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A nonlinear unified fluid model that describes the Equatorial Electrojet, including the Farley-

Buneman and gradient-drift plasma instabilities, is defined and shown to be a noncanonical

Hamiltonian system. Two geometric constants of motion for the model are obtained and shown to

be Casimir invariants. A reformulation of the model shows the roles of the density-gradient scale-

length (Ln) and the cross-field drift-velocity (tE) in controlling the dynamics of unstable modes in

the growing, transition, and saturation phases of a simulation. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4989709]

I. INTRODUCTION

The weakly ionized plasma of the equatorial electrojet is

characterized by two types of instabilities, the Farley-

Buneman and gradient-drift instabilities. The presence of

these instabilities in the E-region makes the electrojet rich

with plasma structures extending from kilometer to sub-

meter scales.1 The spectral and spatial characteristics of

these instabilities have been identified using radar observa-

tions and in-situ sounding rocket measurements.1–3

In this paper, we identify the system Hamiltonian and

associated Casimir invariants for a unified fluid model that

captures the dynamics of both the Farely-Buneman and

gradient-drift instabilities. This model has been described by

Hassan et al. in Ref. 4 and shown to capture the most impor-

tant properties observed in electrojet plasma fluctuations. In

Ref. 5, the authors proves that the unified fluid model con-

serves energy, and they found the role of the nonlinear terms

in transferring energy to small structures of scale-length that

cannot be excited linearly.

The behavior of plasma in the equatorial electrojet can

be modeled by the time evolution of the ion density and

momentum, subject to the quasineutrality condition. One

usually derives such dynamical equations by taking moments

of a distribution function. The equations thus derived are

fairly general since they contain the physical description of

phenomena that occur over vastly different lengths and time

scales. To reduce the complexity, the exact moment equa-

tions can be subsequently manipulated, according to the par-

ticular phenomenon one wishes to model, in order to filter

out irrelevant dynamics in time and length scales. This pro-

cess commonly takes the form of small parameter expan-

sions and assumptions about the geometry of the system

under consideration. Unfortunately, there is no rigorous pre-

scription for this procedure and one has only his or her intui-

tion to rely on. As a result, the systems of equations

produced by such ad hoc procedures often come with a host

of shortcomings. A very serious one is the potential loss of

the Hamiltonian character: The parent model, that is, the sys-

tem of charged particles interacting with an electromagnetic

field, is Hamiltonian and as a consequence, it is desirable

that any reduced description of it should retain this property.

The issue is not just a harmless question of mathematical for-

malism: The process of reduction might have introduced

unwanted dissipation and as a result, the system might vio-

late energy conservation at the ideal limit. By the ideal limit,

we refer to what remains from the system once all dissipative

and source terms such as collisions, fluid models of Landau

damping, and boundary terms have been discarded. On the

contrary, a Hamiltonian system is guaranteed to conserve

energy for closed boundary conditions. Indeed, as we can see

in Refs. 6 and 7 out of all the different versions of imple-

mented extended MHD models only some conserve energy,

whereas a survey of hybrid kinetic-MHD models in Ref.

8 indicates that the use of the pressure coupling scheme

results in a non-Hamiltonian model that not only fails to con-

serve energy but also contains a spurious, high frequency,

Alfven wave instability. Similarly, inadequacies of gyrofluid

models that do not conserve energy were noted in Ref. 9.

Nonetheless, energy conservation is not the sole reason

one might have to pursue the discovery of the Hamiltonian

formulation of a system. Hamiltonian theory provides us

with a set of tools which we can use to reveal important

aspects of the system. One of the most crucial aspects is the

existence of geometric invariants known as Casimir invari-

ants. Those are an artifact of the degeneracy of the cosym-

plectic operator and one can use them to construct free

energy functionals whose minimization produces non-trivial

equilibrium states. The existence of such states is not guaran-

teed in the absence of a Poisson bracket. In studying the

dynamical system, we are not using any particular methodol-

ogy to derive the model in a manner that preserves its

Hamiltonian character. Instead, we are simply lucky that the

system is found to be Hamiltonian and we merely recover its

bracket and cast it in its Hamiltonian form.a)Author to whom correspondence should be addressed: ehab@sci.asu.edu.eg
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This paper is organized as follows: In Sec. II, we present

the system geometry in the slab model Sec. II A, the set of

nonlinear partial differential equations that govern the sys-

tem’s dynamics in Sec. II B, and simulation results of the

unified fluid model in Sec. VI. The derivation of the system’s

Hamiltonian is shown in Sec. III. In Sec. IV, we prove that

the dynamical equations form a noncanonical system by

finding its Lie-Poisson bracket Sec. IV A showing that this

bracket satisfies the Jacobi identity. The system Casimirs in

Sec. V A and the reformulation of the system’s dynamical

equations in terms of a new variable Sec. V B are shown in

Sec. V. Finally, we summarize the paper and draw our con-

clusions in Sec. VII.

