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Hamiltonian and action principle (HAP) formulations of plasma physics are reviewed for the purpose of

explaining structure preserving numerical algorithms. Geometric structures associated with and emergent

from HAP formulations are discussed. These include conservative integration, which exactly conserves

invariants, symplectic integration, which exactly preserves the Hamiltonian geometric structure, and

other Hamiltonian integration techniques. Basic ideas of variational integration and Poisson integration,

which can preserve the noncanonical Hamiltonian structure, are discussed. Metriplectic integration,

which preserves the structure of conservative systems with both Hamiltonian and dissipative parts, is

proposed. Two kinds of simulated annealing, a relaxation technique for obtaining equilibrium states, are

reviewed: one that uses metriplectic dynamics, which maximizes an entropy at fixed energy, and the

other that uses double bracket dynamics, which preserves Casimir invariants. Throughout, applications to

plasma systems are emphasized. The paper culminates with a discussion of geometric electromagnetic

particle-in-cell [Kraus et al., J. Plasma Phys. (to be published); e-print arXiv:1609.03053v1 [math.NA]],

a particle in cell code that incorporates Hamiltonian and geometrical structure preserving properties.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4982054]

I. INTRODUCTION

The purpose of this article is to give an overview of

computational algorithms designed to preserve the structure

of dynamical systems and to review some recent progress in

the development of structure preserving algorithms for

plasma simulation.

The first question, of course, is what is meant by structure.

Clearly, all computational scientists attempt to preserve the

solution of their systems, the ultimate structure, which would

mean this article would be about the proud history of many dec-

ades of computational plasma physics research that attempts to

do just that. Thus, it is necessary to rein in the purview, and this

is done by concentrating on properties associated with or that

emerge from the Hamiltonian and action principle (HAP) struc-

ture of plasma models, structure that ultimately originates from

the fundamental electromagnetic interaction. Of interest are

algorithms of relevance to plasma science that preserve various

HAP properties that occur in finite systems, ordinary differen-

tial equations (ODEs), e.g., those that describe particle orbits or

magnetic field lines, and in infinite systems of partial differen-

tial equations (PDEs), plasma field theories, e.g., various

plasma fluid models and kinetic theories. Clearly, ever since

the advent of computation, researchers have attempted to

design methods of structure preservation (see e.g., Refs. 1 and 2

for early examples), and there has been continual progress over

the years (see e.g., Refs. 3 and 4 for more modern surveys).

The perspective taken here is to describe in broad brush strokes

the types of structure that can be preserved, illustrated with

selected examples; however, global value judgements and com-

parisons of the efficacy of various techniques will be avoided.

Many references are cited, but constructing a complete bibliog-

raphy would be a daunting if not impossible task, even with the

given limitation of scope. Rather, a representative although

somewhat biased selection of the literature is given, but one

that is hoped will provide a gateway into the field.

The article also has the goal of highlighting the commu-

nity of plasma researchers working in this area, as exemplified

by workshops organized by Hong Qin, Eric Sonnendr€ucker,

and myself:

• Geometric Algorithms and Methods for Plasma Physics

Workshop (GAMPP), May 13–15, 2014 Hefei, China

(Hong Qin).
• GAMPP II, September 12–16, 2016 in Garching,

Germany (P.J.M., Hong Qin, and Eric Sonnendr€ucker).
• Mini-Conference at this meeting: New Developments in

Algorithms and Verification of Gyrokinetic Simulations

(Amitava Bhattacharjee and Eric Sonnendr€ucker).

It is possible that there will be a GAMPP III in 2018.

The HAP structure of classical plasma physics origi-

nates from the relativistic action principle for a collection of

charged particles interacting self-consistently with the elec-

tromagnetic fields they generate. This system has the dynam-

ical variables ðqiðtÞ;/ðx; tÞ;Aðx; tÞÞ, where qi is the position

of the ith particle, / is the electrostatic potential, and A is

the vector potential. The Lorentz covariant action is given by

S q;/;A½ � ¼ �
X

s

XN

i¼1

ð
dt mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j

_qij
2

c2

s
(1)

�
X

s

e

ð
dt
XN

i¼1

ð
d3x / x; tð Þ�

_qi

c
� A x; tð Þ

� �

� d x� qi tð Þ
� �

(2)
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þ 1

8p

ð
dt

ð
d3x jE x; tð Þj2 � jB x; tð Þj2
h i

; (3)

where (1) represents the relativistic kinetic energy, (2) pro-

vides the coupling between the particle dynamics and the

fields, and (3) is the pure field contribution. Here,
P

s is a

sum over species, N is the number of particles of each spe-

cies, and species indices on N, qi, e, and m are suppressed to

avoid clutter. In (3), E and B are shorthand notation for the

usual expressions in terms of the scalar and vector potentials

E ¼ �r/� 1

c

@A

@t
and B ¼ r� A: (4)

Faraday’s law and r � B ¼ 0 follow automatically from

these expressions.

Extremization of (1)–(3) yields Maxwell’s equations

coupled to particle dynamics. We will do this extremization

by the equivalent procedure of functional differentiation,

which we carefully define here because it will be used exten-

sively later on. For the variation of S with respect to / we

consider the functional derivative dS=d/, which is defined as

follows:

d

d�
S q;/þ �d/;A½ �j�¼0 ¼

ð
dt

ð
d3x d/ x; tð Þ

dS

d/ x; tð Þ
; (5)

where d/ is an arbitrary function of its arguments, subject to

admissible boundary conditions that ensure the vanishing of

terms obtained by integrations by parts. In (5), after d/ is

isolated one can extract dS=d/ðx; tÞ ¼ 0 by removing the

integrals and d/. The argument ðx; tÞ of dS=d/ðx; tÞ is dis-

played so one knows which integrals to remove. (See Ref. 5

for an extended discussion of functional differentiation.) For

the action of (1)–(3) the functional derivative dS=d/ defined

by (5) yields Poisson’s equation

r � E ¼ 4pq ¼
X

s

X
i

e dðqi � xÞ; (6)

as expected. Similarly, the Ampère-Maxwell law follows

from dS=dAðx; tÞ

@E

@t
¼ cr� B� 4pJ; (7)

where the current density is given by

Jðx; tÞ ¼
X

s

X
i

e _qi dðqi � xÞ: (8)

Lastly, the variation on particles is given by dS=dqiðtÞ, and

this produces the relativistic version of Newton’s second

law. This functional derivative involves integrating by parts

in time and performing the integration over d3x so as to eval-

uate the Lorentz force on the particle positions. Thus, the

coupling term provides both the sources in Maxwell’s equa-

tions and the force for the particle dynamics.

The lion’s share of plasma physics is embodied in the

action principle of (1)–(3), so from one lofty point of view

the discipline is complete. However, this naive point of view

misses the beautiful emergent collective phenomena of

plasma science that has required considerable effort to

unravel. The unraveling has entailed various approximations,

reductions resulting in various fluid and kinetic models that

elucidate various plasma phenomena. Generally speaking,

the reduced models that originate from the action S contain

both dissipative and nondissipative processes, and the action

principle origin can be obscured. Nevertheless, HAP proper-

ties bubble to the surface as part of essentially all plasma

models, ranging from magnetic field line behavior, to MHD

and more general magnetofluid dynamics, to various kinetic

theories, and even the Bogoliubov–Born–Green–Kirkwood–

Yvon (BBGKY) hierarchy itself. We refer the reader to Refs.

5–13, which are reviews or contain a significant review com-

ponent of the HAP structure.

The paper is organized as follows. Section II discusses

conservative integration (CI), schemes that are designed to

exactly conserve constants of motion. Next, Sec. III treats sym-

plectic integrators that preserve the canonical Hamiltonian

structure, which is followed by Sec. IV where various other

forms of canonical and noncanonical Hamiltonian integration

are described, including variational integration and Poisson

integration. Section V describes metriplectic integration (MI),

a proposal to build structure preserving integrators for systems

that are conservative with both Hamiltonian and dissipative

parts. Simulated annealing (SA), a relaxation method that pre-

serves the structure while obtaining equilibrium states, is con-

sidered in Sec. VI. In Sec. VII, geometric electromagnetic

particle-in-cell (GEMPIC) algorithms for the Maxwell-Vlasov

(MV) system are described. These are particle in cell (PIC)

codes that preserve geometric structures, including the nonca-

nonical Hamiltonian structure of the MV system, its Casimir

invariants, and the geometry of Maxwell’s equations. Here,

many of the features described throughout the paper are incor-

porated: it is shown how to obtain a semidiscrete Hamiltonian

reduction of the MV system, yielding a finite-dimensional

Hamiltonian system with a noncanonical Poisson bracket,

which is then integrated with a Poisson integrator. Finally, the

paper concludes with Sec. VIII.

II. CONSERVATIVE INTEGRATION (CI)

Generally speaking, reductions of the system with the

HAP formalism of the action of (1)–(3) (and associated

Hamiltonian structure) based on time scale separation result

in non-HAP reductions. Examples of this kind of reduction

include truncation of the BBGKY hierarchy leading to the

Landau-like collision operators and the derivation of the qua-

silinear theory. For these models, the Hamiltonian structure

is lost, but conservation of energy and possibly other invari-

ants may be maintained. Sometimes, one is aware that

energy survives an approximation, by direct calculations

after the fact or by construction, or that an unknown

Hamiltonian structure actually exists. For some such sys-

tems, the long time states may be governed to a large degree

by the preservation of a few invariants, whether or not the

system is Hamiltonian.

