
Beatification: Flattening the Poisson bracket for two-dimensional fluid and plasma
theories
Thiago F. Viscondi, Iberê L. Caldas, and Philip J. Morrison

Citation: Physics of Plasmas 24, 032102 (2017); doi: 10.1063/1.4977451
View online: http://dx.doi.org/10.1063/1.4977451
View Table of Contents: http://aip.scitation.org/toc/php/24/3
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1981081921/x01/AIP-PT/APR_PoPArticleDL_022217/APRconf_1640x440Banner_12-16B.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Viscondi%2C+Thiago+F
http://aip.scitation.org/author/Caldas%2C+Iber%C3%AA+L
http://aip.scitation.org/author/Morrison%2C+Philip+J
/loi/php
http://dx.doi.org/10.1063/1.4977451
http://aip.scitation.org/toc/php/24/3
http://aip.scitation.org/publisher/


Beatification: Flattening the Poisson bracket for two-dimensional fluid
and plasma theories
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A perturbative method called beatification is presented for a class of two-dimensional fluid and

plasma theories. The Hamiltonian systems considered, namely, the Euler, Vlasov-Poisson,

Hasegawa-Mima, and modified Hasegawa-Mima equations, are naturally described in terms of

noncanonical variables. The beatification procedure amounts to finding the correct transformation

that removes the explicit variable dependence from a noncanonical Poisson bracket and replaces it

with a fixed dependence on a chosen state in the phase space. As such, beatification is a major step

toward casting the Hamiltonian system in its canonical form, thus enabling or facilitating the use of

analytical and numerical techniques that require or favor a representation in terms of canonical, or

beatified, Hamiltonian variables. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4977451]

I. INTRODUCTION

The Hamiltonian formalism is a fundamental pillar of

theoretical physics, as the time evolution of every isolated

system is expected to possess Hamiltonian structure.

Although most literature on Hamiltonian systems uses canoni-

cal variables, numerous physical theories are Hamiltonian yet

naturally described in terms of noncanonical variables,1 such

as many prominent fluid and plasma models,2–13 the general-

ized coherent-state approach to semiclassical dynamics,14–17

and even the time-dependent Schr€odinger equation itself.18

For such noncanonical representations, the question then

arises: How does one obtain a global transformation from

noncanonical to canonical variables in infinite-dimensional

Hamiltonian systems, which are generally described by sets

of partial differential equations? In the present paper, this

problem is partially addressed by using an analytical method

known as beatification.19,20

Beatification is a perturbative procedure through which

the explicit variable dependence of a noncanonical Poisson

bracket is replaced by a fixed dependence on a chosen state

in phase space, designated as the reference state. As a result

of the beatifying transformation, the Hamiltonian functional

undergoes an increase in its degree of nonlinearity, so that

the removal of the dynamical variable in the Poisson bracket

is compensated.19,20 Another important consequence of beat-

ification is that it greatly facilitates the search for canonical

variables, as can be readily verified in the case of a finite-

dimensional Hamiltonian system.19,20 Therefore, beatifica-

tion can be seen as a preparatory step toward canonization,

as implied by its name.

Considering both finite- and infinite-dimensional

Hamiltonian systems, the beatification method was first pre-

sented in Ref. 19, where the beatifying transformation was

derived, to its lowest perturbative order, by using an equilib-

rium as reference state. In a subsequent work,20 considering

specifically the Poisson bracket for vorticity-like variables in

two-dimensional fluid and plasma theories, beatification was

extended to second order and generalized to take into

account completely arbitrary reference states. In the present

paper, considering again the case of two-dimensional fluid

and plasma models, the beatifying transformation is further

extended to infinite perturbative order, also termed complete
beatification. In this way, an appropriate setting is estab-

lished for an in-depth investigation of some important

Hamiltonian models, namely, the two-dimensional Euler

equation,9 the standard10,11,21,22 and modified12,23 versions

of the Hasegawa-Mima equation, and the one-degree-of-

freedom Vlasov-Poisson equation.24,25 We mention that, in

essence, the equivalent of complete beatification was

obtained for the special case of expansion about shear flow

equilibria in Ref. 26 and similar ideas were explored for the

Vlasov-Poisson system by introduction of a generating func-

tion in Ref. 25.

