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The Hamiltonian structure of ideal translationally symmetric extended MHD (XMHD) is obtained

by employing a method of Hamiltonian reduction on the three-dimensional noncanonical Poisson

bracket of XMHD. The existence of the continuous spatial translation symmetry allows the introduc-

tion of Clebsch-like forms for the magnetic and velocity fields. Upon employing the chain rule for

functional derivatives, the 3D Poisson bracket is reduced to its symmetric counterpart. The sets of

symmetric Hall, Inertial, and extended MHD Casimir invariants are identified, and used to obtain

energy-Casimir variational principles for generalized XMHD equilibrium equations with arbitrary

macroscopic flows. The obtained set of generalized equations is cast into Grad-Shafranov-Bernoulli

(GSB) type, and special cases are investigated: static plasmas, equilibria with longitudinal flows

only, and Hall MHD equilibria, where the electron inertia is neglected. The barotropic Hall MHD

equilibrium equations are derived as a limiting case of the XMHD GSB system, and a numerically

computed equilibrium configuration is presented that shows the separation of ion-flow from electro-

magnetic surfaces. [http://dx.doi.org/10.1063/1.4986013]

I. INTRODUCTION

By extended MHD (XMHD), we mean the one-fluid

model obtained by reduction of the standard two-fluid

plasma model, when the quasineutrality assumption is

imposed and expansion in the smallness of electron mass is

performed (e.g., Ref. 1). The resulting model has a general-

ized Ohm’s law that contains Hall drift and electron inertia

physics, and it was proven in Ref. 2 that energy conservation

for ideal XMHD, the version treated in this paper, requires

the addition of a commonly neglected term in the momentum

equation related to the electron inertia.

Despite the complexity of XMHD, it was shown in Refs.

3 and 4 to possess a Hamiltonian structure. Moreover, in

Ref. 4, remarkable connections with the Hamiltonian struc-

ture of other models were established, viz., Hall MHD

(HMHD) (e.g., Ref. 5) Inertial MHD (IMHD) (e.g., Refs. 2

and 6) and the usual ideal MHD (highlighted in Ref. 7). In

addition, the derivation of XMHD and its Hamiltonian struc-

ture from its underlying Lagrangian variable action func-

tional was reported in Ref. 8. Recently, the Hamiltonian

structure of two-dimensional incompressible XMHD was

derived in Ref. 9, a reduced XMHD (RXMHD) model that

was used to study Hamiltonian reconnection due to the Hall

and electron inertial terms. The Hamiltonian structure of a

similar collisionless fluid reconnection model was estab-

lished earlier in Ref. 10, and a general treatment of reduced

Hamiltonian models was given in Ref. 11.

Detailed consequences of the original noncanonical

Hamiltonian structure of Morrison and Greene,12 were

explored in a series of papers,14–18 including various

variational principles for equilibria, and their use in ascertain-

ing stability via energy principles that incorporate different

constraints. Given that XMHD is a Hamiltonian theory and

that the investigations of Refs. 14–18 are generic to

Hamiltonian theories, all of the considerations of these and

other works can be worked out for XMHD. This is the main

motivation for conducting this study in the framework of non-

canonical Hamiltonian mechanics, i.e., since XMHD is a

Hamiltonian theory, the existence of the aforementioned vari-

ational principles provides us with a joint tool for the deriva-

tion of equilibrium equations and stability criteria. This study

is focused on equilibria, but may serve as a starting point for a

stability analysis as well. Also, the Hamiltonian formalism is

helpful in order to analyze and describe the geometrical struc-

ture of the dynamics, e.g., the existence of the so-called

Casimir invariants that affect the topological structure of the

phase-space, by constraining the dynamics to evolve within

specific regions. Lastly, the Hamiltonian description may pro-

vide the means for the construction of conservative algorithms

for numerical analyses.19 All these indicate that a Hamiltonian

description, whenever possible, is preferable.

The present paper considers the case of translationally

symmetric compressible plasmas with an emphasis on equi-

librium analyses. We derive the Hamiltonian structure of this

translationally symmetric model by applying a method of

Hamiltonian reduction, which was used in Ref. 14, on the

parent three-dimensional (3D) model. Specifically, we

employ a chain rule reduction on the functional derivatives

of the noncanonical Poisson bracket of XMHD in order to

obtain a bracket expressed in terms of Clebsch-like variables

that globally describe the velocity and the magnetic field.