II. THE ELECTROJET MODEL

A. Geometry and background

The large electrical conductivity in the equatorial elec-

trojet is attributable to the presence of a mixture of unmagne-

tized collisional ions and magnetized electrons.10 The

bounding of the E-region in the vertical direction by two

layers of very small conductivity makes slab geometry a suit-

able treatment for modeling the equatorial electrojet.2,11 In

this geometry, the plasma dynamics are studied in a plane

transverse to the geomagnetic field that aligns with the x-

direction, where the positive x-axis points northward. The

plasma dynamical plane is defined by the y-axis and z-axis

that are pointing westward and upward, respectively.

In the E-region, the isothermal state, Te¼ Ti, and the

quasineutrality condition, ne¼ ni, for plasma ions and elec-

trons can be assumed.12 The dominance of NOþ in the

E-region over other ion species allows the consideration of

the dynamics of a single ion in the plasma.13 The ion

mean-free path is small because the ion-neutral collision

frequency (�in) is large compared to the ion gyrofrequency

(xci). Therefore, the Lorentz force, ti � B, in the ion equa-

tion of motion can be ignored without any loss of general-

ity, and the ion velocity is given by ti ¼ �$v as was done

in Ref. 12. On the other hand, the electrons are considered

magnetized for the large ratio between their gyrofrequency

(xce) and collision-frequency (�en) with the neutral

background.12

B. Equations of motion

A model was proposed by Hassan et al. in Ref. 4 to

unify Farley-Buneman and gradient-drift instabilities in the

equatorial electrojet. In that model, the plasma dynamics in

the ion viscosity-tensor and electron polarization drifts

were considered to play an important role in stabilizing the

evolving fields. These two terms cause strong stabilization

of the unstable linear growing modes of sub-meter scale-

length,4 and excitation of the active small structures in the

equatorial electrojet.5 As a result, the plasma dynamics in

the linear regime give rise to growth-rate and phase velocity

profiles that are comparable to those derived from the

kinetic treatment of Farley-Buneman instability of Ref. 14.

Also, the results in the saturation region in the nonlinear

regime show good agreement with the radar and rocket

observations.

For electrostatic plasma waves, the ion continuity and

momentum equations can be written as

@tn ¼ $ � ðn$vÞ ; (1)

@tv ¼ t2
ti
ln nð Þ þ Xci

B
/� �inv

þ 1

2
j$vj2 þ 4

3

t2
ti

�in
$2v ; (2)

where tti is the ion thermal speed and the electrostatic field

is given by E ¼ �$/.

The magnetized electron drift velocity, in a plane per-

pendicular to the geomagnetic field, can be given after some

algebraic manipulation of electrons’ equation of motion to

have the following form:4

te? ¼ tE þ tde
þ tPe

þ t� ; (3)

where tE is the E� B drift velocity, tde
is the diamagnetic

drift velocity, tPe
is the polarization drift velocity, and t� is

the drift velocity due to the frictional force between the elec-

trons and the neutral background.

Thus, using the ion and electron drift velocities in the

plasma quasineutrality condition, $ � ðJi þ JeÞ ¼ 0, the third

dynamical equation is found in the following form:

@tr2/ ¼ Te�en

e
r2ln nð Þ � �enr2/� BXcer2v

�Xce /; ln nð Þ½ � � 1

B
/;r2/
� �

þ Te�en

e
$ln nð Þ � $ln nð Þ � �en$ln nð Þ � $/

�BXce$ln nð Þ � $v ; (4)

where ½f ; g� is the usual Poisson bracket defined by

½f ; g� ¼ @xf@yg� @xg@yf .

The set of partial differential Eqs. (1)–(4) governs the

plasma dynamics in the equatorial electrojet region that

extends between 103 and 108 km in altitude. It also unifies

the physics of the gradient-drift and Farley-Buneman insta-

bilities which can be excited in this region depending on the

solar and geophysical conditions.

III. DYNAMICAL SYSTEM HAMILTONIAN

In the dynamical plasma system of the unified fluid

model for the Equatorial Electrojet instabilities, the energy

comes into the system from the top and bottom boundaries

due to the non-zero gradients of the background density

(L�1
n ¼ @zlnno) and electric potential (tE ¼ �B�1

o @z/o) in

the vertical direction which are considered constant energy

sources. On the other hand, the energy is dissipated by colli-

sions of electrons and ions with the background neutral

particles.5

To separate the sources of free energies in the dynamical

system from the system’s Hamiltonian and dissipation terms,

we split the constant background density and electric
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potential from their fluctuating components. Thus, we can

rewrite the dynamical Eqs. (1)–(4) in the following form:

@tdn ¼ $ � ðdn$dvÞ þ $ � ðno$dvÞ ; (5)

@tr2dv ¼ Xci

B
r2d/þ t2

ti
r2dnþ 1

2
r2j$dvj2

� �inr2dvþ 4

3

t2
ti

�in
r4dv ; (6)

@tr2d/ ¼�BXcen�1
o $ � dn$dvð Þ

�BXcen�1
o $ � no$dvð Þ

�Xce d/; lnno½ � � Xce /o; dn½ � � Xce d/; dn½ �

� 1

B
/o;r2d/
� �

� 1

B
d/;r2d/
� �

þ Te�en

e
r2lnnþ Te�en

e
$lnn � $lnn

��enr2/� �en$lnn � $/ ; (7)

where the gradients of the background density and electric

potential are only defined in the vertical direction (i.e.,
@ylnno ¼ 0 and @y/o ¼ 0).

To study the system’s Hamiltonian, we need to keep

only the terms that are not injecting energy into the system

(sources) or remove energy out of it (sinks). This is achieved

by dropping any term that contains the gradient of the back-

ground density (L�1
n ¼ @zlnno) and/or background electric

potential (tE ¼ �B�1
o @z/o) which are considered energy

sources in the dynamical system, and any viscosity term that

contains a collision frequency of the electrons and/or ions

with the background neutrals. This produces the following

set of equations of motion:

@tdn ¼ $ � ðdn$dvÞ ; (8)

@tr2dv ¼ Xci

B
r2d/þ t2

ti
r2dnþ 1

2
r2j$dvj2 ; (9)

@tr2d/ ¼ �BXcen�1
o $ � dn$dvð Þ

�Xce d/; dn½ � � 1

B
d/;r2d/
� �

: (10)

The set of Eqs. (8)–(10) shows only the dynamics in the fluc-

tuating quantities {dn; d/; dv} without including any sources

or sinks of energy.

For the three evolving fields (dn; d/; dv) in the dynami-

cal system of the Equatorial Electrojet, we can expect three

components of energy: the electron’s kinetic energy due to

the dE� B drifts, the ion’s kinetic energy, and the internal

thermal energy of both species. To check the way the fluctu-

ating density is represented in the energy equation, we use

unknown functions of the density fluctuation (dn) and check

the condition of zero rate of change of the system’s

Hamiltonian. So, we may propose a Hamiltonian for the sys-

tem to be as follows:

H ¼
Ð

d2x
meno

2B2
j$d/j2þf dnð Þmi

2
j$dvj2 þ mit

2
ti
gðdnÞ

� �
;

(11)

where f ðdnÞ and gðdnÞ are functions of the density

fluctuation.

Solving for f ðdnÞ and gðdnÞ that give zero rate of change

of the Hamiltonian, we get f ðdnÞ ¼ dn and gðdnÞ ¼ dn2=2.

Therefore, the energy equation can be written in terms of the

three evolving field as

H ¼
ð

d2x
nome

2B2
j$d/j2þmi

2
dnj$dvj2 þ 1

2
mit

2
ti
dn2

� �
:

(12)

Most of the energy is found in the ion’s kinetic and

internal (thermal) energy parts of the total energy.5,15 This is

because the ion mass, which is found in the middle and last

terms in Eq. (12), is much larger than the electron mass,

found in the electron’s kinetic part of the total energy.5

In addition, the rate of energy transfer in Eq. (12), which

manifests the rate at which the energy is injected, dissipated,

and coupled between the evolving fields in the dynamical

system, has the following form:5,15

S/ ¼
ð

d2x neTetE d~/ @yd~n ; (13)

D/ ¼
ð

d2x neTeq
2
e�en d~/r2d~/ ; (14)

C/v ¼
ð

d2x neTe d~/r2d~v ; (15)

D 1ð Þ
v ¼ �

ð
d2x

4

3

niTi

�in
r2d~vr2d~v ; (16)

Dð2Þv ¼
ð

d2x nimi�in d~vr2d~v : (17)

Equation (13) shows that the electron kinetic energy is

responsible for injecting energy (S/) into the system via the

spatial variation of the electron density in the horizontal

direction (@yd~n). However, the energy is dissipated in the

viscosity of the electrons (D/) and ions (D
ð1Þ
v and D

ð2Þ
v ) as

they collide with the background neutrals. The energy is

transferred between the electric potential (/) and ion veloc-

ity potential (v) via the coupling term (C/v) which ensures

the conservation of number of charged particles in the

dynamical system. The dynamical equation of the internal

energy does not contribute in energy injection or dissipation.

