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Abstract. A non-dissipative idealized model of the rattleback is investigated. The

model has two first integrals, energy and an intriguing function that was accidentally

discovered but had eluded interpretation. Here, the noncanonical three-dimensional

Hamiltonian structure for the rattleback model is devised, and shown to be associated

with the Bianchi Type VI Lie algebra, which appears for the first time in a concrete

physical example. Its Casimir, whose existence is a consequence of the noncanonical

Lie-Poisson form, is seen to be the intriguing first integral. The system is integrable

on each Casimir surface, and the chirality of the rattleback motion is shown to be

caused by the geometric skewness of the symplectic leaf. The Casimir is perturbed

by embedding in a larger four-dimensional phase space, in which the system becomes

canonical but non-integrable. The perturbed system exhibits chaotic spin reversals,

and chirality persists as long as the perturbation is weak enough for the orbit to make

chaotic itinerancy among different leaves.

PACS numbers: 45.20.Jj, 47.10.Df, 02.40.Yy
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1. Introduction

The rattleback, the elongated asymmetric semi-ellipsoidal top, has amused and bemused

scientists and in fact people of all walks of life since ancient times. However, the chirality

of this toy, the breaking of mirror symmetry as manifested by rotational preference,

points to a serious physical effect that may occur in complicated dynamical systems

that describe matter. In order to investigate the essence of this chirality, one can begin

with rigid-body equations of motion for the rattleback, which are reminiscent of the

partial differential equation that describes the αω-dynamo [2] proposed to explain the

dynamo action in the earth’s core that is responsible for the geomagnetic field. From

the rattleback rigid-body equations of motion one can extract a prototypical rattleback

system (called here PRS) composed of three first order quadratically coupled differential

equations [1], a system that is arguably the simplest model containing the essential

features of chiral dynamics. It is the further study of the PRS that is the purpose of

the present paper.

Although dissipation plays a role in most investigations of rattleback dynamics,

we will see that the ideal no-slip, non-dissipative limit, which yields the PRS, has an

intriguing Hamiltonian structure that contains essential elements of the dynamics. This

PRS Hamiltonian structure is akin to that of spin systems or Euler’s equations for the

free rigid body (e.g. [7]), where the Poisson bracket has a nonstandard degenerate form,

but retains algebraic properties so as to be a realization of a Lie algebra on phase space

functions. This Hamiltonian form has been called noncanonical since it is one in terms

of variables that are not canonically conjugate, and a special form of such noncanonical

Poisson brackets that are defined by any finite-dimensional Lie algebra are known as a

Lie-Poisson brackets (e.g. [3]). Lie-Poisson brackets exist for a variety of systems; for

example, the Lie-Poisson bracket for Euler’s equations for the rigid body is associated

with the Lie algebra so(3) and that for the equations describing the Kida vortex of

fluid mechanics is associated with the Lie algebra so(2, 1) [10]. In fact, these examples

represent two of nine three-dimensional real Lie algebras of the Bianchi classification

used for homogeneous cosmologies in general relativity (e.g. [8, 9]), by which they are

referred to as Type IX and Type VIII, respectively. Remarkably we will see that the PRS

corresponds to Type VIh with h 6= −1 of this classification, which to our knowledge is

the first time a Lie-Poisson bracket for this rather unfamiliar algebra has been identified

for a natural physical system.

A beneficial consequence of the Lie-Poisson construction for these three-dimensional

systems is an immediate geometrical characterization of the dynamics. All such Lie-

Poisson systems possess two constants of motion: the Hamiltonian as expected and a

Casimir invariant that aries from degeneracy of the Poisson bracket. Consequently, all

of these systems are integrable and the intersection of the surfaces of the two constants

of motion determines the global qualitative nature of the solution. For example, for the

free rigid body the Casimir is the angular momentum sphere, and it is elementary that

the intersection of this sphere with the energy ellipsoid determines the nature of the
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orbits, viz., that rotation about largest and smallest principal axes are stable, while the

intermediate axis is unstable. Similarly, for the Kida problem, the Casimir hyperboloid

intersecting the energy surface delineates the possible rotational, librational, or unstable

dynamics of the Kida vortex patch [10]. Because this common Hamiltonian form occurs

for all of the Bianchi types, it occurs for the PRS, and this immediately explains the

additional intriguing first integral obtained in [1] – it is the Casimir invariant for Type

VIh6=−1. Intersection of the Casimir for the PRS and its Hamiltonian reveals that all

three variables of the system perform periodic oscillations, with the spin around the

vertical axis reversing sign. The strangeness of the rattleback motion is in a sense a

manifestation of the unfamiliarity of the Type VIh6=−1 algebra.