This reduction leads to the identification of translationally

symmetric Casimir invariants, which due to the spatial sym-

metry, form infinite families of generalized helicities.
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Exploiting these invariants along with the Hamiltonian func-

tional, written in terms of the aforementioned variables, we

formulate an Energy-Casimir variational principle that leads

to generalized equilibrium equations describing translationally

symmetric XMHD equilibria with flows, a set of equations

that we cast into the form of a Grad-Shafranov-Bernoulli

(GSB) system, which makes the equilibrium study of the

model tractable.

In comparison to MHD, equilibrium and stability calcu-

lations for XMHD are considerably more complex. This is

because XMHD contains additional physics, viz., XMHD

includes the two-fluid phenomena of Hall drift and electron

inertia, arising from the individual fluid dynamics of ions

and electrons, while maintaining quasineutrality. This gives

rise to a plethora of new effects as evidenced by the com-

plexity of the linear modes present in XMHD (see e.g., Refs.

1 and 20). Even in a reduced two-dimensional case, linear

and nonlinear physics are significantly modified, and the

phenomenon of collisionless reconnection emerges.9 Even

the simpler case of HMHD, which we will address, contains

significant complexities not included in MHD.

The present study is organized as follows: in Sec. II, we

review the Hamiltonian field theory of XMHD, along with

some basic aspects and features of noncanonical Hamiltonian

mechanics. Before proceeding to the Hamiltonian reduction,

we present as a preliminary application, the 3D Energy-

Casimir variational principle for deriving equilibrium condi-

tions. In Sec. III, we introduce appropriate representations for

the magnetic and velocity fields, which ensure that they respect

translation symmetry and additionally render the magnetic field

divergence free. Using this representation, the Hamiltonian and

the XMHD Poisson bracket are reduced to their translationally

symmetric counterparts. The Casimir invariants of the symmet-

ric Poisson bracket are computed, and their HMHD and IMHD

analogues are presented. In Sec. IV, we establish the symmet-

ric variational principle, from which we derive generalized

equilibrium equations. Special cases of equilibria are discussed

and studied in detail as applications. In Sec. V, we conclude

and discuss extensions of the present study.

II. NONCANONICAL HAMILTONIAN STRUCTURE OF
XMHD

A. Hamiltonian formulation

The dynamic equations of the XMHD model, written in

the standard Alfv�en units, are the following:

@tq ¼ �r � qvð Þ; (1)

@tv ¼ v�r� v�r hþ v2

2

� �
þ q�1J� B�

� d2
er

jr � Bj2

2q2

 !
; (2)

@tB
� ¼r � v� B�ð Þ � dir�

J� B�

q

� �

þ d2
er�

J� r� vð Þ
q

" #
; (3)

where

J ¼ r� B; (4)

B� ¼ Bþ d2
er�

r� B

q

� �
: (5)

Here, a barotropic equation of state has been assumed, which

means the enthalpy h is related to pressure by rh ¼ q�1rp,

and the parameters di and de are the normalized ion and elec-

tron skin depths, respectively, with ds ¼ c= xpsLð Þ and

s ¼ i; e.

As already mentioned in Sec. I, the Hamiltonian struc-

ture of the XMHD model of Eqs. (1)–(3) was obtained in

Refs. 3 and 4. More precisely, it was shown that the equa-

tions of motion can be reproduced by using a Hamiltonian

“apparatus” (see Ref. 13 for a comprehensive review) that

consists of the Hamiltonian function

H ¼ 1

2

ð
V

d3x qv2 þ 2qU qð Þ þ B2 þ d2
e

jr � Bj2

q

" #

¼ 1

2

ð
V

d3x qv2 þ 2qU qð Þ þ B � B�
h i

; (6)

where V � R3, and the noncanonical Poisson bracket

F;Gf g ¼
ð

V

d3x fGqr � Fv � Fqr � Gv

þq�1 r� vð Þ � Fv � Gvð Þ
þq�1B� � Fv � r� GB�ð Þ � Gv � r� FB�ð Þ½ �
� diq

�1B� � r � FB�ð Þ � r � GB�ð Þ½ �
þ d2

eq
�1 r� vð Þ � r � FB�ð Þ � r � GB�ð Þ½ �g; (7)

where Fu :¼ dF=du denotes the functional derivative of F
with respect to the dynamic variable u. The bracket of (7)

generalizes the original MHD bracket of Ref. 12 by replac-

ing B by B�, and the addition of the terms involving de

and di.