It does, however, show strong coupling with the ion equation

of motion.5,15

In Fig. 1, we studied the status of the dynamical system

during the saturation region of the simulation by turning ON/

OFF the energy injection and/or dissipation and comparing

the root-mean-square values of the perturbed electron den-

sity. The blue line, which is barely seen as it is buried under

the other lines, shows the status of the dynamical system

when it includes all the physics such as the energy injection,

dissipation, and the Hamiltonian. Because the system fulfills

the fundamental law of energy conservation, that blue line is

almost overlapped with the green line which represents the

status of the dynamical system when simulating the system

Hamiltonian. When the energy injection terms are turned
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off, the system dissipates its stored energy as the ions and

electrons collide with background neutrals. After 10 ms, we

turned the energy injection terms on and we see the red line

restore its original status. However, when the energy dissipa-

tion terms are turned off, the rate of growth of the perturbed

electron density increases dramatically over the 10 ms. Once

the energy dissipation terms are turned back on, the ampli-

tude of the fluctuating density decreases to reach its original

status as we can see in the cyan line. It can be easily noticed

here that the rate of increase in energy when keeping the

energy injectors but turning off the energy dissipation terms

is much larger than the rate of decrease in energy when

doing the opposite. This shows that the dynamical system

responds faster to the energy injected compared to energy

dissipation. Moreover, the restoring rate of the dynamical

system to its original state is much slower than the excitation

rate when turning off the energy injection or dissipation

terms. This is similar to Newton’s law of cooling, where the

rate of cooling of the system is rapid at the beginning and

slows down as we go close to the room temperature which is

pronounced clearly in the case of keeping the energy injec-

tors and turning off/on the energy dissipation.

IV. NONCANONICAL HAMILTONIAN STRUCTURE

A. The Lie-Poisson bracket

Having a conserved energy is a necessary but not suffi-

cient condition that would enable us to claim that the

Equatorial Electrojet model of Eqs. (8)–(10) is Hamiltonian.

For this to happen, we need to find a Lie-Poisson bracket

that would be antisymmetric, satisfy the Jacobi identity and

reproduce the equations of motion. With the last statement,

we mean that for an arbitrary field n, we could write its time

evolution as

@n
@t
¼ n;Hf g ; (18)

where f�; �g is the Lie-Poisson bracket and H the

Hamiltonian of Eq. (12). The Lie-Poisson bracket will be a

mathematical object of the form

F;Gf g ¼
ð

d3x
dF

dni

Jij dG

dnj

; (19)

where J is the so-called co-symplectic operator, F and G are

functionals, and ni and nj are dynamical fields of the system.

To start building this bracket, we first need to calculate

the functional derivatives of the Hamiltonian with respect to

each evolving field, dH
dni

. These functional derivatives can be

read-off from the total variation of the Hamiltonian accord-

ing to

dH ¼
ð

d2x
dH

dni

dni : (20)

After performing the variation on H, the aforementioned

functional derivatives are easily found to be

dH

df
¼ �meno

B2
/ ;

dH

dv
¼ �mi$ � n$vð Þ ;

dH

dn
¼ mij$vj2

2
þ mit

2
ti
n ;

(21)

where f ¼ r2/.

Equipped with the previous relations for the functional

derivatives of H and noting the fact that the functional deriv-

ative of a field with respect to itself is a delta function,
dnðxÞ
dnðx0Þ ¼ dðx� x0Þ, we can work out a form for the bracket

that reproduces all the equations of motion

F;Gf g ¼� 1

mi

ð
d2x FnGv � GnFvð Þ

� BXci

meno

ð
d2x FvGf � GvFfð Þ

þB2Xce

men2
o

ð
d2xn Ff;Gf½ �

þ B

meno

ð
d2xf Ff;Gf½ � ; (22)

where by Fn, we mean the functional derivative dF
dn.

As already mentioned, the above constitutes only a can-

didate bracket for our system. To verify that the system is of

the non-Canonical Hamiltonian type, the bracket needs to

satisfy the Jacobi identity

ffF;Gg;Hg þ ffH;Fg;Gg þ ffG;Hg;Fg ¼ 0 ; (23)

with F, G, and H being arbitrary functionals.

Indeed, the bracket of Eq. (22) satisfies the Jacobi iden-

tity and the proof can be found in Appendix B.

V. CASIMIR INVARIANTS

Casimirs are functionals found in noncanonical

Hamiltonian systems that commute with every other

FIG. 1. A comparison between the physical roles that different terms in Eq.

(13), in addition to the system Hamiltonian term, play independently from

the other terms during four different modes of simulation.
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functional in that system. As such, they are conserved quan-

tities and constitute geometrical constants of motion.

Therefore, they can be computed using the relation:

fF;Cg ¼ 0 ; (24)

where C is the Casimir functional and F can be any func-

tional of the system.