In perturbation theory, we usually perturb the Hamiltonian, the initial conditions,

or the physical parameters, etc. Here, unusually, we perturb the dimension of the

problem by embedding the three-dimensional system into a larger, 4-dimensional phase

space. In so doing we gain canonicality but lose integrability: in fact we observe chaotic

reversals of the spin, which may serve as a minimum model for the reversals of the

magnetic poles driven by a dynamo. The extended system is described by invoking a

method of canonization discussed in [4, 5].

The paper is organized as follows. In section 2 we begin, in section 2.1, by recalling

the PRS of [1], followed in section 2.2 by the demonstration that it is a 3-dimensional

noncanonical Hamiltonian system. Here we review the Lie-Poisson construction and

show the PRS has the Poisson bracket for Type VIh6=−1 and that the extra invariant of

[1] is indeed the Casimir invariant for this algebra. Since to our knowledge a complete

list of all 3-dimensional Lie-Poisson brackets and their Casimirs does not exit in the

literature, we do so in Table 1. In section 3, we analyze the mechanism of chirality

from the perspective of Hamiltonian theory. Sections 3.1 and 3.2 are devoted to the

spectral analysis of linearized systems; in particular, we show how the singularity of

the Lie-Poisson algebra causes chiral spectra. In section 3.3 we canonize the PRS by

effecting a Darboux transformation, showing that this system is a one degree-of-freedom

Hamiltonian system on the Casimir constraint surface (symplectic leaf). Section 4

begins with section 4.1 where we embed the PRS into a 4-dimensional phase space,

thereby breaking the invariance of the Casimir and allowing for chaotic motion, which is

studied in section 4.2. In section 5 we conclude our study with a discussion on broader

implications of the results. We have included Appendix A, which has an alternative

Hamiltonian formulation where the roles of the Hamiltonian and of the Casimir are

interchanged; this amounts to a nonlinear deformation of the Bianchi Type IX (i.e.

so(3)) Lie-Poisson algebra; the deformation is scaled by the aspect-ratio parameter λ

(corresponding to −h of Type VI) of the rattleback model.
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Figure 1. Typical solution of spin reversal (reproduced from Fig. 1 of [1]). λ = 4,

P (0) = R(0) = 0.01, S(0) = 0.5. The blue curve is pitching (P ), the red dotted curve

is rolling (R), the brown thick curve is spinning (S).

2. Model equations and Hamiltonian formalism

2.1. Rattleback model

The equations of the PRS are as follows:

d

dt

 P

R

S

 =

 R

λP

0

×
 P

R

S

 =

 λPS

−RS
R2 − λP 2

 . (1)

Compared with equation (5.5) of [1], we have adopted a more felicitous notation where

P,R, S stand for the pitching, rolling, and spinning modes of the motion. The quantity

λ is a positive parameter that encodes the aspect ratio of the rattleback.

Figure 1 shows a typical solution of the rattleback model. Note that the common

claim that ‘the forward spin is stable whereas the backward spin is unstable’ is in fact

false. Both spins are unstable, but the exponents of instability are unequal. We tend

not to see the forward spin go into rattling and reverse, merely because the dissipation

(friction on the floor) kills the motion before this weak instability kicks in. The backward

spin, whose instability is strong, reverses quickly while the motion lasts. In the absence

of dissipation the rattleback keeps reversing back and forth, as is easily seen in table-

top experiments. Indeed, thanks to the Hamiltonian structure discussed in section 1 the

system (1) is integrable. Examination of the intersection of the Hamiltonian with the

Casimir reveals that every orbit is periodic, as will be seen in section 2.2 (cf. Fig. 2).

Here we will also see how the two growth rates arise because of a singularity in the

Hamiltonian structure.

2.2. Hamiltonian form

Despite the fact that the phase space is odd-dimensional, it is possible, and useful,

to cast the equations (1) into Hamiltonian form. In terms of the coordinates X =
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Figure 2. Orbits are the intersections of an energy level H = 1
2 (P 2 + R2 + S2) =

const. (green sphere) and a Casimir surface C = PRλ = const. (red curved sheet);

the leaves C = 1, 0.1,−0.1,−1 are shown. The aspect-ratio parameter is taken to be

λ = 4.