It is evident that the Poisson bracket is antisymmetric,

and in Ref. 3, the authors proved by a tedious calculation

(simplified in Ref. 4) that it satisfies the Jacobi identity. In

view of (6) and (7), the equations of motion can be cast into

the following Hamiltonian form:

@tu ¼ u;Hf g; (8)

with u ¼ q; v;B�ð Þ. Equation (8) can also be written as

@tu
i ¼ Jij dH

duj
; (9)

where Jij is the Poisson operator that defines the Poisson

bracket according to fF;Gg :¼ hFui ; Jij Guji with h; i being

a pairing defined on the phase(function)-space. A charac-

teristic feature of Poisson brackets of form (7) is that they

have nontrivial kernels, i.e., there exist functionals C that

satisfy

F; Cf g ¼ 0 ; 8F: (10)
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Such functionals C, called Casimirs, are global invariants of

the dynamical evolution. From (10), it is evident that the

equations of motion are unaffected by the addition of the

Casimir invariants to the Hamiltonian H. Therefore, if we

define a family of Hamiltonians, F ¼ H�
P

i Ci, one can

freely write

@tu ¼ fu;Fg; (11)

instead of (8) without changing the resultant equations of

motion. It is clear that stationary states are solutions of equa-

tions fu;Fg ¼ 0. Hence, from Eq. (9), we understand that

@tu ¼ 0 follows from vanishing of the first variation of the

generalized Hamiltonian functional F (the Energy-Casimir

functional), i.e., equilibrium states satisfy the condition

dF ¼ d H�
X

i

Ci

� �
¼ 0 : (12)

As pointed out in Refs. 13 and 21, in general, not all equilib-

ria emerge from such variations because of singularities in

the Poisson bracket operator.

Regarding the dynamical evolution, the Casimirs play

a topological role in the structure of the phase space,

since the motion takes place on phase-space surfaces that

are the Casimir level sets, commonly called symplectic

leaves. Assigning initial values to the Casimirs is equiva-

lent to the choice of a symplectic leaf, i.e., a particular

sub-space of the phase space on which the motion is

restricted. The intersection with the energy level sets con-

fines the trajectory of the dynamical evolution, and the

Energy-Casimir extremal points correspond to equilibrium

states. We also note that the stability of equilibrium

points depends on the behavior of the second variation of

the Energy-Casimir functional.

The Casimir invariants for 3D barotropic XMHD have

been calculated in Refs. 3 and 4. The total mass, as it is

expected, is conserved, and there also exist two generalized

Helicity-like invariants

C1 ¼
ð

V

d3x q; (13)

C2;3 ¼
ð

V

d3x A� þ k�1
6 v

� �
� B� þ k�1

6 r� v
� �

; (14)

with B� ¼ r � A� and k6 being the two roots of the qua-

dratic equation 1� dik� d2
ek

2 ¼ 0, that is k6 ¼ �dið
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

i þ 4d2
e

p
Þ= 2d2

e

� �
. The two invariants in (14) have

forms similar to the canonical self-helicities of the two-

fluid model, which are composites of the fluid and mag-

netic momenta. However, they are not identical to the

canonical helicities of the 2-fluid model since in the

framework of XMHD, quasineutrality and smallness of the

electron to ion mass ratio are assumed. The XMHD

“canonical momenta” are proportional to vþ k6A.

Regarding the physical interpretation of these invariants,

in comparison to the ordinary MHD magnetic helicity, a

measure of the twist and the linkage of magnetic flux

tubes, these generalized helicities can be seen to measure

the twist and linkage of the flux tubes of the generalized

fields Bþ k�1
6 r� v (or generalized vorticities). The two

parameters k6 account for the differential motion of elec-

trons and ions departing from magnetic field lines.