A beatified Hamiltonian system exhibits some signifi-

cant analytical advantages over its original noncanonical

form. First, due to the removal of the explicit variable depen-

dence from the Poisson bracket, the beatified system can

have its degrees of freedom truncated without the loss of

Hamiltonian structure.20 Such a reduction process is very

useful for obtaining a finite set of dynamical equations

from an infinite-dimensional system, while retaining the

Hamiltonian properties of the latter. Potential uses for this

Hamiltonian truncation procedure include constructing low-

dimensional models for describing specific physical mecha-

nisms27–44 and obtaining semi-discrete schemes for numeri-

cal integration of partial differential equations, as an

alternative to techniques used or derived, for example, in

Refs. 45–52. Second, as a collateral effect of beatification,

all Casimir invariants53 of a system become linear in the

dynamical variables. As an evident consequence, analytical

manipulation of these constants of motion is greatly simpli-

fied. Third, as a perturbative approach, beatification can be
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used to simplify or emphasize the local dynamics about a

particular phase-space point, chosen as reference state.

The remainder of this paper is organized as follows.

Section II briefly introduces the Hamiltonian formalism for

two-dimensional fluid and plasma theories. In this context,

the pertinent Poisson brackets, Hamiltonian functionals, and

equations of motion are presented. In Section III, the

Casimir invariants of the relevant theories are derived.

Section IV presents the beatification procedure itself, which

is composed of two key steps. First, the field variable is

rewritten as the sum of a reference state and a perturbative

field. Second, an additional transformation is imposed on the

perturbative field so that the explicit variable dependence is

eliminated in the Poisson bracket. At the end of Section IV,

the effect of the beatifying transformation on the Casimir

invariants is examined in detail. Section V analyzes the par-

ticular case of a finite-order beatification procedure and

presents a recurrence formula for the inverse of the beatify-

ing transformation. In Section VI, the main findings of the

paper are summarized and potential applications are dis-

cussed. Finally, in the Appendix, the suppression of the vari-

able dependence in the Poisson bracket as a result of the

beatifying transformation is demonstrated.

II. HAMILTONIAN FORMULATION

In this section, we present the main elements of the

Hamiltonian formalism for four important fluid and plasma

models, namely, the two-dimensional Euler equation, the

standard and modified versions of the Hasegawa-Mima equa-

tion, and the one-degree-of-freedom Vlasov-Poisson equa-

tion. As a first step, we introduce the fundamental Poisson

bracket that connects all the Hamiltonian systems

considered54

F;Gf g ¼
ð
D

d2r
dF

dx
J xð Þ dG

dx
; (1)

where x¼x(x, y; t) is a vorticity-like scalar field on the

two-dimensional domain D; d2r ¼ dxdy, F and G are two

arbitrary functionals of x, and J is the Poisson operator,

which is defined as

J ðf Þg ¼ � f ; g�;½ (2)

for two arbitrary functions f and g on the domain D and

½f ; g� ¼ ð@xf Þð@ygÞ � ð@yf Þð@xgÞ. Notice that, except for a

minus sign, the Poisson operator is just the Jacobian determi-

nant @ðf ; gÞ=@ðx; yÞ or, equivalently, the z component of the

cross product between gradients, that is, (rf�rg)z. Also

presented in Equation (1), the functional derivatives are

defined as usual

dF x; dx½ � ¼ d

de
F xþ edx½ �je¼0 ¼

ð
D

d2r
dF

dx
dx: (3)

For simplicity, from now on, we choose the domain D
as a normalized 2-torus, so that x, y 2 [0, 1) and periodic

boundary conditions are implied. This choice allows us to

promptly get rid of boundary terms whenever an integration

by parts over D is performed.

Once the Poisson brackets of the relevant systems are

known, in order to conclude the presentation of their

Hamiltonian formalism, we also have to establish their

Hamiltonian functionals. We shall see shortly that the

required functionals are contained in the following general

formula:55

H x½ � ¼
ð
D

d2r h1 rð Þx r; tð Þ

þ 1

2

ð
D

d2r

ð
D

d2r0 x r; tð Þh2 r; r0ð Þx r0; tð Þ; (4)

for r¼ (x, y). The quantities h1(r) and h2ðr; r0Þ of Equation (4)

