to all Bianchi 
class B algebras, of which Bianchi type VIh<−1, realized by our Lie–
Poisson bracket {F , G} J , was an instance.

We have solved the puzzles given in section 2.3: the breaking 
of the time-reversible symmetry of spectra is due to the singular-
ity of the Poisson matrix, which prevents the application of Krein’s 
theorem. The unbalanced growth rates are for orbits near the equi-
librium point that lives just at the singularity (where the rank of 
the Poisson matrix drops to zero, so every point of the singularity 
is an equilibrium point, independently of any particular Hamilto-
nian). Unlike the perturbations around usual equilibrium points in 
regular Hamiltonian systems, the perturbation around the singu-
larity affects the Poisson matrix itself, resulting in strange non-
Hamiltonian spectra.

We have identified the invariant C as the Casimir of the gov-
erning Poisson algebra. In the next section, we will put Casimirs 
into perspective.

4. Variety of chiral systems: Bianchi classification

Fig. 4 and Table 1 provide a complete list of 3-dimensional 
Lie–Poisson systems. The real 3-dimensional Lie algebras are clas-
sified according to the scheme for Bianchi cosmologies (e.g. [12]). 
There are two classes: class A composed of types I, II, VI−1, VII0,

VIII, IX, and class B composed of types III, IV, V, VIh �=−1, VIIh �=0. 
Fig. 4 depicts their Casimir leaves. All these 3-dimensional sys-
tems possess 2 conserved quantities and hence are integrable: the 
Hamiltonian, plus a Casimir that spans the kernel of the degener-
ate bracket.

In class A, the most elementary instance is type II, Heisenberg 
algebra: the intersection circles of an energy sphere and a flat 
Casimir leaf are the orbits of a harmonic oscillator. For the free 
rigid body, type IX so(3)-algebra, the Casimir leaves are the angu-
lar momentum spheres: their intersections with an energy ellip-
soid give the ‘tennis racket theorem’. For the equation of the Kida 
vortex in fluid mechanics, type VIII so(2, 1)-algebra, the Casimir 
hyperboloids and an energy surface intersect in rotational, libra-
tional, or unstable orbits of the patch [13]. The leaves for class A, 
being quadrics, are regular except at the zero set (e.g. at the center 
of the spheres in type IX).

In contrast, every system that realizes a class B algebra has a 
singularity and exhibits chirality. It is remarkable that PRS real-
izes a class B algebra, type VIh<−1. It is the first time any class 
B algebra appears in a mechanical example. Moreover, in all the 
other class B systems, every Casimir leaf is attached to the singu-
larity, leading orbits into asymptotic regimes. But in type VIh<−1, 
the singularity is disjoint from the leaves. This enables the PRS or-
bits to be closed curves on the leaf, producing periodic rattling and 
reversals.

5. Chaotic rattleback

Integrable Hamiltonian systems like PRS are structurally unsta-
ble. Here we perturb this system in a natural way by appending 
to its canonical Hamiltonian form an additional degree of freedom. 
This allows us to investigate the ensuing chaos of PRS.

We embed the phase space R3 into a 4-dimensional phase 
space R4, and construct an extended Poisson algebra by extend-
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Fig. 4. Bianchi algebras foliated by Casimir leaves. Type I algebra is commutative, so the Lie–Poisson bracket is trivial. Class A, composed of types I, II, VI−1, VII0, VIII, IX, have 
regular leaves, whereas class B, composed of types III, IV, V, VIh �=−1, VIIh �=0, have singularities. Types II and III look alike, but the leaves in type III are singular along the 
vertical white lines. The type VIh leaves for h < 0 were already in Fig. 2; the leaves here are for h = 1.5. The pictures of the leaves of type VIIh (h = 1.5) are cut off near the 
singularity X1 = X2 = 0. Type II is the Heisenberg algebra. Types IX so(3) and VIII so(2, 1) govern the free rigid body and the Kida vortex. We have discovered that type 
VIh<−1 governs the prototypical rattleback system (PRS).
ing J D to a cosymplectic matrix J C . Adjoining a new coordinate 
Z4 ∈ R, let

Z̃ =

⎛
⎜⎜⎜⎝

Z̃1

Z̃2

Z̃3

Z̃4

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

Z1
Z2
Z3
Z4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

− log R
S

P Rλ

Z4

⎞
⎟⎟⎠ ∈ R4.