The failure of an integrator to preserve an invariant is

demonstrated by the phenomenon of energy drift. To
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understand this consider a system with a conserved energy or

part of an energy given by a kinetic energy expression of the

form

E ¼ mjvj2=2;

where m is a particle mass and v its velocity. Let vcalculated be

the value of the velocity produced by some algorithm and dv

the error, both after a single time step. Thus,

vcalculated ¼ vexact þ dv;

and after a single time step

Ecalculated ¼ m jvexact þ dvj2=2;

¼ m jvexactj2=2þ m vexact � dvþ m jdvj2=2:

Over many time steps, one may expect the cross term vexact �
dv to average to zero, while the term jdvj2 will systematically

give rise to a monotonically changing E. Indeed, for some stan-

dard integrators, energy may tend to increase dramatically.

Over the years, many researchers have used various

techniques for enforcing the conservation of invariants. If

one begins with a PDE, then a common mode of develop-

ment is to first obtain a semidiscrete approximation, an

energy conserving set of differential equations, and then a

next step would be to construct an integrator that enforces

energy conservation. There are many examples of this proce-

dure; we mention spectral reduction14 that was designed to

give accurate spectral and cascades for turbulence described

by the 2D Euler equation. For this system, a semidiscrete

reduction that exactly conserves energy and enstrophy was

obtained, as desired for accurate spectra, and the resulting

set of ordinary differential equations was then solved by a

conservative integrator. Other examples include Refs. 15 and

16, pertaining to turbulent transport of relevance to magnetic

confinement, and Refs. 17–19 that consider Fokker-Planck

type collision operators. In Ref. 17, two species interact

through collisions and exact energy conservation is required

for proper thermalization of the two species. Both of these

systems are examples where one seeks long time behavior

and that behavior is sensitive to conservation laws. Many

examples of conservative or nearly conservative integration

exist including, e.g., one based on Hermite expansion in Ref.

20, the discontinuous Galerkin method, e.g., the

Runge–Kutta discontinuous Galerkin method, developed in

Ref. 21 and used in the plasma context for the Vlasov equa-

tion in Refs. 22 and 23, and at this meeting in Ref. 24.

A. Conservation structure—sets of invariants

A set of M first order ordinary differential equations

(ODEs), written as

_za ¼ VaðzÞ a ¼ 1; 2;…;M; (9)

where the dot denotes the total time differentiation and V is

some vector field that possesses a conserved energy function

E(z) provided

_E ¼ @E

@za
_za ¼ Va @E

@za
¼ 0; (10)

where in the first equality of (10), which follows from the

chain rule, repeated summation over the index a is assumed.

For such systems

EðzðtÞÞ ¼ Eðz�Þ; (11)

with z
�

being the initial value of the dependent variable

z ¼ ðz1; z2;…; zMÞ. Similarly, any additional invariant I must

satisfy Va@I=@za ¼ 0.

For a partial (integro) differential equation (PDE), we

write

vt ¼ Vðv; vl;…; Þ; (12)

where vðl; tÞ is a multicomponent field variable dependent

on a “spatial” variable l of any dimension and time. For

such PDEs, subscripts will denote partial differentiation.

Systems of the form of (12) possess an invariant energy

functional E½v� if

_E v½ � ¼
ð

dl
dE

dv
� vt ¼

ð
dlV � dE

dv
¼ 0; (13)

where dE=dvðlÞ denotes the functional derivative as

described in Sec. I, here defined in terms of the pairing

dE v; dv½ � ¼ d

d�
E vþ �dv½ �j�¼0 ¼

ð
dl

dE

dv
� dv; (14)

where the first variation dE½v; dv�, a linear operation on dv,

is the Fr�echet derivative. The “ � ” of (13) is a shorthand for

summation over the components of the field v should it have

more than one. The goal of a CI is to have the following

exactly satisfied:

E v½ � ¼ E v
�
h i

; (15)

with v
�

being the initial value of v.

Thus, the goal of a conservative integrator is to construct

a numerical algorithm to maintain exactly (11) for an ODE

or (15) for a PDE, or, if there are other known invariants, to

also preserve these as desired.

B. Conservative integrators

Although various means have been used to preserve

invariants, a systematic procedure amenable to various types

of integrators was developed and applied in Refs. 14, 25, and

26. The procedure of these references can be used to adapt

common integrators, such as Euler’s method and predictor-

corrector, so as to exactly conserve an invariant or a family

of invariants.

The procedure of Ref. 25 is quite simple. For a set of

ODEs, first one modifies the system by adding a “correction”

vector field VC to (9), i.e., this system becomes

_z ¼ V þ VC: (16)
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Next, it is required that

lim
Dt!0

VC ¼ 0; (17)

and this must be at a rate fast enough so as to preserve the

order of the desired integrator. Finally, one chooses VC so as

to enforce

Eðzðtþ DtÞÞ ¼ EðzðtÞÞ; (18)

exactly at each time step. When (18) is only a single con-

straint for a system of equations, there is freedom on how to

enforce this; if a family of invariants exists, then one has

more equations like (18), but there is still latitude for enforc-

ing the family.

Several physical examples are solved with this type of

CI in Refs. 14, 25, and 26; in particular, Euler’s method is

applied to Euler’s rigid body equations, as a simple proof of

principle example. Another example, one that illustrates well

the role invariants can play in answering a question about the

long time behavior of a system is the famous Kepler prob-

lem. Although this problem is integrable, with an easily eval-

uated solution, it serves as an illustrative example. The

computational question of interest is to obtain the path traced

out by the orbit over a long period of time, a question that is

critically dependent on invariance.

As usual, the Kepler problem can be reduced to motion

in a plane, governed by the following three ODEs:

_r ¼ vr; (19)

_vr ¼
‘2

m2r2
� 1

m
/0; (20)

_h ¼ ‘2

mr3
; (21)

where ðr; hÞ are polar coordinates, the gravitational potential

/ ¼ �K=r with constant K, ‘ is the magnitude of the angular

momentum, and m is the reduced mass. This system con-

serves the energy

E ¼ mv2
r

2
þ ‘2

2m2r2
þ / rð Þ; (22)

plus an extra invariant, the Runge-Lenz vector

A ¼ v� Lþ r/: (23)

The Runge-Lenz vector serves to lock together the radial and

angular frequencies for all values of the energy—as a conse-

quence all bounded orbits (E< 0) are ellipses independent of

chosen initial conditions. With the initial conditions r
�
, h
�
¼ 0,

and vr
� ¼ 0; A only has the x-component

A ¼ ‘2

m r
� � K:

Figure 1 depicts calculated and known orbits for second

order predictor corrector (PC) with and without the CI con-

straints (see Ref. 25 for details). In panel (a), plain PC is

used and we see that the calculated orbit deviates

significantly from the known exact elliptical path. In panel (b),

energy is conserved but not the Runge-Lenz (RL) vector

resulting in a wobbling precession. Panel (c) shows the case

where both energy and the RL vector are conserved, giving

rise to near perfect alignment of the calculated and know path.

In panel (d), we have run the integrator with only energy con-

servation for a long time depicting the expected annular region

sampled because of precession. Similarly, Runge’s RK4 gives

poor performance in conserving Runge’s vector. Thus, if one

is interested in the planet path, straight integrations may give

poor performance, while a CI can be a valuable tool.

Often physical systems are conservative, yet possess

vector fields that have Hamiltonian and non-Hamiltonian

components. For example, this is the case for the Vlasov

equation with the Landau-Fokker-Planck collision operator.

A formalism that describes the nature of this ubiquitous

occurrence, called metriplectic dynamics in Ref. 27, will be

discussed in Sec. V where metriplectic integrators (MIs) will

be proposed. Before discussing MIs, a combination of a CI

and a Hamiltonian integrator (HI), various forms of HIs will

be discussed in Secs. III and IV.

FIG. 1. Solutions of the Kepler problem. (Courtesy of Shadwick, see Ref.

25.) (a) computed using the PC algorithm with a total of 1313 fixed time

steps of size 0.08; (b) computed using the PC algorithm with fixed time steps

of size 0.08 and only energy conserved; (c) computed using the C-PC algo-

rithm with both energy and Runge-Lenz (RL) vector conserved for a total of

1000 fixed time steps of size 0.105; (d) long time integration with only

energy conserved, showing precession due to violation of the RL conserva-

tion. Panels (a) and (c) modified with permission from Shadwick et al.,
SIAM J. Appl. Math. 59, 1112 (1999). Copyright 1999 Society for Industrial

and Applied Mathematics.

055502-4 P. J. Morrison Phys. Plasmas 24, 055502 (2017)



III. SYMPLECTIC INTEGRATION (SI)

Whereas the geometric content of CI is fairly minimal,

i.e., the preservation of a few constraints restricting the

dynamics to submanifolds, SI is both global and local in

nature and amounts to preserving the entire symplectic

geometry of phase space, a consequence of the Hamiltonian

form. Symplectic geometry allows one to measure sizes of

particular two-dimensional and higher even dimensional

objects, akin to the measurement of lengths and angles of

Riemannian geometry.

The idea behind SI is old: a written account occurred in

1956 in a report of de Vogelaere1 and was widely known and

used in the accelerator physics community. In fact, prior to

this paper, symplectic algorithms were used unbeknownst to

their originators, viz., the method used by Verlet and

St€ormer and the leapfrog method. A flurry of papers on sym-

plectic integrators appeared in the 1980s by various authors,

notably Ref. 28. A general and interesting historical account

from an accelerator physics point of view is given in Ref. 29.

In the plasma physics community, SI in the infinite-

dimensional context has been employed, where it has been

used to integrate semidiscrete Hamiltonian equations for

describing the two-stream instability30,31 and for understand-

ing facets of the nonlinear plasma evolution in the single and

multiwave models32–34 of the bump-on-tail instability.