B. 3D energy-Casimir variational principle

The Energy-Casimir variational principle, employing

the general 3D expressions for the energy and Casimir

invariants, leads to equilibrium conditions satisfied by the

magnetic and velocity fields. In the framework of single-

fluid MHD, the magnetic fields that are solutions of (12)

satisfy the so-called Beltrami condition: r� B ¼ jB,

with the fluid velocity being parallel to B. In the context

of XMHD, due to the form of the Hamiltonian and

Casimir functionals, the magnetic and velocity fields sat-

isfy more complicated, coupled conditions that allow

more complex field configurations. These conditions can

be derived from the vanishing of the first variation of the

Energy-Casimir functional F, i.e., by requiring the vanish-

ing of the coefficients of the arbitrary variations of q, v,

and B�

dF ¼ d
ð

V

d3x q
v2

2
þ qU qð Þ þ

B � B�
2
� aq

	

�bþ A� þ k�1
þ v


 �
� B� þ k�1

þ r � v


 �
�b� A� þ k�1

� v
� �

� B� þ k�1
� r � v

� ��
¼ 0 ; (15)

with B ¼ r� A as usual and A� ¼ Aþ d3
er� B=q. The

parameters a and b6 are Lagrangian multipliers with values

related to the total mass and total generalized helicities.

Equation (15) leads to the following conditions:

r�B ¼ 2 bþ þ b�ð ÞB� þ 2 bþk
�1
þ þ b�k�1

�


 �
r� v ;

(16)

qv ¼ 2 bþk
�1
þ þ b�k

�1
�


 �
B� þ 2 bþk

�2
þ þ b�k

�2
�


 �
r� v ;

(17)

v2

2
þ h qð Þ � d2

e

jJj2

2q2
þ 2

d2
e bþ þ b�ð Þ

q2
B� � J

þ2
d2

e bþk
�1
þ þ b�k

�1
�


 �
q2

J � r � vð Þ ¼ a ; (18)

where the enthalpy h qð Þ ¼ qU qð Þ

 �

q
. The enthalpy is related

to pressure P qð Þ through the following relation:

h qð Þ ¼
ð

dP qð Þ
q

: (19)

That the enthalpy h of (19) depends only on a single thermo-

dynamic variable, the specific volume q�1, follows from the

barotropic assumption embodied in the choice of internal

energy per unit mass U. For simplicity, our Hamiltonian for-

mulation was restricted in this way, but it can be generalized

to include more thermodynamic variables such as entropy
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per unit mass (see, e.g., Ref. 18 for MHD and Ref. 22 for

XMHD). A common choice for this barotropic thermody-

namic closure is the polytropic equation of state, where

P qð Þ ¼ jqc with a constant j (independent of entropy). With

this choice,

h qð Þ ¼
c

c� 1

P qð Þ
q

: (20)

From (16) and (18), we obtain the XMHD analogue of the

Bernoulli equation, which reveals the distribution of the

pressure, for the velocity and the magnetic field described by

the mutual solutions of the coupled equations (16) and (17)

~P qð Þ ¼ aq� q
v2

2
� d2

e

2q
jr � Bj2; (21)

where ~P ¼ cP= c� 1ð Þ.

III. SYMMETRIC FORMULATION VIA CHAIN RULE ON
FUNCTIONAL DERIVATIVES

A. Translationally symmetric Poisson bracket

Assuming continuous translational symmetry and adopt-

ing a Cartesian system (x, y, z), the fields B� and v can be

written as follows:

B� ¼ B�z x; y; tð Þẑ þrw� x; y; tð Þ � ẑ; (22)

v ¼ vz x; y; tð Þẑ þrv x; y; tð Þ � ẑ þr! x; y; tð Þ; (23)

where z is the ignorable coordinate with the corresponding

unit vector ẑ along the direction of translational invariance,

w� is the poloidal flux function of B� and v and ! are

Clebsch-like potentials of the poloidal velocity. The form of

Eq. (22) ensures that the condition r � B ¼ 0 holds, while

the existence of the term r! in Eq. (23) allows for com-

pressibility of the flow [provided the function ! x; yð Þ is not

harmonic]. Upon setting !¼ 0 or D! ¼ 0 (D � r2, the

Laplacian), we can impose incompressibility of the flow.

Note that in view of the translational symmetry, the repre-

sentation adopted for the velocity field is consistent with the

Helmholtz decomposition theorem and hence it is generic

for the description of any kind of symmetric flow. Taking

the divergence and the curl of Eqs. (22) and (23) give

r � v ¼ D!; (24)

r� v ¼ �Dvẑ þrvz � ẑ; (25)

r � B� ¼ 0; (26)

r� B� ¼ �Dw�ẑ þrB�z � ẑ : (27)

For convenience, we define the following quantities: w :¼ D!
or ! ¼ D�1w and X ¼ �Dv or v ¼ �D�1X.