The idea of canonical extension [10,11] of J D is simple: let

JC =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎠ , (15)

where the kernel of J D (the 33 zero corner) gets inflated to a sym-
plectic cell in J C ; the extended Poisson matrix J C is the 4 × 4
cosymplectic matrix, which defines the Poisson algebra with the 
canonical bracket (denoting by 〈 , 〉R4 the inner product on R4)

{F , G} JC = 〈∂ Z̃ F , JC ∂ Z̃ G 〉R4 . (16)

As long as the Hamiltonian H does not depend explicitly on 
the new variable Z4, the dynamics on the submanifold R3 is the 
same as the original dynamics. When this is the case, we call Z4 a 
phantom variable. Now the invariance of C , which was a hallmark 
of the degeneracy of J , has been removed: J C being canonical on 
the extended phase space R4 has no Casimir invariant. Instead, C is 
a first integral coming from the symmetry ∂Z4 H = 0 via Noether’s 
theorem.

However, we can unfreeze C by perturbing H with a term con-
taining the new variable Z4; in which case, C = Z3 becomes dy-
namical and Z4 becomes an actual variable. Physically, we may 
interpret a Casimir as an adiabatic invariant associated with an ig-
norable, small-scale angle variable [10,11]; upon adjoining Z4 to H
the angle variable materializes from phantom to actual.

Let us examine the example

H( Z̃) = 1

2

(
Z 2

3e2λZ1 + e−2Z1 + Z 2
2

)
+ ε

1

2

(
Z 2

3 + Z 2
4

)
, (17)

where the ε term perturbs (13)–(14). The perturbation unfreezes 
the adiabatic invariant Z3 = C . Physically this term represents an 
oscillation energy.

Fig. 5 shows typical solutions of the extended system (15)–(17). 
In (a) and (b) we plot the orbits projected onto the 3-dimensional 
(P R S) subspace. Fig. 5 (a) depicts an orbit of the original inte-
grable system: this unperturbed case with ε = 0 shows the orbit 
that is the intersection of an energy sphere and a Casimir surface, 
as was seen in Fig. 2. Fig. 5 (b) illustrates a typical chaotic orbit 
that results from unfreezing the Casimir C = Z3 with ε = 2 ×10−7, 
which then allows the orbit to wander among different leaves 
(even into the negative C domain). In Fig. 5 (c), Z3(t) is plotted 
together with its conjugate variable Z4(t), along with the solution 
illustrated in (b).

Even after the canonization, the singularity (S-axis) of the orig-
inal Lie–Poisson algebra remains as a peculiar set around which 
the dynamics is dramatically modified by the singular perturba-
tion (here, the inclusion of the new variable Z4 works as a singular 
perturbation, resulting in an increase of the number of degrees 
of freedom). The perturbed system exhibits chaotic spin rever-
sals, and chirality persists as long as the perturbation is weak 
enough for the orbit to make chaotic itinerancy among different 
leaves.
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Fig. 5. (a) Unperturbed orbit in the (P R S) space. λ = 4, P (0) = R(0) = S(0) = 0.2. 
(b) Perturbed chaotic orbit in the (P R S) subspace. λ = 4, P (0) = R(0) = S(0) =
0.2, and ε = 2 × 10−7. (c) The evolution of Z3(t) × 103 (black dotted) and Z4(t) ×
10−3 (red solid).
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Appendix A. Lie–Poisson brackets of 3-dimensional systems

There is a systematic method for constructing Poisson brackets 
from any given Lie algebra. Such brackets are called Lie–Poisson 
brackets, because they were known to Lie in the 19th century. Let 
g be a Lie algebra with bracket [ , ]. Take g as the phase space 
Table A.2
Bianchi classification of 3-dimensional Lie algebra (after M.P. Ryan and L.C. Shep-
ley [14]).