describe, respectively, the free-motion and two-point-interac-

tion energies of the system. For the Vlasov-Poisson equation,

considering particles with normalized mass and charge,

the Hamiltonian functional is given with h1ðrÞ ¼ y2=2 and

h2ðr; r0Þ ¼ Vðjx� x0jÞ, where Vðjx� x0jÞ is the Green’s func-

tion for the Poisson equation. In the cases of the Euler,

Hasegawa-Mima, and modified Hasegawa-Mima equations,

the Hamiltonian functionals are jointly specified by the

expressions h1ðrÞ ¼ L�1k and h2ðr; r0Þ ¼ �dð2Þðr � r0ÞL�1,

where k¼ k(x, y) is a specified function on the domain D and

L is a linear operator, which is also required to be self-adjoint

with respect to the following scalar product between functions

on the domainD:

hf ; gi ¼
ð
D

fg d2r: (5)

In each of the Hamiltonian models considered in this

paper, the quantities x, k, and L perform different roles. In

the case of the two-dimensional Euler equation, x stands

for the usual scalar vorticity, k¼ 0, and L is the two-

dimensional Laplacian operator, that is, L ¼ D ¼ @2
x þ @2

y .

For the standard form of the Hasegawa-Mima equation, x is a

vorticity-like field related to the electrostatic potential / by

the transformation x ¼ L/þ k, k is a function depending on

the electron density at equilibrium,11 and L ¼ D� 1. For the

modified Hasegawa-Mima equation, x and k have the same

meanings as for the standard version, while L ¼ D� 1þ P,

where the operator P denotes integration over the y-axis,

that is, Pf ¼
Ð 1

0
f dy for any function f on the domain D.56 For

the one-degree-of-freedom Vlasov-Poisson equation, x is the

phase-space probability distribution of a one-species plasma

and the quantities k and L are not defined.

A distinguishing feature in the description of the one-

degree-of-freedom Vlasov-Poisson equation is that the two-

dimensional domain D stands for the phase space of a

charged particle restricted to a one-dimensional configura-

tion space, unlike the three other systems considered, in

which D is the actual space occupied by the fluid or plasma.

In other words, for the Euler, Hasegawa-Mima, and modified

Hasegawa-Mima equations, the coordinates x and y denote

the spatial position of a fluid or plasma infinitesimal element,

whereas, in the case of the Vlasov-Poisson equation, x and y
represent, respectively, the position and linear momentum

variables of a phase-space probability density function.
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For completeness, we now work out the equations of

motion for the four models considered here. To this end, we

write down the usual Hamiltonian relation between the time

variation of the field x and the Poisson bracket (1)

@x
@t
¼ x;Hf g ¼ J xð Þ dH

dx
: (6)

From Equation (4), we can readily calculate the deriva-

tive of the Hamiltonian functional, which is found to be

dH=dx ¼ h1ðrÞ þ
Ð
Dd2r0 h2ðr; r0Þxðr0; tÞ. By substituting

this result into identity (6) with the appropriate values for h1

and h2, we first obtain a general expression for the Euler,

Hasegawa-Mima, and modified Hasegawa-Mima equations

@x
@t
¼ x;L�1 x� kð Þ
� �

: (7)

Then, by considering the suitable choices for h1 and

h2, we derive the one-degree-of-freedom Vlasov-Poisson

equation

@x
@t
þ y

@x
@x
� @/
@x

@x
@y
¼ 0 (8)

in which /ðxÞ ¼
Ð
DVðjx� x0jÞxðr0Þd2r0 is the electrostatic

potential.

III. CASIMIR INVARIANTS

The Casimir invariants associated with a certain

Poisson bracket are defined as the quantities whose func-

tional derivatives belong to the null space of the corre-

sponding Poisson operator. Therefore, in the case of the

bracket (1), the Casimir invariants are determined by the

following identity:

J xð Þ dC

dx
¼ 0: (9)

According to Equations (1) and (9), note that the

Poisson bracket between a Casimir invariant C[x] and an

arbitrary functional F[x] is identically zero, that is, {F, C}

¼ 0 for any functional F of the field x. As a direct conse-

quence, the Casimir invariants are constants of motion for

any choice of Hamiltonian functional:

dC

dt
¼ C;Hf g ¼ 0: (10)

By employing definition (2), we can readily demonstrate

that the Poisson operator J satisfies the following equation:

J ðxÞgðxÞ ¼ 0; (11)

where gðxÞ denotes an arbitrary function of the vorticity-like

field x. By comparing identities (9) and (11) for

gðxÞ ¼ df ðxÞ=dx, we conclude that the Casimir invariants

for the Poisson bracket (1) must take the form

C½x� ¼
ð
D
f ðxÞ d2r (12)

as the functional derivative of the above expression is simply

given by dC=dx ¼ df ðxÞ=dx.