A. Canonical Hamiltonian structure

The concept of SI is a consequence of Hamilton’s

equations

_qi ¼ @H

@pi
and _pi ¼ � @H

@qi
; i ¼ 1; 2;…N; (24)

a set of 2N first order differential equations determined

entirely by the Hamiltonian function H(q, p) depending on

the canonical coordinates q and momenta p. Sometimes, it

is convenient to let z ¼ ðq; pÞ and rewrite (24) in tensorial

form

_za ¼ Jab
c

@H

@zb
¼ za;Hf g; a; b ¼ 1; 2;…; 2N; (25)

where the canonical Poisson matrix (cosymplectic form) and

bracket are given, respectively, by

Jc ¼
0N IN

�IN 0N

� �
and f ; gf g ¼ @f

@zb
Jab

c

@g

@zb
; (26)

with 0N being an N�N matrix of zeros, IN being the N�N
identity matrix, and f and g being arbitrary functions of z.

An important idea of Hamiltonian mechanics is to effect

special coordinate transformations to obtain solutions or

approximate solutions. Upon representing a coordinate

change as z ¼ zð�zÞ, 2N functions of 2N variables with the

inverse �z ¼ �zðzÞ, Eqs. (25) become

_�z
a ¼ �J

ab @ �H

@�zb with �H �zð Þ ¼ H zð Þ;

where we see that H transforms as a scalar and the Poisson

matrix J as a contravariant 2-tensor

�J
ab

�zð Þ ¼ Jl�
c

@�za

@zl

@�zb

@z�
¼ Jab

c : (27)

If the second equality of (27) is satisfied, then the transfor-

mation is called a canonical transformation (CT) (or sym-

plectomorphism in mathematics) and the equations in the

new coordinates have clearly identified new coordinates

and momenta �z ¼ ð�q; �pÞ and, consequently, the form of

Hamilton’s equations is preserved

_�q
i ¼ @

�H

@�pi

and _�pi ¼ �
@ �H

@�qi ; i ¼ 1; 2;…;N:

A main theorem of Hamiltonian dynamics is that the

time advance map is itself a CT; i.e., if z ¼ zðz�; tÞ is the solu-

tion of (25) at time t with initial condition z
�
, then for any

fixed t the coordinate change z$ z
�

is a CT.

To understand the importance of this main theorem,

consider three nearby trajectories, zrðtÞ; zrðtÞ þ dzðtÞ, and

zrðtÞ þ d�zðtÞ, as depicted in Fig. 2 and let us investigate the

following area-like quantity:

d2A ¼ d�zaxc
abdzb; a; b ¼ 1; 2;…; 2N;

where

xc ¼ 0N �IN

IN 0N

� �
¼ ðJcÞ�1:

A simple calculation for our three Hamiltonian trajectories

reveals

d

dt
d2A ¼ 0: (28)

Thus, d2A, whatever it means, is preserved by the

Hamiltonian dynamics. To understand its meaning, consider

the case where N¼ 1. Examination of Fig. 3 reveals that d2A
measures the area of a parallelogram, i.e., jd2Aj ¼ jd�pdq
�d�qdpj ¼ jd�z � dzj. For N > 1, this quantity is a sum over

such areas, d2A ¼
P

iðd�pidqi � d�qidpiÞ, and is called the

first Poincar�e invariant. In more modern notation, we would

FIG. 2. Three nearby trajectories.
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call this the symplectic two-form and write it as xc ¼
P

idpi

� dqi. In tensorial notation, the canonical symplectic

2-form ¼ (canonical Poisson matrix)–1, i.e., xc
acJ

cb
c ¼ db

a .

There are consequences of (28): upon summing (inte-

grating) over the infinitesimal areas d2A, one sees that

extended suitable two-dimensional ribbons in phase space

are preserved under Hamiltonian dynamics. Since an initial

area in any q–p subplane is preserved, one can form a 2N-

dimensional box, i.e., a volume that will be preserved. This

is of course the famous Liouville theorem of Hamiltonian

mechanics, which is a consequence of the preservation of

d2A but not vice versa. In addition to regions of dimension 2

and 2N, Hamiltonian dynamics preserves everything in

between, i.e., all the Poincare invariants which are surfaces

of dimension 2, 4, 6,…,2N.

Another family of invariants, intimately related to d2A,

are the loop integrals

J ¼
þ

C
p � dq that satisfy

d

dt
J ¼ 0; (29)

where C is any closed curve in phase space. By a generaliza-

tion of the Stokes theorem, these loop integrals and the areas

d2A are related. Thus, Hamiltonian dynamics has a phase

space circulation theorem, similar to that of ordinary fluids.

It should be borne in mind that if Hamiltonian dynamics

did not have the properties described above, the nature of

phase space would be quite different. For example, surfaces of

the section of magnetic field lines would look very different

and lack the similarity we see. Also, non-SI of Hamiltonian

systems can give rise to spurious damping or growth, a prob-

lem of concern when long time integration is desired.

For infinite-dimensional canonical Hamiltonian systems

with conjugate fields v ¼ ðw; pÞ, (24) becomes

wt ¼
dH

dp
¼ w;Hf g and pt ¼ �

dH

dw
¼ p;wf g; (30)

where H is now a Hamiltonian functional like the kinetic

energy in a fluid
Ð

d3xq jvj2=2, partial derivatives are

replaced by functional derivatives, and the Poisson bracket

operating on two functionals F and G is

F;Gf g ¼
ð

dl
dF

dw
dG

dp
� dG

dw
dF

dp

� �
; (31)

where the fields v depend on l as well as time.

B. Symplectic integrators

Various approaches to symplectic integration have been

followed. Consider a simple early example, starting from (9)

with a possibly time dependent vector field V. Suppose one

could find a time dependent coordinate change that takes this

system into

_�z ¼ �V � 0; (32)

i.e., in the new coordinates the solution is constant in time,

�zð�z0; tÞ ¼ �z0. Upon denoting such a time-dependent coordi-

nate change by z ¼ Uð�z; tÞ, the initial conditions of the prob-

lem in the two system of coordinates are related by z0 ¼
Uð�z0; t0Þ, with t0 being the initial time. If zðz0; t0; tÞ were the

solution to the original problem (9), then the solutions to (9)

and (32) would in general be related by Uð�zð�z0; t0; tÞ; tÞ
¼ zðz0; t0; tÞ. But since the solution to (32) is constant in

time, we have

zðz0; t0; tÞ ¼ Uð�z0; tÞ ¼ UðU�1ðz0; t0Þ; tÞ; (33)

and the coordinate change is seen to solve the problem.

All of the above is moot unless one has a means of

obtaining U, but this can be attempted for Hamiltonian sys-

tems by making use of mixed variable generating functions,

which not only provides an avenue for approximating U but

does so in terms of a canonical transformation. For clarity,

consider the case of a single degree of freedom and seek a

canonical transformation z ¼ ðq; pÞ $ �z ¼ ð�q; �pÞ. This can

be done by introducing a mixed variable generating function

of type three, F3ð�q; p; tÞ, and giving the transformation as

follows:

q ¼ � @F3

@p
and �p ¼ � @F3

@�q
: (34)

Because the transformation has explicit time dependence,

there is a new Hamiltonian given by

�H ¼ H þ @F3

@t
; (35)

and if this new Hamiltonian can be made constant or zero,

then a Hamiltonian version of (33) applies. Consider the sim-

ple case where H ¼ p2=2þ Vðq; tÞ, with a time-dependent

potential V, and choose F3 ¼ ��q p� tðp2=2þ Vð�q; 0ÞÞ. By

(35) this gives rise to the new Hamiltonian

�H ¼ Vð�q þ tð�p � tVqð�q; 0ÞÞ; tÞ � Vð�q; 0Þ; (36)

where Vq ¼ @V=@�q. Equation (36) gives upon expansion for

small t

�H ¼ tðVtð�q; 0Þ þ �pVqð�q; 0ÞÞ þ Oðt2Þ; (37)

FIG. 3. Symplectic area.
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where Vt ¼ @V=@t. Because (37) is O(t), the same is true for

Hamilton’s differential equations, with the solutions

�q ¼ constþ Oðt2Þ and �p ¼ constþ Oðt2Þ:

Thus, the map

�p ¼ pþ Vqð�q; 0Þ and q ¼ �q þ pt; (38)

is symplectic and accurate to first order, which means that if

we take t to be the step size Dt, then the Taylor series in Dt
of the approximate solution matches the actual to first order.

While the above example is rather simple, it serves to

reveal a path for obtaining higher order methods, such as the

3rd order method described in Ref. 28 and the higher order

methods of Refs. 35–40.

One feature of transformations given by (34) is that

these relations for general Hamiltonians are implicit and

approximate solution of these formulas by, e.g., Newton’s

method may lead to a violation of the symplectic property. A

similar difficulty arises with Lie transform approaches (see

e.g., Ref. 41), where the canonical transformation is gener-

ated by a series as follows:

�z ¼ efG;�gz ¼ zþ G; zf g þ 1

2
G; G; zf gf g þ � � � : (39)

Truncation of this series again in general results in a transfor-

mation that is not exactly canonical. A way around this prob-

lem is to make an approximation using Cremona maps (see

e.g., Ref. 42). Using the notation f�; gg ¼ Xg for a

Hamiltonian vector field, one incorporates the Campbell-

Baker-Hausdorff theorem to write

eDtXH 	
Y

i

eDtXHi ; (40)

where the Hi are special polynomials for which the infinite

series truncates, thus guaranteeing exact symplecticity.

To summarize, every time step of a symplectic integra-

tor is a CT and, consequently, the geometric structure

described in Sec. III A is exactly preserved. However, it is

not the case that energy is exactly conserved as it is for CI.

Instead energy is “shadowed,” which means there is a nearby

Hamiltonian that is exactly conserved. In this way, one can

bound the deviations of the energy, in accordance with the

order of the scheme, and avoid energy drift (see e.g., Ref. 4).

A criticism of symplectic integration is that making the time

step adaptable can be difficult. One approach that overcomes

this difficulty and allows for adaptive time steps is that of

Ref. 43.