(P R S)T ∈ Ω ⊂ R3, define a Poisson matrix

J =

 0 0 λP

0 0 −R
−λP R 0

 , (2)

and denote by 〈 , 〉Ω the standard inner product on the phase space Ω. If we take the

Hamiltonian

H =
1

2
〈X,X〉Ω =

1

2

(
P 2 +R2 + S2

)
, (3)

then (1) is cast into the following Hamilton form:

d

dt
X = J∂XH = {X, H}J , (4)

where in the second equality the Poisson bracket

{F,G}J = 〈∂XF, J∂XG〉Ω (5)

makes C∞(Ω) into a Poisson algebra, a Lie algebra realization on functions, since it is

bilinear, antisymmetric, and can be shown to satisfy the Jacobi identity.

The degeneracy of J yields a Casimir invariant

C = PRλ, (6)

characterized by the property {C,G}J = 0 ∀G ∈ C∞(Ω). Since

det(zI − J) = z(z2 + λ2P 2 +R2),

we have rankJ = 2 except along the singular set λ2P 2 +R2 = 0, i.e. P = R = 0, where

rankJ drops to 0. In this paper we study the dynamics in the regime λ2P 2 + R2 > 0;
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for example it suffices to take the phase space Ω to be an open set in R3 on which

|C| = |PRλ| is bounded away from 0.

There is a systematic method for constructing Poisson brackets of the form of (5)

with (2) given any Lie algebra. Such brackets are called Lie-Poisson brackets, because

they were known to Lie in the nineteenth century. Let g be a Lie algebra with bracket

[ , ]. Take Ω = g and denote a linear functional on g by 〈ω, 〉 ∈ g∗. Choosing ω = X we

define, for F,G ∈ C∞(Ω), {F,G} = 〈X, [∂XF, ∂XG]〉, where ∂XF is the gradient in g

of a function F (X). Because of this construction the Lie-Poisson bracket { , } inherits

bilinearity, anti-symmetry, and the Jacobi’s identity from that of [ , ].

The real three-dimensional Lie algebras can be classified by the scheme used to

describe the Bianchi cosmologies, which divides them into nine types. These types of the

Bianchi classification (e.g. [8, 9]) are shown in Table 1 along with the associated Casimir

invariants, the two-dimensional level sets of which are depicted in Fig. 3. We include

these here since to our knowledge a complete listing of these Lie-Poisson structures does

not appear in this form in the literature. The Bianchi types are divided into two classes:

Class A, composed of Types I, II,VI−1,VII0,VIII, and IX, and Class B, composed of

Types III, IV,V,VIh6=−1, and VIIh6=0. Observe that every Casimir level set for Class B

contains a singularity of some kind, while the Casimir level sets for Class A are quadrics

and hence regular except for being degenerate at the zero set as, e.g., at the center of

the spheres for Type IX. Thus Class A dynamics lives on a two-dimensional symplectic

manifold, while Class B dynamics is only locally symplectic.

Examination of Table 1 reveals (upon interchanging the indices 1 and 2 and flipping

the sign of 3) that the Poisson matrix of (2) corresponds to a Lie-Poisson bracket of

Bianchi Type VIh, with h = −λ. The two-dimensional Casimir surfaces are the surfaces

C = PRλ = const. At λ = 1 (Type VI−1), the bottom of the contact surface of the

rattleback becomes an umbilic (principal curvatures equal), in other words the chirality,

as we will see, disappears, so we exclude this case.

3. Chirality from a Hamiltonian perspective

3.1. Regular equilibria and stability

Having identified the PRS with a Lie-Poisson structure, we can immediately apply

the energy-Casimir method to determine stability of equilibria (e.g. [3]). Because

{X, H}J = {X, F}J , where F = H+µC with µ being a Lagrange multiplier, extremals

of F , i.e., δF = 0, are (relative) equilibrium points. We obtain

∂F

∂P
= P + µRλ = 0 ,

∂F

∂R
= R + λµPRλ−1 = 0 ,

∂F

∂S
= S = 0 , (7)

yielding the family of equilibria

X0
e = (Pe = C/Rλ

e , Re = ±(C
√
λ)

1
1+λ , 0) ,

where we have eliminated µ in favor of the value of C. It is easy to show that the

above is consistent with R2
e = λP 2

e , the equilibrium equation obtained from (1). Upon
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Table 1. Three-dimensional Lie-Poisson algebras (Bianchi classification). Type I

algebra is commutative, so the Poisson bracket is trivial, having three independent

Casimirs. To avoid redundancy, for Type IVh, h 6= 0, 1. The Casimir of type

VIIh6=0 needs further classification: h2 > 4 gives CVIIh 6=0
= λ− log(−λ−Z1 − Z2) −

λ+ log(λ+Z1 + Z2); h = ±2 gives CVIIh6=0
= ±Z2

Z1∓Z2
+ log(Z1 ∓ Z2); h2 < 4 gives,

putting a = −h/2 and ω =
√
−h2/4 (i.e. λ± = a± iω), CVIIh 6=0

= 2a arctan aZ1+Z2

ωZ1
−

ω log[(aZ1 + Z2)2 + (ωZ1)2].