As a concluding remark to this section, we observe that,

since the null space of a canonical Poisson operator is trivial,

the existence of Casimir invariants is an exclusive property

of noncanonical Hamiltonian systems.

IV. BEATIFICATION

Note that, excluding the possible dependence on the

field x arising from the derivatives of the functionals F and

G, the Poisson bracket (1) has its own dependence on the

field variable, which is contained in the Poisson operator

J ðxÞ. The removal of this explicit variable dependence con-

stitutes the primary purpose of the perturbative method

known as beatification. In this section, we present the main

result of the paper, namely, the infinite-order beatifying

transformation for the Poisson bracket (1).

The beatification procedure is composed of two stages.

First, the field x is rewritten as the sum of a reference state

x0 and a perturbative variable l. Second, a nonlinear change

of variables is performed on l, which is recast in terms of a

new perturbative field g. As a consequence of this second

transformation, the Poisson operator becomes independent

of the field variable.

The first step in the beatification procedure amounts to

the following shift of the field x:

xðx; y; tÞ ¼ x0ðx; yÞ þ elðx; y; tÞ: (13)

Here, the quantity x0, designated as the reference state, is an

arbitrary time-independent function on the domain D. In

general, a specific choice for the state x0 is determined by

physical or mathematical features we want to introduce or

emphasize in the Hamiltonian system under study. In

Equation (13), we have also presented the new dynamical

variable l and the perturbative parameter e, which is used to

keep track of terms from different perturbative orders during

the beatification process.

As a preparation for our future developments, it is nec-

essary to recast the Poisson bracket (1) in terms of the vari-

able l. For this purpose, we shall make use of the chain rule
for functional derivatives9

dF

dv
¼ dn

dv

� �† dF

dn
; (14)

where v and n are two field variables related by the transfor-

mation n¼ n{v}.57 The quantity dn/dv denotes the linear

operator that, when applied on the variation dv, results in the

corresponding variation dn. The operator ðdn=dvÞ† symbol-

izes the adjoint of dn/dv with respect to the scalar product (5).

By applying the chain rule (14), we obtain that the func-

tional derivatives with respect to the fields x and l are

related by dF=dx ¼ e�1ðdF=dlÞ. Upon substitution of this

result into Equation (1), a new form for the Poisson bracket

is achieved

e2 F;Gf g ¼
ð
D

d2r
dF

dl
J x0ð Þ þ eJ lð Þ
� � dG

dl
: (15)
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As we can see in the above equation, transformation

(13) divided the original Poisson operator J ðxÞ into two

terms. The first one is simply the operator J ðxÞ calculated

at the reference state, that is, J ðx0Þ. The second term, given

by KðlÞ ¼ eJ ðlÞ, constitutes the perturbative part of the

Poisson operator and is now responsible for all explicit vari-

able dependence of the Poisson bracket.

The second step of the beatification procedure corre-

sponds to finding a transformation g¼ g{l} which elimi-

nates the term KðlÞ in Equation (15) while preserving the

operator J ðx0Þ. In this way, the ultimate goal of beatifica-

tion is attained, namely, removing the dependence on the

dynamical field from the Poisson operator J ðxÞ and replac-

ing it with the reference state x0.

According to the functional chain rule, presented in

Equation (14), the derivatives with respect the perturbative

variable l and the beatified field g are related by

dF=dl ¼ ðdg=dlÞ†dF=dg, in which dg/dl is the linear opera-

tor that transforms an infinitesimal variation dl into a corre-

sponding variation dg. By applying the chain rule to both

functional derivatives in Equation (15), we rewrite the

Poisson bracket in terms of the field g

e2 F;Gf g ¼
ð
D

d2r
dF

dg
~J dG

dg
; (16)

where the transformed Poisson operator is given by

~J ¼ dg
dl
J x0ð Þ þ eJ lð Þ
� � dg

dl

� �†

; (17)

for l¼ l{g}. As previously mentioned, the beatifying trans-

formation g¼ g{l} is found by demanding that the right-hand

side of Equation (17) be reduced to the value of the Poisson

operator J ðxÞ at the reference state. In short, the beatifying

transformation is defined by the following identity:

~J ¼ J ðx0Þ: (18)

By employing the above equation, the beatifying trans-

formation can be derived through an order-by-order pertur-

bative process, whose zeroth-order term is taken as the

identity transformation.19 In the present paper, we do not fol-

low this approach. Instead, we simply propose an expression

for the beatifying transformation and then prove that it

indeed satisfies Equation (18). In accordance with this plan

of action, we now present the infinite-order beatifying trans-

formation for the Poisson bracket (1)

g ¼
X1
j¼0

ej

jþ 1ð Þ!B
jljþ1; (19)

where, for notational simplicity, we have also defined an

auxiliary operator

Bf ¼ � 1

2
@x

f

@xx0

þ @y
f

@yx0

� �
; (20)

for any function f on the domain D.58 As expected from such

perturbative expansion, expression (19) constitutes a near-

identity transformation, that is, the perturbative series

approaches the identity transformation g¼l as the parame-

ter e goes to zero.

Due to its relatively high complexity and length, the

proof that transformation (19) satisfies identity (18) is left to

the Appendix. In the remainder of this section, we shall dis-

cuss the Casimir invariants of the beatified Poisson operator

and their relation to the original Casimir functionals, pre-

sented in Equation (12).

Analogous to Equation (9), the Casimir invariants asso-

ciated with the Poisson operator (18) are defined by the fol-

lowing identity:

J x0ð Þ
d~C g½ �
dg
¼ 0; (21)

where we have introduced the tilde notation to specifically

denote the Casimir functionals of the beatified field, that is,
~C ¼ ~C½g�. By employing definition (2) in a completely simi-

lar way to Equation (11), we can readily show that

J ðx0Þgðx0Þ ¼ 0; (22)

for any function g of the state x0. By comparing Equations

(21) and (22), we conclude that the Casimir invariants ~C½g�
must be linear in the field g. For this reason, we define the

following general expression for the beatified Casimir

functionals:

~C½g� ¼
ð
D

d2r f x0ð Þ þ e
df x0ð Þ

dx0

g

� �
(23)

in which f corresponds to a second arbitrary function of x0.

For the purpose of demonstrating the validity of the above

definition, we present the functional derivative of this

expression

d~C g½ �
dg
¼ e

df x0ð Þ
dx0

: (24)

As a direct consequence of Equations (22) and (24) for

gðx0Þ ¼ e½df ðx0Þ=dx0�, we observe that definition (23)

indeed satisfies identity (21).

Equations (12) and (23) provide general expressions for

the Casimir invariants associated, respectively, with the

Poisson operators J ðxÞ and J ðx0Þ. However, despite

knowing the transformations connecting the fields x and g,

the direct relation between the functionals C[x] and ~C½g� has

not yet been identified. In order to precisely relate these two

equivalent sets of dynamical invariants, we now substitute

transformation (19) into definition (23)

~C g½ � ¼
ð
D

d2r f x0ð Þþ
X1
j¼0

ejþ1

jþ 1ð Þ!

(

� B†ð Þj df x0ð Þ
dx0

� �
ljþ1

)
: (25)

In the above equation, we have introduced the adjoint of

operator (20), which is explicitly given by
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B†f ¼ 1

2

@xf

@xx0

þ @yf

@yx0

� �
; (26)

for any function f on the domain D. Equation (25) can be

greatly simplified with the aid of an important property of

the operator B†

B†g x0ð Þ ¼
dg x0ð Þ

dx0

; (27)

which follows directly from identity (26) for any function g
of the state x0. By making successive uses of property (27),

Equation (25) reduces to

~C g½ � ¼
ð
D

d2r f x0ð Þ þ
X1
j¼1

ej

j!

djf x0ð Þ
dxj

0

lj

" #
;

¼
ð
D
f x0 þ elð Þ d2r ¼

ð
D
f xð Þ d2r;

¼ C x½ �: (28)

The transition from the first to the second line of the

above equation has been accomplished by identifying the

Taylor series of the function f ðx0 þ elÞ. As evidenced by

identity (28), the function f found in definition (23) is

exactly the same as that of Equation (12). In this way, the

effect of the infinite-order beatifying transformation on the

Casimir invariants becomes completely known.