For Hamiltonian field theories, PDEs that have canonical

Poisson brackets of the form of (31), semidiscrete

Hamiltonian reductions are straightforward. One can simply

expand the fields ðw; pÞ in terms of any complete set of basis

functions and then truncate to obtain a finite-dimensional

canonical Poisson bracket for ODEs, as is typical with spectral

methods. In this way, it is easy to show that the truncated sys-

tem has a finite-dimensional Hamiltonian form. (See Refs. 44

and 45 for an early comparison of canonical vs. noncanonical

Hamiltonian reductions.) Once the semidiscrete Hamiltonian

reduction is at hand, one can turn to SI as a possibility for the

time advancement of the ODEs.

IV. HAMILTONIAN INTEGRATION (HI)

Although SI as described in Sec. III is the most common

type of integration that preserves Hamiltonian form, other

methods and approaches exist. In this section, we discuss

some of these.

A. Variational integration (VI)

The main idea behind VI is to make approximations in

an action functional, giving rise to time step equations as

Euler-Lagrange equations. In this way, one can obtain sym-

plectic integrators that may also preserve other invariants

such as momenta.

1. Variational structure - canonical

Consider the canonical case where we start from

Hamilton’s variational principle of mechanics. Recall,

Lagrange’s equations arise from extremization of the follow-

ing functional over paths:

S q½ � ¼
ðt1

t0

Lðq; _q; tÞ dt; dqðt0Þ ¼ dqðt1Þ ¼ 0; (41)

where L is the Lagrangian. Thus, dS=dq ¼ 0 yields

@L

@qi
� d

dt

@L

@ _qi
¼ 0: (42)

With the Lagrangian L ¼
P

mj _qj2=2� /ðq; tÞ, Lagrange’s

equations are equivalent to Newton’s second law.

For convex Lagrangians, the Legendre transform makes

the identification of Lagrange’s N second order equations

with Hamiltonian’s 2N first order equations. Recall, one

defines the canonical momentum by pi ¼ @L=@ _qi and if

W :¼ det
@2L

@ _qi@ _qj

 !
6¼ 0; (43)

then by the inverse function theorem one can solve for all

the momenta _qi as a function of the pi and construct

Hðq; p; tÞ ¼ pi _qi � L: (44)

Then with the Hamilton of (44), Hamilton’s equations of

(24) are equivalent to Lagrange’s equation (42).

When W¼ 0 one cannot solve for all the momenta _qi as

a function of the pi. For this more complicated situation, one

must employ the Dirac constraint theory (see e.g., Refs. 46

and 47), which we will briefly consider in Sec. IV A 4.

2. Variational integrators - canonical

For finite-dimensional systems, the strategy for obtain-

ing a variational integrator is to discretize the time integra-

tion of the action and then vary. As a simple example,

assume t1 � t0 is small and use the trapezoidal rule to

approximate the action as
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S q½ � ¼
ðt1

t0

L q; _q; tð Þ dt 	 1

2
t1 � t0ð Þ

� L q0;
q1 � q0

t1 � t0

; t0

� �
þ L q1;

q1 � q0

t1 � t0
; t1

� �� �
¼ Wd t0; t1; q0; q1ð Þ; (45)

where a linear trajectory approximation has been used. Next,

we add up to make a discrete action as follows:

Sd ¼
X

n

Wdðtn; tnþ1; qn; qnþ1Þ:

Finally, upon variation, which now is merely differentiation,

one obtains a symplectic map for each time step.

There has been much work on VI with an entry point

into the literature being Ref. 48. Historically, the idea to dis-

cretize actions is old and has been used for various purposes

in Hamiltonian dynamical systems theory, both theoretically

and computationally. Theory work proposing VI appeared in

the 1980s (e.g., Ref. 49), but actual working codes for the

more difficult problem of finding periodic orbits were given

in Refs. 50–52, where the use of an ODE integrator was also

proposed.

Variational integrators for PDEs proceed by discretizing in

the spacial variable as well as time. An example of this for

MHD was given in Ref. 53 where discrete exterior calculus was

used to discretize the label of Newcomb’s MHD Lagrangian.54

3. Variational structure - noncanonical

Noncanonical variational structure occurs when the

Legendre transform fails. Consider the action functional of

the form of (41) with the Lagrangian

L ¼ _qaAaðqÞ � /ðq; tÞ; a ¼ 1; 2;…;M; (46)

which would produce the canonical momenta pa ¼ @L=@ _qa

¼ Aa. For this case, one cannot solve for any of the _qa in

terms of the pa because the Lagrangian is totally degenerate,

i.e., by (43) W � 0 with rank zero. However, for this totally

degenerate case the Euler-Lagrange equations are

xba _qa ¼ @/
@qb

; (47)

with xba :¼ Aa;b � Ab;a where Aa;b :¼ @Aa=@qb. The Aa are

components of a 1-form and the 2-form x is closed, xba;c

þ cyc � 0, where cyc means cyclic permutation over abc. If

x has an inverse (which requires M ¼ 2N), say, J, then the

Euler-Lagrange equations are

_qa ¼ Jab qð Þ
@/
@qb

; (48)

and one has a “half-sized” Hamiltonian system in noncanoni-

cal variables with / as the Hamiltonian.

This example is of interest in plasma physics because guid-

ing center orbits are governed by Littlejohn’s Lagrangian55 (see

also Ref. 56) that has the following form:

L ¼ _x � Aþ b vjj
� �

� 1

2
v2
jj � v xð Þ; (49)

where Aðx; tÞ is the vector potential.

4. Variational integrators - noncanonical

One can use Dirac’s constraint procedure57 to obtain a

canonical Hamiltonian system (see Ref. 58 where this is

done for (49)) but for the purpose of VI one can directly dis-

cretize the action with (49), as in Refs. 59 and 60, improved

in Ref. 61, and with ongoing work by J. Burby, J. Finn, M.

Kraus, and H. Qin. Figure 4 displays a guiding center orbit

in tokamak geometry, with VI accuracy over a long time.

Plasma physics PDEs that model plasmas in terms of the

usual Eulerian variables are generally noncanonical in nature

(see e.g., Ref. 8). Thus, VI for such equations has subtleties.

In Ref. 62, this problem was handled for a variety of plasma

models by introducing adjoint equations. This procedure

enables one to retain conservation laws at the discrete level.

Work on the Vlasov-Poisson system is recorded in Ref. 63,

on MHD in Ref. 64, and techniques for the two-fluid theory

also exist.65

B. Poisson integration (PI)

In Sec. IV A 3, we observed that a Poisson matrix and

consequently a Poisson bracket of nonstandard form (upon

replacing of Jc of (26) by J) may arise from a Lagrangian of

noncanonical form. Such unconventional Poisson brackets

have been explored since the nineteenth century, notably by

Sophus Lie, and were further explored by many physicists

and mathematicians in the twentieth century (e.g., Refs. 46

and 66). In plasma physics, the Poisson bracket for motion

of a particle in a given magnetic field was transformed to

noncanonical coordinates for the perturbation theory in

Ref. 67. However, the word noncanonical was used in the

seminal Ref. 68 for a Poisson bracket that not only does not

have the usual canonical form but also possesses degener-

acy. Reference 68 instigated research on finite and infinite

degree-of-freedom noncanonical Hamiltonian systems, par-

ticularly plasma and other continuum models, for which the

map from Lagrangian to Eulerian variables results in a non-

canonical degenerate Poisson bracket (see Ref. 5). The par-

ticular case of the Maxwell-Vlasov system will be studied

in Sec. VII.

1. Noncanonical Hamiltonian structure

The noncanonical generalization of the Hamiltonian

form of (25) is given by

_za ¼ Jab @H

@zb
¼ za;Hf g; a ¼ 1; 2;…;M; (50)

where the following noncanonical Poisson bracket replaces

(26):

f ; gf g ¼ @f

@za
Jab zð Þ

@g

@zb
: a; b ¼ 1; 2;…;M: (51)
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For a bracket of the form (51) to be a good Poisson bracket

it must have the following properties for all functions f,
g, h:

• antisymmetry

ff ; gg ¼ �fg; fg () Jab ¼ �Jba: (52)

• Jacobi identity

ff ; fg; hgg þ cyc � 0() JadJbc
;d þ cyc � 0; (53)

where cyc means cyclic permutation over fgh in the first

expression and over abc in the second.

This noncanonical generalization of Hamiltonian mechanics

is reasonable because of an old theorem due to Darboux,

which states that if det J 6¼ 0 then there exists a coordinate

change that (at least locally) brings J into the canonical form

Jc of (26). Recalling that J transforms as a rank 2 contravar-

iant tensor, this canonizing transformation �z $ z would satisfy

Jl� @�za

@zl

@�zb

@z�
¼ Jab

c : (54)

However, the more interesting case is the one studied by

Sophus Lie where det J ¼ 0. This case is degenerate and

gives rise to Casimir invariants (Lie’s distinguished func-

tions), which are constants of motion for any possible

Hamiltonian that satisfies

f ;Cf g ¼ 0 8 f () Jab @C

@zb
¼ 0 8 a: (55)

Because of the degeneracy, there is no coordinate transfor-

mation to canonical form; however, a theorem known to Lie

(see e.g., Refs. 69 and 70) which we call the Lie-Darboux

theorem states that there is a transformation to the following

degenerate canonical form:

Jdc ¼
0N IN 0

�IN 0N 0

0 0 0M�2N

0
B@

1
CA: (56)

Instigated in a major way by the noncanonical Poisson

brackets for plasma models, manifolds with the addition of

degenerate Poisson bracket structure, known as Poisson

manifolds, have now been widely studied (see e.g., Ref. 71).

The local structure of a Poisson manifold is depicted in

Fig. 5, where it is seen that the phase space is foliated by the

level sets of the Casimir invariants. For an M-dimensional

system, there exist M � 2N Casimir invariants, and an orbit

that initially lies on such a surface defined by the level sets

of the initial Casimir invariants remains there. These surfa-

ces, called symplectic leaves, have dimension 2N and the

phase space is generically foliated by them.