Type Poisson matrix Casimir invariant

I JI =

(
0 0 0

0 0 0

0 0 0

)
CI =

{
Z1

Z2

Z3

II JII =

(
0 0 0

0 0 Z1

0 −Z1 0

)
CII = Z1

III JIII =

(
0 0 Z1

0 0 0

−Z1 0 0

)
CIII = Z2

IV JIV =

(
0 0 Z1

0 0 Z1 + Z2

−Z1 −Z1 − Z2 0

)
CIV = Z2

Z1
− logZ1

V JV =

(
0 0 Z1

0 0 Z2

−Z1 −Z2 0

)
CV = Z2

Z1

VI−1 JVI−1 =

(
0 0 Z1

0 0 −Z2

−Z1 Z2 0

)
CVI−1 = Z1Z2

VIh6=−1 JVIh6=0
=

(
0 0 Z1

0 0 hZ2

−Z1 −hZ2 0

)
CVIh6=0

= Z2

Zh1

VII0 JVII0 =

(
0 0 Z2

0 0 −Z1

−Z2 Z1 0

)
CVII0 = Z2

1 + Z2
2

VIIh6=0 JVIIh6=0
=

(
0 0 Z2

0 0 −Z1 + hZ2

−Z2 Z1 − hZ2 0

)
CVIIh6=0

= G(Z1, Z2, Z3)

VIII JVIII =

(
0 Z3 Z2

−Z3 0 −Z1

−Z2 Z1 0

)
CVIII = Z2

1 + Z2
2 − Z2

3

IX JIX =

(
0 Z3 −Z2

−Z3 0 Z1

Z2 −Z1 0

)
CIX = Z2

1 + Z2
2 + Z2

3
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Figure 3. The foliated phase spaces of various Bianchi Lie-Poisson algebras. The

leaves are level sets of the Casimirs given in Table 1. Class A, composed of Types

I, II,VI−1,VII0,VIII, and IX, have regular surfaces (symplectic manifolds), while Class

B, composed of Types III, IV,V,VIh6=−1, and VIIh 6=0 have singularities. Types II and

III are similar, but the latter surfaces are singular along the vertical white lines. The

Type VIh leaves for h < 0 are shown in Fig. 2; here those for h = 1.5 are shown. The

leaves of Type VIIh (h = 1.5) are drawn except in the neighborhood of the singularity

Z1 = Z2 = 0. Type II is the Heisenberg algebra, while the Lie-Poisson brackets for

Types VIII (so(2, 1)) and IX (so(3)), arise for the dynamics of the free rigid body (or

spin) and the Kida vortex, respectively. We have associated Type VIh 6=−1 with the

prototypical rattleback system of (1).

comparison with Fig. 2 we see that for a given value of C there are four points at

which the level sets of H and C can be tangent, two for positive values of C and two for

negative. Physically this equilibrium corresponds to a periodic rocking motion composed

of rolling and pitching, without spin.
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Examination of Fig. 2 also reveals that in the vicinity of the four equilibrium points

the orbits lie on closed curves. Thus we expect all four equilibrium points to be stable.

This can be ascertained by considering the second variation δ2F , which measures the

energy contained in a perturbation away from an equilibrium point. Setting P = Pe+P̂ ,

R = Re + R̂, and S = Ŝ, and expanding to second order yields the Hamiltonian for the

linearized dynamics,

HL =
1

2
δ2F =

1

2

(
P̂ 2 + R̂2 + Ŝ2 + 2λµRλ−1

e R̂P̂ + λ(λ− 1)µRλ−2
e Pe R̂

2
)

=
1

2

(
P̂ 2 + R̂2 + Ŝ2 − 2Re

Pe
R̂P̂ + (1− λ) R̂2

)
. (8)

where the second equality of (8) follows from the equilibrium equations (7).