Casimir invariants are the result of degeneracy of the

co-symplectic operator J. The gradients of the Casimir func-

tionals span the kernel of J.21

A. Finding the Casimir invariants

To calculate the Casimirs of the Hamiltonian model of

the Equatorial Electrojet, we invoke Eq. (24) using the

bracket of Eq. (22)

F;Cf g ¼ � 1

mi

ð
d2x0 FnCv � CnFvð Þ

� BXci

meno

ð
d2x0 FvCf � CvFfð Þ

þ B

meno

ð
d2x0f Ff;Cf½ �

þB2Xce

men2
o

ð
d2x0n Ff;Cf½ � ¼ 0 : (25)

Now, we factor out the different variations of F

F;Cf g ¼
ð

d2x0Fn �
1

mi
Cv

� �

þ
ð

d2x0Fv
1

mi
Cn �

BXci

meno
Cf

� �

þ
ð

d2x0Ff
B2Xce

men2
o

n;Cf½ � þ
B

meno
f;Cf½ �

 !
¼ 0 :

(26)

Because the variations on F are independent of each

other, we can deduce conditions for the vanishing of {F, C}.

These are written as follows:

Cv ¼ 0; (27)

Cn ¼
BXce

no
Cf; (28)

BXcenþ nof;Cf½ � ¼ 0: (29)

From Eq. (27), we can surmize that the Casimirs will

not be a function of v, whereas Eqs. (28) and (29) are equiva-

lent and force us to the conclusion that the system has an

infinite family of Casimirs that are of the form

C ¼
ð

d2xf ðBXcenþ nofÞ : (30)

B. Normal fields–reformulation in new variables

The form of the Casimir Invariants obtained in Sec. V A

suggests the introduction of a new variable,

Q ¼ BXcenþ nof. Indeed, if we use Eqs. (8)–(10) to calcu-

late the time evolution of the quantity Q, we arrive at

@Q

@t
þ FE�B;Q½ � ¼ 0 ; (31)

where FE�B ¼ /=B.

From Eq. (31), we observe that the so-called “normal

field” Q is a Lagrangian invariant of the system since it is

only advected by the stream function FE�B.

Now, we can use the new variable Q to re-express the

bracket of Eq. (22). To make this change of variables from

F½n; f; v� to �F½n;Q; v�, we first need to rewrite all the func-

tional derivatives using the following relation:ð
d2x

dF

dn
dnþ dF

df
dfþ dF

dv
dv

� �

¼
ð

d2x
d �F

dn
dnþ d �F

dQ
dQþ d �F

dv
dv

� �
:

Using the fact that dQ ¼ BXcednþ nodf and comparing

both sides of the previous equation, we get

Fn ¼ �Fn þ BXce
�FQ ;

Ff ¼ no
�FQ ;

Fv ¼ �Fv :

(32)

Thus, we can rewrite the bracket of Eq. (22) in terms of

the new variable as follows:

F;Gf g ¼ � 1

mi

ð
d2x FnGv � GnFvð Þ

þ B

me

ð
d2xQ FQ;GQ½ � ;

where we have dropped the overbars.

Moreover, the dynamical equations of the Equatorial

Electrojet model can be rewritten as

@tn ¼ $ � ðn$vÞ ; (33)

@tQ ¼ Q;FE�B½ � ; (34)

@tr2v ¼ Xci

noB
Q� XceB

no
n

þ ttir2lnnþ 1

2
r2j$vj2 : (35)

The new form of Eq. (34) which is based on the quasi-

neutrality condition of the plasma shows the dependence of

plasma dynamics (to drive the equatorial electrojet instabil-

ities) on the density gradient and the E� B drifts which are

representing the energy sources in the dynamic systems.

However, the two other dynamical equations, that control the

coupling and dissipation in the system, do not show any

change in their structure. This emphasizes the essential role

that the electron density and electric potential play in evolv-

ing the dynamical system and generating the active turbulent

structures in the equatorial electrojet, which can be seen in

the radar backscattered echoes and rocket observations.

072301-5 Hassan et al. Phys. Plasmas 24, 072301 (2017)



VI. SIMULATION RESULTS

A validation of the unified fluid model described in Sec.

II was carried out by comparing the simulation results to the

radar observations and sounding rocket measurements under

different solar and geophysical conditions.4,5 The Gradient-

drift and Farley-Buneman instabilities are found to be

excited simultaneously in the equatorial electrojet. Whereas

the observation of the Farley-Buneman instability depends

on the availability of a cross-field drift that exceeds the ion-

acoustic speed, the Gradient-drift instability is found in the

presence of a sharp positive density-gradient in the iono-

sphere. Therefore, both instabilities can be observed simulta-

neously when the condition of each is realized in the

electrojet. However, the strong backscattered echoes of the

Farley-Buneman instability sometimes block the observation

of the Gradient-drift instability and make it invisible.

Therefore, the presence of the short and long plasma waves

due to the Farley-Buneman and Gradient-drift instabilities is

not related to their observance in the backscattering echoes.