Lie-Poisson brackets are a special form of noncanonical

Poisson brackets that typically appear in matter models in

terms of an Eulerian variable description. For finite-

dimensional Lie-Poisson Hamiltonian systems, the Poisson

matrix J is linear in the dynamical variable and has the form

Jab ¼ cab
c zc, where the numbers cab

c are the structure con-

stants of some Lie algebra.

Noncanonical Hamiltonian field theories have Poisson

brackets of the form

FIG. 4. Variational symplectic integra-

tor vs. RK4 for producing an accurate

banana orbit. (Courtesy of Qin, see

Ref. 60.) (left) Banana orbit using stan-

dard RK4 with exact orbit and (right)

that obtained using a variational sym-

plectic method. Orbits were obtained

for ITER parameters with the integra-

tion time being 104 banana periods.

Since the ITER burn time is more

than 106 banana periods, numerical

fidelity over very long times is

required. Modified with permission

from Qin et al., Phys. Plasmas 16,

042510 (2009). Copyright 2009 AIP

Publishing LLC.

FIG. 5. Depiction of a Poisson manifold foliated by symplectic leaves of

constant Casimir invariants.
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F;Gf g ¼
ð

dl
dF

dvi
J ij dG

dvj
; (57)

where F and G are arbitrary functionals, the Poisson matrix

becomes a Poisson operator J , and the fields v ¼ ðv1;
…; vNÞ are not divided into canonical pairs ðw; pÞ as in (31).

In general, the Poisson operator may depend on the fields

vðl; tÞ, but most importantly J must still satisfy infinite-

dimensional versions of (52) and (53), the latter of which

may be challenging to show (see Ref. 6).

A example of an infinite-dimensional noncanonical Lie-

Poisson bracket is that for the Vlasov-Poisson system6,45,72

F;Gf g ¼
ð

dxdv f
dF

df
;
dG

df

� �
¼
ð

dxdv
dF

df
J dG

df
; (58)

where f ðx; v; tÞ is the distribution function and the Poisson

operator for this case is given by

J � ¼ � f ; �½ � ¼ �fx � @v � þfv � @x �

Here, the values of the electron charge and mass have been

set to unity and consequently the Hamiltonian of the system,

the total energy, is given by

H f½ � ¼
ð

dxdv f jvj2=2þ
ð

dx jr/j2=2; (59)

where jr/j2 is a shorthand for the quadratic Green’s func-

tion expression in terms of f. Using dH=df ¼ v2=2

�/ðf ; xÞ ¼ E, the particle energy, the Vlasov-Poisson sys-

tem is expressed in the Hamiltonian form as

ft ¼ ff ;Hg ¼ � E; f½ �:

In Sec. VII, we will see that the Poisson bracket of (58) is a

part of the more complicated full Vlasov-Maxwell

Hamiltonian structure.

2. Poisson integrators

Symplectic integrators preserve, step-by-step, the canon-

ical Poisson matrix Jc (cf. (27)). Thus, it would seem natural

to consider transformations �z $ z that preserve the form of a

given noncanonical Poisson matrix, i.e., transformations for

which

Jl� zð Þ @�za

@zl

@�zb

@z�
¼ Jab �zð Þ: (60)

Such transformations are called Poisson maps. If an integra-

tor is constructed to maintain (60) step-by-step, then up to

coordinate changes there is a preserved canonical Jc and one

has all the structure of SI maintained. To see this, suppose

(60) is written symbolically as ~TJT ¼ J, where T ¼ @�z=@z
and tilde denotes transpose. Because of the Lie-Darboux the-

orem, we know there is another coordinate change, say, M,

that “canonizes” J, i.e., ~MJM ¼ Jdc. A straightforward calcu-

lation shows that the transformation N :¼ M�1TM is sym-

plectic up to Casimirs, ~NJdcN ¼ Jdc. Thus, deep down there

is a preserved 2-form and on a symplectic leaf one has SI. In

addition, if one advances time with a T that satisfies (60),

then because the Poisson manifold geometry depicted in Fig.

5 is coordinate independent, the Casimir invariants will all

be exactly preserved.

Examples of works on PI for Lie-Poisson ODE systems

are Refs. 73–75 and the associated development of Lie group

integrators was considered in Ref. 76.

For noncanonical Hamiltonian field theories, PDEs that

have noncanonical Poisson brackets of the form of (57) with

J depending on v, semidiscrete Hamiltonian reductions are

not straightforward. In fact, prior to the publication of Ref.

68 considerable effort was spent on trying to find a finite-

dimensional Hamiltonian projection of MHD by expansion

in a complete set of basis functions followed by various trun-

cations, but it was learned that such a procedure results in

the failure of the Jacobi identity. This is more easily seen for

the simpler case of (58), which was tried in Ref. 44 by

expansion in a Fourier basis—there it was noted for this pro-

jection that the process of truncation destroys the Jacobi

identity. However, it was also noted there that expansion in

terms of particle degrees of freedom results in a good

Poisson bracket. This procedure will be used in Sec. VII

where we will discuss GEMPIC, which is a kind of PI in the

PDE context for the full Maxwell-Vlasov system.

V. METRIPLECTIC INTEGRATION (MI)

As noted in Sec. II, reductions of the general HAP for-

malism of (1)–(3) and its associated Hamiltonian description

may give rise to dissipation, which generally results in vector

fields that have Hamiltonian and non-Hamiltonian or dissipa-

tive components. Generally speaking, dissipation takes one

of two forms in continuum matter models that describe

media, such as fluids and plasmas. The first form is exempli-

fied by the Navier-Stokes equation where viscosity removes

energy from the system, while the second form is exempli-

fied by the fluid theory that conserves energy but allows for

viscous heating, thermal diffusion, and entropy production

by using a general equation of heat transfer.77 Transport

equations with collision operators, such as the Boltzmann,

Landau-Fokker-Planck, or gyrokinetic78 collision operators,

are of the second form because they conserve mass, momen-

tum, and energy, but produce entropy. Metriplectic dynam-

ics27,79 is a general formalism that embodies systems like

these that in a real dynamical sense embody both the first

and second laws of thermodynamics, i.e., have energy con-

servation and entropy production.

A. Metriplectic structure

The theory of metriplectic dynamics evolved out of

early considerations of combining dynamics generated by

Poisson brackets together with dissipative effects,80,81 the

near simultaneous publications of Refs. 79 and 82–84, with

the complete set of axioms as described in this section first

appearing in Refs. 79 and 83. The name metriplectic dynam-

ics for this set of axioms was introduced in Ref. 27 (and

renamed GENERIC in Ref. 85). There has been much subse-

quent work, notably by Grmela and collaborators,86 and

myself and others.87–91
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A metriplectic vector field has two parts, a part that is

Hamiltonian and a part that is a degenerate gradient or metric

flow. Consider first a metric flow on a finite-dimensional

phase space manifold, which in coordinates has the form

_za ¼ gab @S

@zb
¼ za; Sð Þ; a ¼ 1; 2;…;M; (61)

where S is an “entropy” function and the symmetric bracket

ðf ; gÞ ¼ ðg; f Þ, defined on arbitrary phase space functions f
and g, is defined by

f ; gð Þ ¼ @f

@za
gab zð Þ @g

@zb
; a; b ¼ 1; 2;…;M: (62)

Metriplectic dynamics requires two things of the matrix g:

(i) that it be positive semi-definite so that the dynamics

satisfies

dS

dt
¼ S; Sð Þ 
 0;

which can be used to build-in asymptotic stability, i.e., an

“H-theorem,” and (ii) degeneracy so as to conserve an

energy H that will act as a Hamiltonian

ðH; f Þ ¼ 0 8f :

Paired with the gradient flow is a noncanonical

Hamiltonian flow of the form of (50) with Poisson bracket

(51), and the two together define a metriplectic vector field

generated by some function F as follows:

_za ¼ Jab @F
@zb
þ gab @F

@zb
: (63)

The metric and Hamiltonian components are then mated by

requiring F ¼ H þ S with the entropy S selected from the

set of Casimir invariants of the noncanonical Poisson

bracket. Given this structure we have the following:

• a 1st Law:

_H ¼ fH;Fg þ ðH;FÞ ¼ 0þ ðH;HÞ þ ðH; SÞ ¼ 0;

where we identify energy with the Hamiltonian H
• a 2nd Law:

_S ¼ fS;Fg þ ðS;FÞ ¼ ðS; SÞ 
 0;

where we identify entropy with a Casimir S, and entropy

production yields Lyapunov relaxation to equilibrium; i.e.,

the dynamics effects the variational principle, dF ¼ 0.

Observe that dF ¼ 0 is the energy-Casimir variational

principle (see e.g., Ref. 5) and the choice of “thermal equi-

librium” is determined by the choice of Casimir invariant

as entropy.

Thus, metriplectic dynamics is a dynamical paradigm that

embodies both the first and second laws of thermodynamics.

A finite-dimensional example of a metriplectic system

based on the Hamiltonian structure of the free rigid body

was given in Ref. 27. For this example, the energy of the

rigid body is conserved, but the magnitude of the angular

momentum, which acts as the entropy, monotonically

changes until the system relaxes to one of its stable rotations

about a principal axis.

A general infinite-dimensional symmetric bracket has

the form

F;Gð Þ ¼
ð

dl0
ð

dl00
dF v½ �
dvi l0ð Þ G

ij l0; l00ð Þ dG v½ �
dvj l00ð Þ ; (64)

where for metriplectic dynamics Gij is chosen to guarantee

positive semidefiniteness ðF;FÞ 
 0, the symmetry ðF;GÞ
¼ ðG;FÞ, and to build-in the degeneracy condition ðH;FÞ ¼ 0

for all functionals F.