In terms of HL linearized equations of motion are given by

d

dt

 P̂

R̂

Ŝ

 =

 0 0 λPe
0 0 −Re

−λPe Re 0


 ∂HL/∂P̂

∂HL/∂R̂

∂HL/∂Ŝ

 (9)

=

 0 0 λPe
0 0 −Re

−λPe Re 0


 P̂ − R̂Re/Pe

R̂− P̂Re/Pe + R̂(1− λ)

Ŝ

 (10)

=

 λPeŜ

−ReŜ

2ReR̂− 2λPeP̂

 . (11)

It is easily shown that HL as given by (8) is not a positive definite quadratic form

which would expected for a stable equilibrium point. However, since the dynamics

is constrained to a Casmir leaf, it is necessary to examine the convexity of HL with

variations constrained to the leaf. Such variations were introduced in the context of

the energy-Casimir method in [11], where they were called dynamically accessible (da)

variations (see [3] for review). They are given by using the Poisson matrix to project

the variations so as to be tangent to the leaf, as follows: P̂ da

R̂da

Ŝda

 =

 0 0 λPe
0 0 −Re

−λPe Re 0


 gP

gR
gS

 , (12)

where g := (gP , gR, gS) are arbitrary. Inserting the da variations into HL yields

Hda
L = (1 + λ)R2

e g
2
S +

1

2
(RegR − λPegP )2 (13)

where use has been made of the equilibrium condition R2
e = λP 2

e . Because Hda
L is

positive definite we have stability, which is in agreement with the closed loop orbits

seen in Fig. 2 for the intersection of the energy and Casimir surfaces near a point

of contact. We also note that a simple eigen-modal analysis gives the frequency of

oscillation
√

2(R2
e + λ2P 2

e ) = |Re|
√

2(1 + λ), as well as a zero frequency mode associated

with the Casimir invariant [12].
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3.2. Chiral spectrum caused by singularity

As previously pointed out, none of the equilibria X0
e possess spin. Yet, it is obvious

from (1) that the following are equilibria:

XS
e = (0, 0, Se) , (14)

for any constant value of the spin Se. These equations occur at a place where the

rank of J changes from two to zero and, as addressed in [3], are as a consequence not

accessible as extremals of ordinary energy-Casimir variations. However, if we consider

δH restricted to da variations, we obtain

δHda = (λP 2
e −R2

e) gS − λSePe gP + SeRe gR = 0 (15)

which, due to the arbitrariness of g, gives precisely the vanishing of the right hand

side of (1). The investigation of what happens in noncanonical Hamiltonian systems at

such rank changing places has been undertaken for both finite and infinite-dimensional

systems [4, 5, 6]. Although the Hamiltonian structure has a singularity, the equations

of motion (1) are perfectly well-behaved. Linearization about XS
e gives the system

d

dt

 P̂

R̂

Ŝ

 =

 λSeP̂

−SeR̂
0

 , (16)

which is of special interest for the rattleback dynamics because it addresses the nature

of reversal. Assuming P̂, R̂ ∼ exp(γt) an eigen-modal analysis of (16) gives the two

eigenvalues γ = λSe and γ = −Se. Thus, if Se > 0 we have a mode that grows at a rate

λSe, which is faster than one that is damped at Se. This violation of the symmetry of

Hamiltonian spectra is a result of the fact that the rank of the Poisson matrix changes

at the position of the equilibrium under study. However, if Se < 0 the growing mode is

smaller in absolute value than the damped mode. This asymmetry with the sign of Se,

which was alluded to in section 2.1, was analyzed in [1], where it was concluded that

dissipation tends to damp dynamics near Se < 0 because of the smaller growth rate

in the nondissipative system. However these growth rates are somewhat an artifact of

the peculiar equilibrium-stability analysis. If one starts near an equilibrium point X0
e

with small values of Pe and Re, with an initial condition S(0) 6= 0, then the dynamics is

accurately described by the intersection of the energy and Casimir surfaces that revealed

the periodic motion, both near and far from the equilibrium. We argue in section 3.3

that chirality is best characterized by the asymmetry in the slope of the up and down

swings of S during this periodic motion.