In Ref. 4, the authors presented several linear and non-

linear simulation results that were able to distinguish

between the different types of plasma waves resulting from

different instability mechanisms, and how the small struc-

tures (formed due to the breakup of the large structures into

small ones) fill the simulation box in such a way that

explains the invisibility of the large-scale structures from the

radar echoes in the presence of small-scale structures.

In Ref. 5, the authors presented the energy distribution

over structures of different scale lengths and the cascading

of energy from the large-scale structures into small-scale

ones, which emphasizes the prevalence of echoes that back-

scatter from small structures in the radar observation.

In this subsection, we present new linear and nonlinear

results for the phase velocity, the phase relationship between

the plasma density and the components of the perturbed elec-

tric field, and the effect of the free energy sources in the

dynamical system on the effective magnitude of the electric

field in the electrojet. These simulation results further vali-

date the ability of the unified fluid model to simulate the

plasma dynamics and instabilities in the equatorial electrojet.

A. Growth-rate and phase velocity

The linear calculations presented in Refs. 4 and 15 show

a strong dependency of the growth-rate on the local values of

the ionospheric parameters such as the density-gradient

scale-length and background electric field. The vertical

growth-rate profile divides the entire electrojet into three

regions. The bottom one (90–103 km) is dominated by the

gradient-drift instability when the cross-field drift speed is

smaller than the ion-acoustic speed, and the unstable plasma

waves result from the Farley-Buneman instability cannot be

excited.16,17 In the top region of the electrojet (108–120 km),

the density profile is inverted due to the presence of the E-

region nose as a result of the decrease in the density, and this

inhibits the generation of unstable large-scale plasma waves

that are excited by the presence of a sharp positive density-

gradient.11,16,17 Therefore, the top region of the electrojet is

dominated by the small-scale structures which results from

the excitation of Farley-Buneman instability as the cross-

field drift speed is always larger than the ion-acoustic speed.4

The core of the equatorial electrojet (103–108 km) is found

to be very rich with unstable waves of all wavelengths result

from the coupling between the gradient-drift and Farley-

Buneman instabilities, and the electrojet current has its peak

value in that region where the electrical conductivity is

found to have its maximum value in the ionosphere at this

region of the electrojet.2,10

A similar result can be seen in Fig. 2, where the phase

velocity is calculated at different altitudes using nonlocal

magnitudes of the ionospheric background.18,19 We still can

see the three distinct regions of the equatorial electrojet with

the exchange dominance and coupling between unstable

waves of different scale-sizes that are generated as a result of

the gradient-drift and Farley-Buneman instabilities. The

maximum phase velocity found at the core of the electrojet

around 105 km has the same magnitude of the E� B drift

velocity (400 m/s). However, the radar observations and

rocket measurements found the maximum drift value of the

electrojet to be equal to the local value of the ion-acoustic

speed (’ 320 m/s at 105 km). Therefore, the linear results

fail to explain the decrease in the electrojet drift speed below

the cross-field drift speed.

1. Density and electric field phase relationship

The phase differences between the fluctuations in the

plasma density and electric field components are important

to understand the excitation of the plasma instabilities in the

equatorial electrojet region. In Fig. 3, we see the phase rela-

tionship between the perturbed density (blue-line) and the

vertical (top-panel) and horizontal (bottom-panel) perturbed

FIG. 2. A vertical profile of the linear phase velocity as a function of altitude

that has a maximum value equal to the background cross-field drift speed

(tE). The linear phase velocity profile is divided into three regions; gradient-

drift dominant region between 90 and 103 km, Farely-Buneman dominant

region above 110 km, and a coupling region between both instabilities

between 103 and 110 km.
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electric field components (green-line) at 105 km altitude with

all of these quantities normalized. The in-phase relationship

between the plasma density and the horizontal component of

the electric field emphasizes the excitation of the gradient-

drift instability in the horizontal direction and the generation

of long-wavelength plasma structures in the electrojet as

measured by the sounding rocket during the CONDOR cam-

paign.16 However, the out-of-phase relationship between the

plasma density and the vertical component of the electric

field explains the growing of the unstable waves in the verti-

cal direction and the generation of the small-scale structures

due to the Farley-Buneman instability when the cross-field

drift exceeds the ion-acoustic speed.12 Besides showing a

good agreement with the rocket measurements, these simula-

tion results emphasize the validity of using the unified fluid

model in studying the energy cascading in the equatorial

electrojet between plasma irregularities of long and short

scale sizes that are excited in the horizontal and vertical

directions, respectively.