A most important class of metriplectic systems are trans-

port equations of the form

@f

@t
¼ �v � rf þ E � rvf þ

@f

@t

				
c

; (65)

where the first two terms on the right-hand side of (65), the

Hamiltonian Vlasov terms for electrons, can be generated by

the Poisson bracket of (58), while the metriplectic formalism

is completed by using the following to generate the collision

operator, @f=@tjc:27,79

F;Gð Þ ¼
ð

dz

ð
dz0

@

@vi

dF

df zð Þ
� @

@v0i

dF

df z0ð Þ

� �

� Tij z; z0ð Þ @

@vj

dG

df zð Þ
� @

@v0j

dG

df z0ð Þ

" #
: (66)

In (66) z ¼ ðx; vÞ; i; j ¼ 1; 2; 3, and it remains to tailor this

expression to fit a specific collision operator. Because

Casimir invariants are candidate entropies

S f½ � ¼
ð

dz sðf Þ;

and the specific choice of the entropy density function s will

determine the state to which the system relaxes, i.e., the state

of thermal equilibrium. If the tensor Tij is given by

Tijðz; z0Þ ¼ wijðz; z0ÞMðf ðzÞÞMðf ðz0ÞÞ=2;

with the functions M and s related by the following entropy

compatibility condition:

M
d2s

df 2
¼ 1;

then it only remains to determine the tensor wijðz; z0Þ. Any

choice that satisfies the symmetry conditions

wijðz; z0Þ ¼ wjiðz; z0Þ; wijðz; z0Þ ¼ wijðz0; zÞ;
giwij ¼ 0; with gi ¼ vi � v0i;

(67)

will ensure conservation of mass, momentum, and energy.

Finally, according to the metriplectic prescription, the sys-

tem will relax to the state determined by extremization of

F ¼ H þ C, i.e.,
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E þ ds

df
¼ 0; (68)

where recall E ¼ dH=df . If the solution to (68) is stable,

which is ensured by the Kruskal-Oberman92 monotonicity

stability condition, then at least at a formal level dS=dt 
 0

will cause S to increase until the monotonic state f ¼ ðds=
df Þ�1ð�EÞ is achieved. Thus, this collision operator can be

tailored so that the system relaxes to any distribution func-

tion that is monotonic in the energy. Proving the relaxation

property is detailed, which it can be shown by paralleling the

arguments of Ref. 93.

The Landau collision operator is obtained by choosing

the kernel

w
ðLÞ
ij ¼ ðdij � gigj=g2Þdðx� x0Þ=g;

the entropy density s ¼ �kf ln f , and the entropy compatibil-

ity condition gives

M
d2s

df 2
¼ 1) M / f :

Another choice is that of Kadomtsev and Pogutse of Ref. 94

who attempted to explain relaxation to a Lynden-Bell (or

Fermi-Dirac) equilibrium state. For their collision operator

s ¼ �k½f ln f þ ð1� f Þlnð1� f Þ� and the entropy compati-

bility condition yields

M
d2s

df 2
¼ 1) M / f 1� fð Þ:

In this way, one can construct a collision operator that

relaxes to any equilibrium state monotonic in the energy.

B. Metriplectic integrators

MI should at once have a PI component for the

Hamiltonian part of its vector field, preserving the symplec-

tic nature of phase space and the Casimir foliation, while it

should have a CI component for the dissipative part that

exactly conserves invariants. Various ideas come to mind on

how to achieve this, e.g., by splitting the time step. At pre-

sent we know of no published metriplectic integrators, finite

or infinite. However, very recently progress has been made

and examples of MI are on the horizon.95,96

VI. SIMULATED ANNEALING (SA)

By simulated annealing we mean a numerical relaxation

procedure where structure is used to obtain physical equilib-

rium states by constructing usually nonphysical dynamics

that possess certain geometrical constraints. In this section,

we discuss two kinds of SA: one based on the metriplectic

dynamics discussed in Sec. V and the other called double

bracket dynamics (introduced in Ref. 97), which is also

based on Hamiltonian structure.

A. Symmetric bracket structure and SA

Both metriplectic and double bracket SA use a symmet-

ric bracket to achieve relaxation. Such brackets can be

constructed in a variety of ways, giving rise to a bracket of

the form of (64) or its finite-dimensional analog. Since such

brackets are interesting independent of their SA application,

we explore their construction in some detail.

One way of building in degeneracy is with brackets of

the following form:

ðF;GÞ ¼
ð

dl0
ð

dl00fF; viðl0ÞgKijðl0; l00Þfvjðl00Þ;Gg; (69)

where Kij is positive semidefinite and f; g is any Poisson

bracket. This form, given in Ref. 98, has a very general geo-

metric significance.88 To see this suppose P is any phase

space manifold that has both Hamiltonian and Riemannian

structure. Because P has Riemannian structure, given any

two vector fields X1;2 2 XðPÞ the following is defined:

gðX1;X2Þ : XðPÞ � XðPÞ ! R:

If the two vector fields are Hamiltonian, in terms of either a

degenerate or a nondegenerate Poisson matrix, say, XF, XG,

then, we naturally have a symmetric bracket given by

ðF;GÞ ¼ gðXF;XGÞ; (70)

which is an abstract way of writing (69). Thus, natural sym-

metric brackets exist for K€ahler manifolds, which naturally

have metriplectic or double bracket flows.

If P is a manifold with any degenerate Poisson bracket,

then the associated Casimir invariants C must satisfy

ðF;CÞ � 0 for all F. One possibility is the case where f; g is

a Lie-Poisson bracket. Another possibility is to build a Dirac

bracket with desired degeneracies, as was done in Ref. 98 for

SA. Given any bracket, canonical or not, one can build in

Casimir invariants by Dirac’s construction. This is easily

done in finite dimensions for the case of building in invari-

ants, say, Di. For this case, one calculates the matrix

Xij ¼ fDi;Djg, which must be invertible, whence the Dirac

bracket is given by

fF;Gg� ¼ fF;Gg � fF;DigðX�1ÞijfG;Dig; (71)

where it is easily seen that fF;Dig� ¼ 0 for all F. (See Refs.

47 and 99–101 for discussion and use of Dirac brackets in

the infinite-dimensional context.) A third possibility is to use

the triple bracket construction introduced in Refs. 102 and

103 and considered again in Ref. 100. For example, suppose

{A, B, C} is a purely antisymmetric triple bracket on func-

tionals A, B, C. Then, if one desires a symmetric bracket

that conserves a desired Hamiltonian, one can use fF;GgH

:¼ fF;G;Hg in (69). Similarly, one could use antisymmetric

brackets with more slots. A triple bracket will be used for

metriplictic SA in Sec. VI B 1.

Metriplictic SA proceeds just as in Sec. V, by employing

a metriplectic dynamical system to numerically effect the

variational principle dF ¼ dðH þ SÞ ¼ 0, and finds the state

consistent with the initial energy or other invariants. On the

other hand, double bracket SA extremizes H subject to con-

stancy of all Casimir invariants. We will give examples of

these in Secs. VI B 1 and VI B 2, respectively.
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B. Examples of simulated annealing

1. Metriplectic SA

As a numerical tool, metriplectic SA is in its infancy.

The work described in this section is joint work with

Flierl104,105 and is preliminary in nature. Additional prelimi-

nary yet promising results have been obtained with collabo-

rators at IPP in Garching106 where this approach is being

explored for obtaining MHD equilibria. It is important to

clarify that metriplectic SA differs from the MI of Sec. V B

in purpose: metriplectic SA is a tool for finding equilibrium

states via, in general, unphysical dynamics, while MI is an

integrator that preserves the MI geometric structure.

The example at hand concerns quasigeostrophic flow

with topography, as governed by the following PDE for the

potential vorticity fðx; y; tÞ:

ft ¼ f;w½ �; (72)

where in the present section ½f ; g� ¼ fxgy � fygx and the

stream function w satisfies f ¼ r2wþ T, with TðxÞ model-

ing bottom topography. (See e.g., Ref. 107.) Observe, this

system also has an interpretation for guiding center plasmas

and is closely related to the Hasegawa-Mima equation for

plasma drift waves.108

Our goal is to find an asymptotic time-independent state

consistent with conservation of energy. We seek this state by

a procedure that extremizes the enstrophy, in particular, we

will construct a metriplectic system that minimizes

Z ¼
ð

d2x f2=2: (73)

(Note, with a flip of a sign it can be made to maximize Z,

which is not important since a physical process is not being

modeled.)

We construct our symmetric bracket by means of the

following antisymmetric triple bracket:102,103

fA;B;Cg ¼
ð

d2x Af Bf;Cf½ �; (74)

where A, B, and C are arbitrary functionals and we use the

notation Af :¼ dA=df. That (74) is completely antisymmetric

is easily shown for the periodic boundary conditions we use

by integration by parts. From (74) we construct the symmet-

ric bracket

ðF;GÞ ¼
ð

d2x

ð
d2x0 ffðx; yÞ;F;Hg

� Kðx; yjx0; y0Þ ffðx0; y0Þ;G;Hg; (75)

which clearly satisfies ðF;HÞ ¼ 0 for all F. From (74), (75)

reduces to

ðF;GÞ ¼
ð

d2x

ð
d2x0 Ff;Hf½ �Kðx; yjx0; y0Þ Gf0 ;Hf0


 �0:
Now we choose H ¼ �

Ð
d2x wf=2, the physical quasi-

geostrophic energy, and suppose

Kðx; yjx0; y0Þ ¼ �cdðx� x0Þdðy� y0Þ; (76)

giving rise to

@f
@t
¼ f; Zð Þ ¼ c w; w; f½ �½ �;

which coincidentally is an equation of the form of that in

Ref. 109, which was argued to be of physical origin.

As an example, we consider a ridge described by

T ¼ e�x2=2 and integrate forward using a pseudospectral

code until the system approaches a relaxed state. Figure 6

shows an initial dumbbell shaped concentration of vorticity

being sheared out along the ridge as the artificial time

(determined for convenience by the parameter c) pro-

gresses. Because (75) is highly degenerate, the final

relaxed state is governed by the initial condition chosen.