V. FINITE-ORDER BEATIFICATION AND INVERSE
TRANSFORMATION

In many situations of practical interest, such as the deri-

vation of low-dimensional Hamiltonian models,19,20 the

beatification procedure is more appropriately used as a finite-

order perturbative method. In this case, the beatifying trans-

formation (19) is truncated at a predetermined power of the

parameter e

g nð Þ lf g ¼
Xn

j¼0

ej

jþ 1ð Þ!B
jljþ1; (29)

where g(n) is the n-th order beatified field. By using the above

equation instead of the complete transformation (19), the

Poisson operator (17) takes the following form:

~J ¼ J ðx0Þ þ Oðenþ1Þ; (30)

that is, the beatified Poisson operator of Equation (18) is

again obtained, but this time the result holds only up to a cer-

tain perturbative order. The proof that the finite-order beati-

fying transformation provides the Poisson operator (30) is

obtained by retracing the steps of the Appendix, where the

proof for the complete beatification is given.

As a consequence of identity (30), the Casimir function-

als ~C½gðnÞ� must have leading order terms, excluding con-

stants, which are linear in the field g(n), in complete analogy

with Equation (23). Therefore, by repeating the reasoning of

Section IV with the finite-order transformation (29), we can

show that the original Casimir invariants C[x], presented in

Equation (12), are related to the following beatified

functionals:

~C½g nð Þ� ¼
ð
D

d2r f x0ð Þ þ e
df x0ð Þ

dx0

g nð Þ
� �

þ O enþ2ð Þ: (31)

According to the above expression, the Casimir invari-

ants C[x] are also linearized by the finite-order beatifying

transformation, but only if the terms of order enþ2 and higher

are discarded.

An actual application of the finite-order beatification

procedure to the investigation of a specific dynamical system

often relies on the knowledge of the inverse of transforma-

tion (29). Among other possible purposes, the inverse trans-

formation is particularly necessary in calculating the

beatified form of Hamiltonian functionals.

The inverse of the finite-order beatifying transformation

can be obtained through a recursive order-by-order process.

That is, given that the j-th order inverse transformation

l(j)¼l(j){g} is known for j¼ 0, 1,…, (n � 1), the n-th order

inverse transformation is determined by the following recur-

rence relation:

l nð Þ gf g ¼ g�
Xn

j¼1

ej

jþ 1ð Þ!B
j l n�jð Þfgg
� �jþ1

; (32)

where it is implied that l(0){g}¼ g. Note that the exponenti-

ation of lðn�jÞfgg on the right-hand side of Equation (32)

can give rise to terms of order greater than en. These spurious

terms must be discarded so that the recurrence formula pro-

duces a consistent result for l(n){g}.

Notice that, upon substitution of expression (16) for

n> 0, a Hamiltonian functional H½x� ¼ H½x0 þ el� experi-

ences an increase in its degree of nonlinearity. This effect

constitutes a compensation for the suppression of the vari-

able dependence in the Poisson bracket so that the corre-

sponding equations of motion are not subjected to a decrease

in their degree of nonlinearity.

VI. CONCLUSION

Beatification is a perturbative method with the primary

purpose of eliminating the variable dependence of a nonca-

nonical Poisson operator by replacing it with a chosen refer-

ence state. As the main result of this paper, we present

the infinite-order beatifying transformation for the funda-

mental Poisson bracket of four important fluid and plasma

Hamiltonian models, namely, the two-dimensional Euler

equation, the standard and modified versions of the

Hasegawa-Mima equation, and the one-degree-of-freedom

Vlasov-Poisson equation. This work builds on previous

studies19,20 by extending the beatification procedure to infi-

nite perturbative order.

The noncanonical Hamiltonian formalism for two-

dimensional fluid and plasma theories was briefly outlined in

Section II. Although this discussion was focused on four

particular models, we would like to point out that the
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applicability of our central results is not restricted to the

dynamical systems explicitly considered, as the Poisson

bracket (1) takes part in the Hamiltonian description of a

fairly broad class of continuous media theories. As clearly

stated by the defining relation (18), the beatification procedure

is independent of the specific choice for the Hamiltonian func-

tional, since it depends only on the form of the Poisson opera-

tor. Consequently, the main results of Section IV, such as the

beatifying transformation (19) and the beatified Casimir invar-

iants (23), have geometrical nature and are not affected by

purely dynamical aspects of a particular Hamiltonian system.