B. Energy sources and electric fields

The vertical gradients of the background plasma density

and electric potential are considered the source of free

energy coming into the system throughout its boundaries.5

Both of these gradients (@zno and @z/o) give rise to two elec-

tron drifts in the westward directions of different speeds and

scales.1 The density-gradient gives rise to a slow drift of

large-scale irregularities; however, the potential-gradient of

a proper magnitude gives rise to an ultrasonic drift of meter-

scale structures.2,11 The amount of energy injected into the

system depends on the sharpness of the gradient of these ion-

ospheric background quantities.

The results of multiple simulations of the horizontal

(dEy) and vertical (dEz) components of the perturbed electric

field at the core of the equatorial electrojet at different gra-

dients of the plasma density and the electric potential are

shown in Fig. 4. It can be noticed that all simulations run

through three distinct phases; the linearly dominant growing,

the transitional, and the saturation phase, and the rate of

growing of the unstable modes in the system and conse-

quently the saturation level of electric field components are

highly dependent on the magnitude of the density-gradient

scale-length (Ln ¼ no@
�1
z no) and the cross-field drift

(tE ¼ �B�1@z/o). A close look at the simulation results in

Fig. 4 tells us that a small increase in the E� B has a larger

impact on the rate of growing of the unstable plasma waves

and magnitude of the perturbed electric field at the saturation

phase compared to a similar or larger difference in the

density-gradient scale length (Ln). We can see that a change

in Ln from 6 to 4 km does not affect the effective value of the

perturbed horizontal and vertical electric field components in

the saturation phase which set on at Ey ¼ 18 (mV/m) and Ez

¼ 3.5 (mV/m), respectively. However, a small change in tE

from 400 to 425 (m/s) pumps enough energy into the dynam-

ical system to double the magnitude of the electric field com-

ponents at the saturation phase.

Therefore, we can conclude that the cross-field drift

speed pumps a larger amount of energy into the dynamical

system compared to the density-gradient drift. Because

Farley-Buneman instability depends mainly on the magni-

tude of the cross-field drift, the small-scale structures will

have more energy compared to the large-scale ones excited

in the system as a result of the gradient-drift instability. This

elucidates the dominance of the spectrum of the short-scale

structures in the radar echoes of the electrojet irregularities

along with the absence of the spectrum of the large-scale

FIG. 3. A comparison of the phase

relationship between the normalized

quantities of the perturbed density and

the perturbed component of the electric

field in the horizontal and vertical

directions. There is an in-phase rela-

tionship between the density and the

horizontal component of the electric

field; however, the phase relationship

between the density and the vertical

component of the electric field is

mostly out-of-phase.
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structure. The spectrum of the unstable waves generated by

the gradient-drift instability can only be seen when the cross-

field drift is smaller than the ion-acoustic speed, i.e., during

the absence of the small-scale structures in the equatorial

electrojet.12,20

VII. SUMMARY AND CONCLUSIONS

The plasma dynamics in the unified fluid model for the

Equatorial Electrojet instabilities which is proposed in Ref. 4

and validated against the rocket measurements and radar

observations is discussed. In addition, more linear and nonlin-

ear results are presented to provide another validation test of

the model to simulate the equatorial electrojet instabilities and

showed a good agreement with the available observations.

In the simulation results, the linear phase velocity fails

to explain the bounding of the electrojet speed to the local

magnitude of the ion-acoustic speed; however, the relative

speed between the electrons and ions during the saturation

phase of the nonlinear simulation is found to be so close to

the ion-acoustic speed calculated at the core of the electrojet.

Also, the in-phase relationship between the plasma density

and the horizontal component of the perturbed electric field

verifies the presence of plasma structures of large wave-

length in the horizontal direction. However, the out-of-phase

relationship between the vertical component of the electric

field and the plasma density supports the presence of the

small-scale unstable waves in the vertical direction which is

excited as a result of the Farley-Buneman instability.

The effect of the variations in the available free energies

in the dynamical system on the effective magnitude of the

perturbed horizontal and vertical components of the electric

field is examined based on multiple simulation results. The

cross-field drift is found to provide a large amount of free

energy in the system compared to the density-gradient drift.

In addition, any small change in the cross-field drift mani-

fests itself as a large leap in the magnitude of the electric

field components, but this is not the case with the density-

gradient drift which shows only a big difference during the

growing phase of the simulation but not in the steady-state

phase. Moreover, for large values of the cross-field drift the

change in the density-gradient scale-length does not show

any effect in the magnitude of the electric field components

over all phases of the simulations. This explains the absence

of the spectrum of the large-scale structures from the radar

echoes during the excitation of the Farley-Buneman

instability.

The model proposed here for the Equatorial Electrojet

was found to be a noncanonical Hamiltonian system and a

Lie-Poisson bracket for it, that satisfies the Jacobi identity, has

been given. Moreover, an infinite family of Casimir Invariants

for the system has been identified and used to reformulate it in

a way which brings to light a Lagrangian invariant.