2. Double bracket SA

The original double bracket formulation of Ref. 97 was gen-

eralized in two ways in Ref. 98: by introducing a smoothing ker-

nel and by imposing constraints using Dirac brackets. This

allowed a much wider class of states to be found. In subsequent

work, this formalism has been applied to reduced

MHD.106,110–112 Here, in Figs. 7 and 8, we display a result from

Ref. 98 for Euler’s equation for ideal vorticity dynamics in two

dimensions. In this example, we seek a rotating state for the sca-

lar vorticity that has two-fold symmetry. Double bracket SA is

used to find this as an equilibrium in a rotating frame of refer-

ence. We refer the reader to Ref. 98 for details and many

examples.

VII. GEMPIC: GEOMETRIC ELECTROMAGNETIC
PARTICLE-IN-CELL METHODS

The results of this section are built on the flurry of dis-

coveries by several authors, including, Evstatiev and

Shadwick,113–116 the voluminous work of Qin and collabora-

tors,65,117–122 and the earlier work of Sonnendr€ucker and col-

laborators of a geometrical nature (e.g., Ref. 123)

culminating in the GEMPIC code described by Kraus et al.
in Ref. 124. The essence of the GEMPIC procedure was con-

tained in the presentations at this meeting by Qin125 and

Kraus.126 GEMPIC is a functioning Maxwell-Vlasov PIC

code that has been tested and is available in the SeLaLib

library.127 Many additional references to the relevant litera-

ture can be found in Ref. 124.

GEMPIC is a culmination that uses many of the ideas

about structure presented in this paper. A semidiscrete reduc-

tion of the full Maxwell-Vlasov system is obtained, either

from its variational principle or by reduction of its noncanon-

ical Poisson bracket, resulting in a finite-dimensional nonca-

nonical Hamiltonian theory. The finite-dimensional theory

exactly conserves invariants, including finite-dimensional

versions of the energy and Casimir invariants, and a sym-

plectic method, specifically a PI splitting method, is devised

for its numerical solution. Thus, GEMPIC brings together

many ideas presented here, but it also uses ideas for the solu-

tion of Maxwell’s equation based on its geometric structure.

In Sec. VII A, we review the HAP structure of the

Maxwell-Vlasov system, while in Sec. VII B we describe
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its semidiscretization and resultant Hamiltonian structure.

Obtaining this structure is complicated, so only a sketch is

given, with a goal of giving the flavor of the calculations of

Ref. 124. The section ends with Sec. VII C, a discussion of

the splitting method.

A. Maxwell-Vlasov HAP structure

An action principle for the Maxwell-Vlasov system

was proposed by Low,128 which can be viewed as a contin-

uum or smoothed out version of the nonrelativistic limit of

the discrete particle action principle of (1)–(3). Low’s

action treats the particles by means of a Lagrangian or

material continuum variable labeled by its initial condition,

which replaces the discrete particle index i. For simplicity,

we suppress entirely the sum over species with its presence

being implicit. Additional material on action principles

for the Maxwell-Vlasov system can be found in Refs. 7

and 129.

Suppose at t¼ 0 a “particle” is located at every point z
�

:
¼ ðx�; v�Þ of phase space. Thus, in the action of (1)–(3) we

replace the discrete label by this continuum label,

qi ! qðz�; tÞ, and we replace the sums as follows:

XN

i¼1

!
ð

d z
�

f0ðz
�Þ;

where d z
� ¼ d3 x

�
d3 v
�

and f0 can be viewed as a probability

or number density attached to each point of phase space.

This procedure results in the following action:

S q;/;A½ � ¼
ð

dt

ð
d z
�

f0 z
�� � m

2
j _qðz�; tÞj2

�e

ð
dt

ð
d z
�

f0 z
�� � ð

d3x

� / x; tð Þ�
_q

c
� A x; tð Þ

� �
dðx� qðz�; tÞÞ

þ 1

8p

ð
dt

ð
d3x jE x; tð Þj2 � jB x; tð Þj2
h i

; (77)

where now all variables are fields, the particle phase space

field qðz�; tÞ, and the electromagnetic fields /ðx; tÞ and

Aðx; tÞ.
The functional derivative dS½q;/;A�=dqðz�; tÞ produces

the partial differential equation for Lagrangian particle

orbits. This equation can be shown to be equivalent to the

Vlasov equation if we define the usual Eulerian expression

FIG. 6. Shading of potential vorticity

under metriplectic evolution for (artifi-

cial) times. (Courtesy of Flierl, see

Refs. 104 and 105). (a) t¼ 0. (b)

t¼ 10. (c) t¼ 80. (d) t¼ 500.
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for the distribution function as f ðx; v; tÞ :¼ f0ðz
�Þ, where z

�
is

the initial condition of the particle located at z at time t, i.e.,

z
�

is determined by inverting z ¼ ðx; vÞ ¼ ðqðz�; tÞ; _qðz�; tÞÞ.

This inversion of the map z
� $ z is possible by uniqueness

and, moreover, it has unit Jacobian.

As with the discrete particle action of (1)–(3), Faraday’s

law and r � B ¼ 0 follow because of the introduction of the

potentials, / and A with the relations (4), and the remaining

two Maxwell equations follow from dS=d/ðx; tÞ and

dS=dAðx; tÞ, but now with the sources

qðx; tÞ ¼
X

s

e

ð
d3v f ðx; v; tÞ; (78)

Jðx; tÞ ¼
X

s

e

ð
d3v f ðx; v; tÞ v: (79)

Thus with the interpretation above, Low’s action has the

Maxwell-Vlasov system as its Euler-Lagrange equations,

which for completeness we record below

@f

@t
¼ �v � rf � e

m
Eþ v

c
� B

� �
� @f

@v
; (80)

@E

@t
¼ r� B� 4pJ; (81)

@B

@t
¼ �r� E; (82)

FIG. 7. Vorticity (shading) and stream

function (contours) under double

bracket SA with a two-fold symmetric

initial condition. The code strives to

maximize the energy subject to the

enforcement of Dirac constraints that

select out the equilibrium. The dynam-

ics effects a symplectic rearrangement

of the initial condition. Reproduced

with permission from Flierl and

Morrison, Physica D 240, 212 (2011).

Copyright 2011 Elsevier. (a) t¼ 0. (b)

t¼ 80. (c) t¼ 120. (d) t¼ 200.

FIG. 8. Plot of energy and enstrophy under metriplectic evolution, with

energy being conserved and enstrophy being decreased by the dynamics.

Reprinted with permission from Flierl and Morrison, Physica D 240, 212

(2011). Copyright 2011 Elsevier.
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r � B ¼ 0 and r � E ¼ 4pq: (83)

Note that (77) reverts to (1)–(3) if we suppose that ini-

tially particles are located at N isolated points, i.e., upon

using

f0ðz
�Þ ¼

XN

i¼1

widðz
� � zi

� Þ; (84)

qiðtÞ :¼ qðzi
�
; tÞ, and setting all the “weights” wi¼ 1.

The counterpart of the Low action is the purely Eulerian

gauge-free noncanonical Hamiltonian theory conceived of in

Ref. 72 that uses the natural field variables ðf ;E;BÞ. This

theory uses the conserved Maxwell-Vlasov-energy as its

Hamiltonian

H ¼ m

2

ð
d3x d3v jvj2 f þ 1

8p

ð
d3x jEj2 þ jBj2
� �

; (85)

together with the following noncanonical Poisson bracket:

F;Gf g ¼ 1

m

ð
d3x d3v

�
f Ff ;Gff g

þ e

mc
f B � @vFf � @vGf

� �
þ 4pe f GE � @vFf � FE � @vGf

� ��

þ 4pc

ð
d3x FE � r � GB � GE � r � FBð Þ; (86)

where ½f ; g� ¼ rf � @vg�rg � @vf with @v :¼ @=@v. With

the noncanonical bracket of (86) and the Hamiltonian (85),

one obtains the Vlasov-Maxwell system of (80), (81), and

(82) as

@f

@t
¼ f ;Hf g; @E

@t
¼ E;Hf g; @B

@t
¼ B;Hf g: (87)

The bracket of (86) was introduced in Ref. 72, with a

term corrected in Ref. 130 (see also Ref. 6), and its limitation

to divergence-free magnetic fields first pointed out in Ref. 6.

See also Refs. 100 and 131, where the latter contains the

details of the direct proof of the Jacobi identity

F;Gf g;Hf g þ cyc ¼ e

m3c

ð
d3x d3v f r � B

� @vFf � @vGf

� �
� @vHf : (88)

Thus, the Jacobi identity is satisfied for arbitrary functionals

F, G, H defined on divergence-free magnetic fields. The con-

straints of (83)

CB :¼ r � B ¼ 0 and CE :¼ r � E� 4pq; (89)

satisfy fF;Cg ¼ 0 pointwise for all F. Thus, CE is a Casimir

invariant, while CB could be called a semi-Casimir, because

it is intertwined with the satisfaction of the Jacobi identity

per (88).

The relativistic Vlasov-Maxwell theory follows upon

replacing mjvj2=2 in the first term of the Hamiltonian (85)

with �mc2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� jvj2=c2

q
, and the theory can be written in

manifestly covariant form,132,133 but this will not be pursued

further here.

B. Discrete HAP Maxwell-Vlasov

Let us now consider semidiscrete reductions of the

Maxwell-Vlasov system, systems of ODEs that are designed

to approximate the dynamics. Many approaches for this have

been pursued, but that most natural to a physicist is to start

from the action principle, because this provides a direct ave-

nue for maintaining the exact conservation of energy and

other invariants in the reduced theory. Many such approxi-

mations have been made in plasma physics, e.g., that of

Refs. 129, 134, and 135, where the latter two were specifi-

cally designed for obtaining computable models, the single-

and multi-wave models of plasma physics.136 However, spe-

cifically for the purpose of finding a semidiscrete reduction

for solving the Maxwell-Vlasov system, the early work of

Ralph Lewis on variational PIC stands out.137–139 His

approach to PIC did not take hold, most likely because NGP

(nearest-grid-point) was used for the force which proved to

be prohibitively noisy for computers of the day.