An interesting secondary effect of beatification is the

linearization of the Casimir functionals, which is a direct

consequence of definition (18). At the end of Section IV, by

employing the infinite-order beatifying transformation, the

precise relation between the original Casimir invariants, pre-

sented in Section III, and the corresponding beatified func-

tionals was derived. The Casimir invariants have many

potential applications in the practical study of noncanonical

Hamiltonian systems. For example, the time-independent

value of a Casimir functional can be used to validate a

numerical solution.

A very common procedure in theoretical physics is the

dimensional reduction of large dynamical systems with the

purpose of enabling the application of numerical methods or

generating low-dimensional models for the description of

specific physical mechanisms. As already discussed in a pre-

vious work,20 a direct reduction in the degrees of freedom of

a noncanonical Hamiltonian system can be quite problem-

atic, as the truncated version of a noncanonical Poisson

bracket generally does not satisfy the Jacobi identity. That is,

excluding special and accidental cases, the Hamiltonian

structure of a noncanonical system is eliminated by dimen-

sional reduction. As a consequence, many fundamental prop-

erties of the dynamical system are possibly lost, such as the

incompressibility of phase-space volumes, which prevents

the occurrence of attractors.59 Beatification is a useful tool in

preparing a noncanonical Hamiltonian system for proper

dimensional reduction, since the Jacobi identity is preserved

when a variable-independent Poisson operator undergoes a

truncation process.

Another relevant application of the beatification

method is as an intermediate step toward the canonization

of Hamiltonian systems. More than this, the preliminary

use of the beatification procedure can be seen as a signifi-

cant part of a systematic approach for obtaining canonical

variables in complex Hamiltonian systems. As such, beatifi-

cation provides access to a wide array of analytical and

numerical methods requiring a canonical Hamiltonian

representation.
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APPENDIX: BEATIFICATION PROOF

Here, we present the proof that transformation (19)

reduces expression (17) to the beatified Poisson operator

J ðx0Þ, as anticipated by Equation (18). As a first step toward

this goal, we perform the first variation of identity (19)

dg ¼
X1
j¼0

ej

j!
Bjljdl: (A1)

According to the above equation, variations in the fields

l and g are related by the following linear operator:

dg
dl

f ¼
X1
j¼0

ej

j!
Bjljf ; (A2)

where f is an arbitrary function on the domain D. In prepara-

tion for manipulating identity (17), we now present some

special properties of the operators J ; B, and B†. First, as a

direct consequence of Equation (26), note that the adjoint

operator B† satisfies the Leibniz’s rule, that is, B†fg ¼
fB†gþ gB†f for any two functions f and g on the domain D.

By performing successive applications of this rule, an impor-

tant identity for the powers of the operator B† is obtained

ðB†Þmfg ¼ f ðB†Þmgþ
Xm

n¼1

ðB†Þm�nðB†f ÞðB†Þn�1g: (A3)

On account of its high relevance to our subsequent

developments, we also present an interesting relation con-

necting the operators J ; B, and B†

BfJ ðx0Þg ¼ �J ðf Þg� J ðx0ÞfB†g; (A4)

which is valid for any functions f, g, and x0 on the domain

D, under the condition that the operators B and B† are

defined in terms of the state x0, in accordance with

Equations (20) and (26). Notice that, in the particular case

of a function f with constant value, identity (A4) reduces to

BJ ðx0Þg ¼ �J ðx0ÞB†g.

By employing Equations (A2) and (A4), we manipulate

the following product of operators:

dg
dl
J x0ð Þ ¼ J x0ð Þ þ

X1
j¼1

ej

j!
BjljJ x0ð Þ;

¼ J x0ð Þ �
X1
j¼1

ej

j!
Bj�1J lj

� 	

�
X1
j¼1

ej

j!
Bj�1J x0ð ÞljB†;

¼ J x0ð Þ �
X1
j¼1

ej

j� 1ð Þ!B
j�1lj�1J lð Þ

þ
X1
j¼1

�1ð Þj e
j

j!
J x0ð Þ B†ð Þj�1

ljB†; (A5)

which is found on the right-hand side of Equation (17). In

elaborating the above result, we have also made use of the

identity J ðljÞ ¼ jlj�1J ðlÞ, which directly follows from

definition (2). Upon substitution of expression (A5), the

Poisson operator (17) is readily reformulated as follows:
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~J ¼ J x0ð Þ 1þ
X1
j¼1