3.3. Lie-Darboux canonical form

Because of the Jacobi identity for the noncanonical Poisson matrix of (2), the Lie-

Darboux theorem assures that J can be transformed by shifting to coordinates with

the Casimir as one coordinate and a canonically conjugate pair that parametrizes the
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Casimir leaves as the other two. This transformation takes the Poisson matrix J into

the following form:

JLD =

 0 1 0

−1 0 0

0 0 0

 . (17)

Indeed, under the change of coordinates

X =

 P

R

S

 7→ Z =

 Z1

Z2

Z3

 =

 log[R−θP (1−θ)/λ]

S

PRλ

 , (18)

the entries of JLD are given by {Zµ, Zν}J , where { , }J is the Poisson bracket (5)

expressed in the original coordinates. The zero eigenvalue of JLD corresponds to the

Casimir (6). With the choice of Z2 = S, the condition

{Z1, Z2}J = 1,

can be solved to yield Z1 as in (18), where θ is an arbitrary real parameter. Choosing

θ = 1. yields the simpler transformation

Z =

 − logR

S

PRλ

 , (19)

which has the inverse

X =

 Z3eλZ1

e−Z1

Z2

 . (20)

In terms of the new coordinates, the Hamiltonian (3) takes the form

H(Z) =
1

2

(
Z2

3e2λZ1 + e−2Z1 + Z2
2

)
. (21)

If we envision Z1 as a position variable and Z2 = S as the corresponding velocity of an

oscillator, which is reasonable because dZ1/dt = Z2 by the equation of motion, then we

can rewrite (21) in the intuitive form

H(Z) =
1

2
Z2

2 + Uλ,C(Z1), (22)

where the first term on the right-hand side is a kinetic energy and the remaining terms,

Uλ,C(Z1) =
1

2

(
e−2Z1 + C2e2λZ1

)
, (23)

are a potential energy of the oscillator. Here, both λ and C are constant parameters,

the Casimir C = Z3 being determined by the initial condition.

The asymmetric shape of the potential energy Uλ,C(Z1) tells a lot about the chirality

of the rattleback. As seen in Fig. 4, for λ > 1 and C 6= 0 the family of potentials has

gentle slopes toward negative Z1 and steep cliffs toward positive Z1. Suppose we send

the rattleback toward positive Z1. It runs up a steep potential cliff and sharply reverses
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(a) (b) (c) (d)

-1 0 1 2
Z1

1

2

3

4

Figure 4. The potential energy Uλ,C(Z1) = 1
2 (e−2Z1 + C2e2λZ1) of the canonized

equation of motion; λ = 4, (a) C = 1, (b) C = 0.1, (c) C = 0.01, (d) C = 0.001.

the spin, turning Z2 = S from positive to negative (cf. Fig. 1). As it goes toward negative

Z1, it trots up a gentle slope and eventually turns from negative to positive Z2, but the

reversal is not so sharp. When λ < 1, the asymmetry in the potential is mirrored, and

the system acquires an opposite chiral preference, the negative-to-positive turn being

sharper than the positive-to-negative turn. The sign of C has no bearing on chirality.

Though we have explained the chiral behavior in terms of the shape of the

Hamiltonian (22) in the new coordinates Z, the root cause of the asymmetry, in the

original coordinates X = (P R S)T, is the skewness of the Casimir surface (C = PRλ =

const.) against the background of the Hamiltonian (3) symmetric with respect to all the

variables. Thus, the chiral dynamics of a rattleback originates from the geometry of the

Bianchi Type VI Lie algebra. This is made clear by Fig. 1, the chirality of the rattleback

motion is all about the rate of change of the spin S, not about S itself . Therefore, the

chirality of the Hamiltonian formalism of Type VI emerges in canonical variables in the

term ∂Z1H, where Z1 is the variable conjugate to S = Z2. Figure 4 shows that H is

asymmetric in Z1, while it is symmetric in Z2.

4. Canonization and unfreezing the Casimir

Integrable Hamiltonian systems like the PRS of section 2 are structurally unstable. Here

we perturb this system in a natural way by appending to its canonical Hamiltonian form

an additional degree of freedom. This allows us to investigate the ensuing chaos of the

PRS.

4.1. Embedding into 4-dimensional phase space

We embed the phase space Ω into a 4-dimensional phase space Ω̃, and construct an

extended Poisson algebra by extending JLD to a cosymplectic matrix J̃c. Adjoining a
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new coordinate Z4 ∈ R, let

Z̃ =


Z̃1

Z̃2

Z̃3

Z̃4

 =


Z1

Z2

Z3

Z4

 =


− logR

S

PRλ

Z4

 ∈ Ω̃ = Ω× R.