The idea of Lewis was to insert expansions for the fields

and particles in terms of sums over basis functions into (77),

truncate the sums, integrate over z
�
, and then vary as in

Hamilton’s principle of mechanics to obtain sets of ODEs

that exactly conserve invariants. The ODEs obtained by this

procedure describe both particle and field degrees of freedom

with their coupling provided automatically by the coupling

terms of (77). This variational approach of Lewis was

revived in more recent works,113,114,117,118 where the use of

better basis functions and/or the introduction of shape func-

tions was seen to dramatically reduce noise and other sources

of error. Of particular note is Ref. 117, the first to obtain a

geometric (Hamiltonian) Particle-in-Cell (PIC) integrator for

the Maxwell-Vlasov system by discretizing the electromag-

netic fields via discrete exterior calculus.

To see how the variational approach transpires, consider

the case where the potentials are represented as Fourier

series

/ ¼
X

k

/k eik�x and A ¼
X

k

ak eik�x; (90)

while the particles are represented in terms of a shape func-

tion S with weights wi as follows:114,118

f ðx; v; tÞ ¼
X

i

wi Sðx� qiðtÞÞdðv� _qiðtÞÞ; (91)

where
Ð

d3xS ¼ 1. When (90) and (91) are substituted into

the action of (77), one obtains an action of the form

S qi;/k;Ak½ � ¼
ð

dt Lðqi; _qi;/k;Ak; _AkÞ: (92)

Then, assuming a finite number of modes and particles,

extremization of (92) gives Lagrange’s equations in terms of

the Lagrangian L in the usual manner. By construction, the

resulting system of ODEs is conservative and has

Hamiltonian structure.
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GEMPIC differs from the above procedure by using

advances in the integration of Maxwell’s equations that

exploit its intrinsic geometry, viz., that E is a 1-form and B

is a 2-form. Because of its desirable properties, the early

finite difference discretization of Yee140 was generalized to a

complete discrete differential calculus in later work,141 and

these ideas can be incorporated into a Maxwell-Vlasov PIC

code. However, GEMPIC adapts Finite Element Exterior

Calculus (FEEC), a finite element or spline approach that is

described in detail in Refs. 142 and 143. The upshot of this

approach is that one obtains discrete versions of the grad,

div, and curl operations, in terms of matrices, with properties

like curl grad ¼0 maintained. An important aspect of this

approach is that there are now many finite element spaces,

splines, etc., that achieve this. In fact, the Fourier bases of

(90) are a special case of the general framework.

To see how this progresses, consider the expansions

Eh ¼
XN1

i¼1

eiðtÞK1
i ; Bh ¼

XN2

i¼1

biðtÞK2
i ; (93)

where K1;2
i are the 1-form and 2-form bases with the desired

properties. Given these properties, Eqs. (4) take the discrete

matrix forms

e ¼ �G/� da

dt
; b ¼ Ca; (94)

where e and b have as components the ei and bi, u and a are

the amplitudes for expansions analogous to (93) for the

potentials / and A, and G and C are the discrete gradient

and curl operators. The discrete form of Maxwell’s equations

becomes the following ODEs in matrix form:

M1

de

dt
� C>M2b ¼ 4pj; (95)

db

dt
þ Ce ¼ 0; (96)

G>M1e ¼ 4p.; (97)

Db ¼ 0; (98)

where D is the discrete divergence operator, j and . are suit-

able n-tuples representing the charge and current densities

(3-forms and 2-forms) defined in terms of the particle

degrees of freedom, > means transpose, and the matrices

M1;2 are defined by the pairing of the bases elements K1;2

which in general are not orthogonal.

This discretization of Maxwell’s equations is coupled

with a particle discretization like (91) to obtain a finite-

dimensional system. The fact that this resulting system pos-

sesses the noncanonical Hamiltonian form, follows upon

projecting the Poisson bracket of (86). This is done by using

functional chain rule expressions such as those given in

Refs. 44 and 45, e.g.,

@F̂

@qi

¼ wir
dF

df
j qi;við Þ; (99)

with vi ¼ _q being the canonical momentum conjugate to qi.

To see the details of this calculation, we refer the reader to

Ref. 124, but the final result is a Poisson bracket acting on

functions F̂ and Ĝ with the arguments

z ¼ ðX;V; e; bÞ; (100)

where ðX;VÞ denote the 6N particle degrees of freedom and

z in index form, za, has a ¼ 1; 2;…;M with M including the

particle and e and b degrees of freedom. Thus, the Poisson

bracket becomes

F̂; Ĝ
� 


¼ @F̂

@za
J ab @Ĝ

@zb
;

with the Poisson matrix given by

J ¼

0 M�1
p 0 0

�M�1
p M�1

p MqBM�1
p M�1

p MqIK1M�1
1 0

0 �M�1
1 K1>MqM

�1
p 0 M�1

1 C>M�1
2

0 0 �M�1
2 CM�1

1 0

0
BBBBBBB@

1
CCCCCCCA
;

where

Mp ¼ Mp � I3�3; Mq ¼ Mq � I3�3; (101)

with I3�3 denoting the 3� 3 identity matrix and Mp and Mq

being diagonal matrices with elements miwi and eiwi,

respectively. The matrices BðX; bÞ and K1ðXÞ depend on

components of z and are given in terms of K1;2
i (see Ref.

124 for details). Although complicated, in the end J is just

a matrix of functions of the dynamical variables, which

was shown directly in Refs. 122 and 124 to satisfy the

Jacobi identity, and thus with a Hamiltonian we have a

finite, yet very large, noncanonical Hamiltonian system of

the form of (50).

C. Hamiltonian splitting

The discretized form of the Hamiltonian of (85) has

three parts, Ĥ ¼ Ĥp þ ĤE þ ĤB, with
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Ĥp ¼
1

2
V>MpV; ĤE ¼

1

2
e>M1e; ĤB ¼

1

2
b>M2b:

This decomposition is the basis of the splitting method

developed in Refs. 119, 144, and 145. The essential idea is

that each of the subsystems

_z ¼ fz; Ĥpg; _z ¼ fz; ĤEg; _z ¼ fz; ĤBg; (102)

can be solved exactly and each is a Poisson map. Thus, their

composition is a Poisson map, and we can construct a time

step that exactly conserves the Poisson bracket. This is an

example of the PI discussed in Sec. IV B.

The integrator is constructed as a Lie series as in (40).

For example, a first order integrator is given by

zðDtÞ ¼ eDtXE eDtXB eDtXp1 eDtXp2 zð0Þ; (103)

where the Xs are Hamiltonian vector fields, e.g.,

Xa
E ¼ J ba @ĤE

@zb
:

For different arrangements of exponentials, one can

obtain a second order integrator—we direct the reader to the

references for details.

VIII. CONCLUSIONS

In this paper, HAP formulations of plasma dynamical

systems have been reviewed, and methods for integrating

differential equations that preserve such structure have been

surveyed. In Sec. II, schemes that exactly conserve constants

of motion were discussed. Then in Sec. III, the areas of (28),

which preserves the canonical Hamiltonian structure, and the

associated Poincar�e invariants and loop integrals of (29)

were described. This was followed by two other kinds of HI,

the VI of Sec. IV A, based on approximating variational prin-

ciples, and the PI of Sec. IV B for Hamiltonian systems with

the noncanonical Poisson bracket formulation that is typical

of plasma models. Next MI was proposed in Sec. V, an inte-

gration scheme that would preserve the structure of systems

that are conservative with both Hamiltonian and dissipative

parts. Simulated annealing, the relaxation method for obtain-

ing equilibrium states was described in Sec. VI. Examples of

metriplectic SA and double bracket SA were given. Finally,

in Sec. VII the GEMPIC algorithm for the Maxwell-Vlasov

(MV) system was described. The GEMPIC code is a fitting

finale, for it is a culmination of the work of many researchers

that exactly preserves geometric structure described in this

paper.

Given the many time-honored computational methods, it

is important and obvious to note that structure preserving

methods like those described here may be unnecessary.

However, for some problems it may be easy and inexpensive

to try one of the methods described here, and depending on

the problem being addressed it might prove to be superior,

but no structure preserving integrator is going to be a pana-

cea for all computational ills. For some problems, such tech-

niques are useful and may even be essential to obtain an

accurate solution.

There are many avenues for future work, both of a gen-

eral nature and specific to plasma physics. Since suggesting

the idea of MI, several researchers have already taken up the

challenge and have made progress. It appears in the PDE

context that MI will be useful for handling collision opera-

tors. Application to drift kinetic or gyrokinetic theories is

underway,146 but because of the different variational and

Hamiltonian structure of these theories (see e.g., Refs. 147

and 148), modifications are necessary. Lastly, we mention

that Hamiltonian reductions like that of GEMPIC and

others149 open the field of discrete gyrokinetics. Conventional

gyrokinetics reduces an infinite-dimensional theory, the MV

system, to another reduced infinite-dimensional theory. Given

a discretization like GEMPIC one could proceed in two novel

ways: (i) start from the finite-dimensional Hamiltonian theory

of the discretization and then use the considerable lore of

more than a century of rigorous Hamiltonian perturbation

methods to arrive at a reduced faithful system. This is facili-

tated by the adaptation of canonical perturbations methods to

noncanonical150–152 or (ii) use multiscale methods (e.g., Ref.

153) on the large but finite GEMPIC-like system, thereby cir-

cumventing the usual gyrokinetic expansions by incorporating

modern day numerical tools. Neither of these approaches are

trivial, and their efficacy remains to be determined.
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