�1ð Þj e
j

j!
B†ð Þj�1

ljB†

" #
dg
dl

� �†

: (A6)

By inserting the adjoint of Equation (A2) into the above identity, further manipulations are performed on the transformed

Poisson operator

~J ¼ J x0ð Þ 1þ
X1
j¼1

�1ð Þj e
j

j!
B†ð Þj�1

ljB†

" #
1þ

X1
j¼1

ej

j!
lj B†ð Þj

" #

¼ J x0ð Þ 1þ
X1
j¼1

ej

j!
lj B†ð Þjþ

X1
j¼1

�1ð Þj e
j

j!
B†ð Þj�1

ljB†þ
X1
j;k¼1

�1ð Þj e
jþk

j!k!
B†ð Þj�1

ljB†lk B†ð Þk
" #

¼ J x0ð Þ þ J x0ð Þ
X1
j¼2

ej

j!
�1ð Þj B†ð Þj�1

ljþlj B†ð Þj�1
h i

þ
X1
j¼2

Xj�1

k¼1

�1ð Þj�k ej

j� kð Þ!k!
B†ð Þj�k�1

lj�kB†lk B†ð Þk�1

8<
:

9=
;B†

¼ J x0ð Þ þ J x0ð ÞOB†; (A7)

where, for notational convenience, we have introduced the

operator O, whose explicit expression is given within the

curly brackets on the right-hand side of the third equality.

For the purpose of simplifying Equation (A7), we now make

use of identity (A3) in obtaining two new auxiliary relations

ðB†Þj�1ljf ¼ ljðB†Þj�1f

þj
Xj�1

k¼1

ðB†Þj�k�1lj�1ðB†lÞðB†Þk�1f ; (A8a)

ðB†Þj�k�1lj�kB†lkðB†Þk�1f

¼ ðB†Þj�k�1ljðB†Þkf þ kðB†Þj�k�1lj�1ðB†lÞðB†Þk�1f

¼ ljðB†Þj�1f þ kðB†Þj�k�1lj�1ðB†lÞðB†Þk�1f

þj
Xj�1

m¼kþ1

ðB†Þj�m�1lj�1ðB†lÞðB†Þm�1f ; (A8b)

in which f is again an arbitrary function on the domain D. In

deriving the above equations, we have also used the identity

B†lj ¼ jlj�1B†l, which follows from the Leibniz’s rule for

the operator B†. By employing Equations (A8), we recast the

operator O in a more convenient form

O ¼
X1
j¼2

ej �1ð Þj þ 1

j!
þ �1ð Þj

Xj�1

k¼1

�1ð Þk

j� kð Þ!k!

" #
lj B†ð Þj�1

þ
X1
j¼2

�eð Þj
Xj�1

k¼1

1

j� 1ð Þ!þ
�1ð Þk

j� kð Þ! k � 1ð Þ!

" #

� B†ð Þj�k�1
lj�1 B†l

� 	
B†ð Þk�1

þ
X1
j¼2

�eð Þj
Xj�1

k¼1

Xj�1

m¼kþ1

�1ð Þkj

j� kð Þ!k!

� B†ð Þj�m�1
lj�1 B†l

� 	
B†ð Þm�1

: (A9)

With the aid of the binomial theorem, the terms within

square brackets in the first line of the above equation are

shown to cancel one another. After making use of this fact,

the operator O can be further simplified by switching the

labels and the order of the summations over the indices k
and m in the last two lines of Equation (A9). In this way,

we obtain

O ¼
X1
j¼2

Xj�1

k¼1

�1ð Þk

j� kð Þ! k � 1ð Þ!
þ
Xk�1

m¼0

�1ð Þmj

j� mð Þ!m!

" #

� �eð Þj B†ð Þj�k�1
lj�1 B†l

� 	
B†ð Þk�1

: (A10)

The terms within square brackets in the above expres-

sion also cancel one another, as can be straightforwardly

demonstrated by induction on the index k. Therefore, identity

(A10) simply reduces to O ¼ 0. By substituting this result

into Equation (A7), we finally arrive at the defining relation

(18), thus concluding the proof that the beatification of the

Poisson bracket (1) is provided by transformation (19).
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