The unified fluid model captures the characteristics of

plasma instabilities (Gradient-drift and Farley-Buneman) in

the equatorial electrojet based on the properties of the iono-

spheric plasma in the E-region, such as plasma density, elec-

tric field, and temperature in a 2-D geometry. The

applicability of the unified model in the high-latitude electro-

jet is restricted, however, because the incorporation of the

electron and ion heating into the model would require

extending the system geometry into the third dimension

(along the magnetic field lines), and adding the proper phys-

ics that describes the required sources of energy dissipation

that help to stabilize the generated plasma instabilities.

Therefore, the unified fluid model in its 2-D geometry works

FIG. 4. A comparison between the

influence of the energy injected into

the system from the boundary in the

form of cross-field drift-velocity (tE)

and positive density-gradient scale-

length (Ln) on the perturbed compo-

nents of the electric field in the hori-

zontal (upper-panel) and vertical

(lower-panel) directions. The increase

in the horizontal component of the E�
B drift-velocity has a larger effect on

the saturation level of the perturbed

electric field compared to a similar

increase in the scale-length of the

density-gradient. The effect of increas-

ing (Ln) is found to disappear for very

large values of (tE).
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well in the equatorial electrojet, but fails to model and cap-

ture characteristics of the plasma instabilities in the high-

latitude electrojet.
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APPENDIX A: DYNAMICAL SYSTEM BRACKETS

Here, we show the procedure we followed to arrive at

the bracket of Eq. (22). First, we start by expressing the

dynamical equations in integral form. We will only display

the example of Eq. (10)

@tf ¼
Xce

no

ð
d2x0d x0 � xð Þ n;/½ �

� 1

B

ð
d2x0d x0 � xð Þ /; f½ �

�BXce

no

ð
d2x0d x0 � xð Þ$ � n$vð Þ : (A1)

Next, we perform an integration by parts to place the

delta functions inside the Poisson brackets and we invoke

the relations for functional derivatives of the Hamiltonian of

Eq. (21)

@tf ¼ �
Xce

no

ð
d2x0n d x0 � xð Þ;/

� �

� 1

B

ð
d2x0f d x0 � xð Þ;/

� �

þBXce

mino

ð
d2x0

df
df

dH

dv
� dH

df
df
dv

� �
:

Finally, we use the fact that the functional derivative of

a field with respect to itself gives a delta function, to rewrite

the above as

@tf ¼
B2Xce

men2
o

ð
d2x0n

df
df
;
dH

df

� �

þ B

meno

ð
d2x0f

df
df
;
dH

df

� �

� BXci

meno

ð
d2x0

df
dv

dH

df
� dH

dv
df
df

� �
: (A2)

Consequently, taking advantage of the fact that

@tr2/ ¼ fr2/;Hg, we postulate that a suitable form for a

bracket would be

F;Gf g ¼ B2Xce

men2
o

ð
d2x0n Ff;Gf½ �

þ B

meno

ð
d2x0f Ff;Gf½ �

� BXci

meno

ð
d2x0 FvGf � FfGvð Þ : (A3)

In a similar fashion, we can work out the remaining

terms of the bracket, performing the same procedure to the

rest of the equations of motion.

APPENDIX B: JACOBI IDENTITY

The functional derivatives of the brackets with respect

to the evolving fields (n;/; v) are given by

fA;Bgn ¼
B2Xce

meno
Af;Bf½ � ;

fA;Bgv ¼ 0 ;

fA;Bgf ¼
B

meno
Af;Bf½ � :

(B1)

We proceed with the calculation of the first term of the

Jacobi identity

ffA;Bg;Cg ¼� 1

mi

ð
d2x fA;BgnCv � CnfA;Bgv
� 	

� BXci

meno

ð
d2x fA;BgvCf � CvfA;Bgf
� 	

þB2Xce

meno

ð
d2x n fA;Bgf;Cf

� �
þ B

meno

ð
d2x f fA;Bgf;Cf

� �
:

Substituting Eq. (B1) in the above, we find

ffA;Bg;Cg ¼ �B2Xci

m2
en2

o

ð
d2x Af;Bf½ �Cv

þB2Xci

m2
en2

o

ð
d2x Af;Bf½ �Cv

þB3Xce

m2
en2

o

ð
d2x n Af;Bf½ �;Cf½ �

þ B2

m2
en2

o

ð
d2x f Af;Bf½ �;Cf½ � :

Combining terms together, we arrive at

A;Bf g;Cf g ¼ B3Xce

m2
en2

o

ð
d2x n Af;Bf½ �;Cf½ �

þ B2

m2
en2

o

ð
d2x f Af;Bf½ �;Cf½ � : (B2)

Now, it is obvious to see that the bracket satisfies the

Jacobi identity since the inner bracket, which is simply a

Poisson bracket ð½�; ��Þ has this property.
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