The idea of canonical extension [4, 5] of JLD is simple: let

J̃c =


0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

 , (24)

where the kernel of JLD (the 33 zero corner) gets inflated to a symplectic cell in J̃c; the

extended Poisson matrix J̃c is the 4 × 4 cosymplectic matrix, that defines the Poisson

algebra C∞{ , }
J̃c

(Ω̃) with the canonical bracket

{F,G}J̃c = 〈 ∂Z̃F, J̃c ∂Z̃G 〉Ω̃. (25)

As long as the Hamiltonian H does not depend explicitly on the new variable Z4,

the dynamics on the submanifold Ω is the same as the original dynamics. When this

is the case, we call Z4 a phantom variable. Now the invariance of C, which was a

hallmark of the degeneracy of J , has been removed: J̃c being canonical on the extended

phase space Ω̃ has no Casimir invariant. Instead, C is a first integral coming from the

symmetry ∂Z4H = 0 via Noether’s theorem.

However, we can unfreeze C by perturbing H with a term containing the new

variable Z4; in which case, C = Z3 becomes dynamical and Z4 becomes an actual

variable. Physically, we may interpret a Casimir as an adiabatic invariant associated

with an ignorable, small-scale angle variable [4, 5]; upon adjoining Z4 to H the angle

variable materializes from phantom to actual.

4.2. Chaotic chiral dynamics

Let us examine the example

H(Z̃) =
1

2

(
Z2

3e2λZ1 + e−2Z1 + Z2
2

)
+ ε

1

2

(
Z2

3 + Z2
4

)
, (26)

where the ε term perturbs (21). The perturbation unfreezes the adiabatic invariant

Z3 = C. Physically this term represents an oscillation energy.

Figure 5 shows typical solutions of the extended system (24)–(26). In (a) and (b)

we plot the orbits projected onto the 3-dimensional (P R S) subspace. Figure 5 (a)

depicts an orbit of the original integrable system: this unperturbed case with ε = 0

shows the orbit that is the intersection of an energy sphere and a Casimir surface, as

was seen in Fig. 2. Figure 5 (b) illustrates a typical chaotic orbit that results from an

unfreezing of the Casimir C = Z3 with ε = 2 × 10−7, which then allows the orbit to

wander among different leaves (even into the negative C domain). In Fig. 5 (c), Z3(t)
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(a) 0.1

0.2

0.3

P

0.2

0.3
R

0.2

0.1

0

-0.1

-0.2

S

(b) -0.2

0

0.2

P

0.2

0.3R

0.2

0.1

0

-0.1

-0.2

S

(c)

50 100 150 200 250
t

-0.5

0.5

1

Figure 5. (a) Unperturbed orbit in the (P R S) space. λ = 4, P (0) = R(0) =

S(0) = 0.2. (b) Perturbed chaotic orbit in the (P R S) subspace. λ = 4, P (0) =

R(0) = S(0) = 0.2, and ε = 2× 10−7. (c) The evolution of Z3(t)× 103 (black dotted)

and Z4(t)× 10−3 (red solid).

is plotted together with its conjugate variable Z4(t), along with the solution illustrated

in (b).

The extended system reveals a variety of phenomena. In Fig. 6, for example, we

a solution where the spin reversal (form forward to backward) is accompanied by high-

frequency pitching (P ); anybody who has done experiments with the rattleback has

observed this phenomenon. This happens when the orbit comes close to the S-axis,

the singularity of the original Bianchi type VIh6=−1 Poisson matrix, where the Casimir

leaves have pronounced skewness (now the variable Z3 measures the distance from the

singularity, which is frozen in the original system as the Casimir invariant). Even after

the canonization, the singularity (S-axis) of the original Lie-Poisson algebra remains

as a peculiar point around which the dynamics is strongly modified by the singular

perturbation (here, the inclusion of the new variable Z4 works as a singular perturbation,

resulting in an increase of the number of degrees of freedom).
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(a)

10 20 30 40
t

-0.4

-0.2

0.2

0.4

(b)

10 20 30 40
t

-0.2

-0.1

0

0.1

0.2

Figure 6. Oscillatory solution; λ = 4, P (10) = R(10) = 0.1, S(10) = 0.45 (the initial

is given at t = 10), and ε = 10−7. (a) Plots of P (t) (blue solid), R(t) (red dotted),

S(t) (brown thick). (b) Plots of Z3(t)× 104 (black dotted), Z4(t)× 10−4 (red solid).