Class Type m ai

A I 0 0

A II diag(1,0,0) 0

A VI−1 −α 0

A VII0 diag(−1,−1,0) 0

A VIII diag(−1,1,1) 0

A IX diag(1,1,1) 0

B III − 1
2 α − 1

2 δi
3

B IV diag(1,0,0) −δi
3

B V 0 −δi
3

B VIh �=−1
1
2 (h − 1)α − 1

2 δi
3

B VIIh=0 diag(−1,−1,0) + 1
2 hα − 1

2 hδi
3

and denote a linear functional on g by 〈ω, 〉 ∈ g∗ . Choosing ω = X
we define, for smooth functions F (X) and G(X),

{F , G} = 〈X, [∂X F , ∂X G]〉,
where ∂X F is the gradient in g of a function F (X). Because of 
this construction the Lie–Poisson bracket { , } inherits bilinearity, 
anti-symmetry, and the Jacobi’s identity from that of [ , ].

According to the Bianchi classification, the structure constants 
for 3-dimensional Lie algebras have the form

ci
jk = ε jksm

si + δi
ka j − δi

jak

where m, a 3 × 3 symmetric matrix, and a, a triple, take on differ-
ent values for the nine Lie algebras as summarized in Table A.2. In 
the table

α =
⎛
⎝ 0 1 0

1 0 0
0 0 0

⎞
⎠ .

The 3 × 3 antisymmetric matrices J defined as (using lowered 
indices):

J i j = ck
i j Xk

gives the Lie–Poisson brackets {F , G} = 〈∂X F , J∂X G〉; cf. Table 1
and [6]. Notice that J is linear with respect to X .
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In the tables given for extended information for the
reader, some typos appeared. They do not affect the
conclusion of the Letter, but may be potentially harm-
ful for the use of these tables as references.

1. In the caption of Table 1, there were typos, as
well as undefined notations. The complete caption
should read:

Table 1
3-dimensional Lie-Poisson algebras (Bianchi clas-
sification). To avoid redundancy, for type VIh we
impose h , 0, 1. The Casimir of type VIIh,0 re-
quires further classification: denoting λ± = 1

2 (−h±
√

h2 − 4) = a ± iω, |h| > 2 gives CVIIh,0 =

λ− log(−λ−X1 − X2) − λ+ log(λ+X1 + X2); h = ±2
gives CVIIh,0 = ±X2

X1∓X2
+ log(X1 ∓ X2); −2 < h < 2

gives CVIIh,0 = 2a arctan aX1+X2
ωX1

− ω log[(aX1 +

X2)2 + (ωX1)2].

2. There was a typo in Table A-2, Type VIh,−1
Bianchi algebra’s coefficient ai. The complete ta-
ble should be:

Email addresses: yoshida@ppl.k.u-tokyo.ac.jp (Z.
Yoshida), tokieda@stanford.edu (T. Tokieda),
morrison@physics.utexas.edu (P.J. Morrison)

Class Type m ai

A I 0 0
A II diag(1, 0, 0) 0
A VI−1 −α 0
A VII0 diag(−1,−1, 0) 0
A VIII diag(−1, 1, 1) 0
A IX diag(1, 1, 1) 0

B III − 1
2α − 1

2δ
i
3

B IV diag(1, 0, 0) −δi
3

B V 0 −δi
3

B VIh,−1
1
2 (h − 1)α − 1

2 (h + 1)δi
3

B VIIh=0 diag(−1,−1, 0) + 1
2 hα − 1

2 hδi
3
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