5. Conclusion

The rattleback is a rigid body whose ellipsoid of inertia is skewed with respect to the

geometry (principal axes) of the contact surface. It is an asymmetric body that moves

in a symmetric space, which is the origin of the chirality of the dynamics. However,

the curious guiding idea of this paper is that we can reformulate the dynamics as if a

symmetric body were moving in an asymmetric space—recall the formalism of section 2,

where the Hamiltonian is symmetric but there is something asymmetric in the phase

space of the Bianchi type VIh6=−1 Lie-Poisson algebra. The chirality, then, comes from

the skewness of the Casimir leaves.

Philosophically, it is interesting to think of the interchangeability of a Hamiltonian

and a Casimir as a duality between matter and space. In fact, we can recast the

rattle-back equation into an alternative Hamiltonian system with exchanged Casimir

and Hamiltonian (see Appendix A). A complex material system may be made simple

by transferring complexity to the geometry of space; conversely, a skewed space may be

made flat by skewing the matter or the energy. The list of Bianchi algebras (Table 1)

provides us with plenty of possibilities for such a transfer.
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Appendix A. Dual Hamiltonian formulation

The system (1) has two first integrals, H = 1
2
(P 2 + R2 + S2) and C = PRλ. In

the Hamiltonian system of section 2, they are the Hamiltonian and a Casimir. We can

interchange their roles in a dual Hamiltonian system. Consider the co-symplectic matrix

K =

 0 R1−λS −R2−λ

−R1−λS 0 PR1−λ

R2−λ −PR1−λ 0

 . (A.1)

This time H is a Casimir, while the Hamiltonian C gives the equation of motion (1).

Since K is not linear in X, the bracket

{F,G}K = 〈∂XF,K∂XG〉Ω
is not Lie-Poisson (except in the case λ = 1, when K is the so(3) Lie-Poisson matrix).

But there is a nonlinear change of coordinates X 7→ Ξ which turns K into an so(3)

matrix

L =

 0 Ξ3 −Ξ2

−Ξ3 0 Ξ1

Ξ2 −Ξ1 0

 . (A.2)

Guided by the common Casimir H = 1
2
|X|2 for K and L (classified as Bianchi type IX),

we can transform X 7→ Y 7→ Ξ so that

K 7→ L =

 0 1 0

−1 0 0

0 0 0

 7→ L, (A.3)

where the intermediate expression L is the Darboux normal form; the eigenvector

corresponding to the zero eigenvalue is ∂YH, hence we choose Y3 = 2H (the factor

2 simplifies formulas later). Since R was what complicated K, we choose Y1 = R. Then

the determining condition for Y2 is

{Y1, Y2}K = −R1−λS∂PY2 + PR1−λ∂SY2 = 1,

which is readily integrated along the characteristics P 2 − S2 to give Y2 =

R1−λ arctan(S/P ). Thus

Y =

 R

R1−λ arctan(S/P )

P 2 +R2 + S2

 .
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The transformation Y 7→ Ξ is the backtrack of the similar transformation L 7→ L:

Y =

 Ξ2

arctan(Ξ3/Ξ1)

Ξ2
1 + Ξ2

2 + Ξ2
3

 .

Inverting this relation, we find

Ξ =


√
Y3 − Y 2

1 cosY2

Y1√
Y3 − Y 2

1 sinY2

 =


√
P 2 + S2 cos[R1−λ arctan(S/P )]

R√
P 2 + S2 sin[R1−λ arctan(S/P )]

 .

A direct calculation verifies L12 = {Ξ1,Ξ2}K = Ξ3, L13 = {Ξ1,Ξ3}K = −Ξ2,

L23 = {Ξ2,Ξ3}K = Ξ1. Inverting one step further,

X =

 P

R

S

 =

 ±
√

Ξ2
1 + Ξ2

3/ cos[Ξλ−1
2 arctan(Ξ3/Ξ1)]

Ξ2

±
√

Ξ2
1 + Ξ2

3/ sin[Ξλ−1
2 arctan(Ξ3/Ξ1)]

 .

The Hamiltonian is

C = ± Ξλ
2

√
Ξ2

1 + Ξ2
3

cos[Ξλ−1
2 arctan(Ξ3/Ξ1)]

. (A.4)

As noted in Sec. 3.2, chirality is a violation of the symmetry of Hamiltonian spectra,

which is possible only with the help of some singularity. In the formulation of Sec. 2, the

singularity is in the Poisson matrix (so, reflected in the Casimir). In the present dual

formulation, however, the singularity is transferred to the Hamiltonian (A.4); remember

that the present Hamiltonian is the previous Casimir C = PRλ.
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