The transition from the general 3D Hamiltonian model to

a translationally symmetric one is accomplished by expressing

the Hamiltonian (6) and the Poisson bracket (7), which are

expressed in terms of the state vector u ¼ fq; v;B�g, to those

in terms of the symmetric state vector uTS ¼ fq; vz; v;
!;B�z ;w

�g. This reduction of phase space is achieved by

mapping the functional derivatives with respect to the original

variables u to functional derivatives with respect to the varia-

bles uTS. This mapping is computed using the chain rule for

functional derivatives, obtained by equating first variations in

terms of the two sets of variables. The variation of a functional

F q; v;B�½ � is

dF u½ � ¼
ð

V

d3x Fqdqþ Fvdvþ FB�dB�
� �

; (28)

while that in terms of uTS is

dF uTS½ � ¼
ð

D

d2x ½Fqdqþ Fvz
dvz þ Fvdvþ F!d!

þFB�z dB�z þ Fw�dw�� ; (29)

where D � R2 is a restriction of V to R2. Using dv¼�D�1

dX¼�D�1 ẑ �r� dvð Þ; d!¼D�1dw¼D�1 r� dvð Þ, and

dw� ¼�D�1 ẑ �r� dB�ð Þ, (29) can be rewritten as

dF ¼
ð

D

d2x fFqdqþ Fvz
ẑ � dv� FvD

�1 ẑ � r � dvð Þ

þF!D�1r � dvþ FB�z ẑ � dB� � Fw�D
�1 ẑ � r � dB�ð Þg :

(30)

Then, from the self-adjointness of the operator D�1 and for

appropriate boundary conditions such that the boundary

terms vanish, we obtain

dF ¼
ð

D

d2x Fqdqþ Fv � dvþ FB� � dB�
� �

; (31)

¼
ð

D

d2x Fqdqþ Fvz
ẑ þrFX � ẑ �rFwð Þ � dv



þ FB�z ẑ �r D�1Fw�


 �
� ẑ


 �
� dB�� ; (32)

where we have used the following relations:

F! ¼ DFw ; Fv ¼ �DFX; (33)

which come fromð
D

d2x F!d! ¼
ð

D

d2x Fwdw ¼
ð

D

d2x DFwd!; (34)

ð
D

d2x Fvdv ¼
ð

D

d2x FXdX ¼ �
ð

D

d2x DFXdv; (35)

since the variations dv and d! are arbitrary. Upon comparing

(31) with (32), the following relations are deduced:

Fv ¼ Fvz
ẑ þrFX � ẑ �rFw; (36)

FB� ¼ FB�z ẑ �r D�1Fw�


 �
� ẑ; (37)

r� FB� ¼ Fw� ẑ þrFB�z � ẑ : (38)

Substituting Eqs. (22), (23), (36), (37), and (38) into the

Poisson bracket of XMHD given by (7), we obtain the trans-

lationally symmetric Poisson bracket of barotropic XMHD

(see Appendix A for details)
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fF;GgXMHD
TS ¼

ð
D

d2x fFqDGw � GqDFw þ q�1X FX;GX½ � þ Fw;Gw½ � þ rFw � rGX �rFX � rGwð Þ þ vz FX; q
�1Gvz


 ��
� GX; q

�1Fvz


 �
þr q�1Gvz

� �
� rFw �r q�1Fvz

� �
� rGw þ q�1F!Gvz

� q�1G!Fvz
Þ þ w� FX; q

�1Gw�

h i

� GX; q

�1Fw�

h i
þ FB�z ; q

�1Gvz

h i
� GB�z ; q

�1Fvz

h i
þrFw � r q�1Gw�


 �
�rGw � r q�1Fw�


 �
þ q�1F!Gw�

� q�1G!Fw� Þ þ q�1B�z FX;GB�z


 �
� GX;FB�z


 �
þrFw � rGB�z �rGw � rFB�z

� �
þ diw

� GB�z ; q
�1Fw�

h i

� FB�z ; q

�1Gw�

h i�
� diq

�1B�z FB�z ;GB�z


 �
þ d2

eq
�1X FB�z ;GB�z


 �
þ d2

evz FB�z ; q
�1Gw�

h i
� GB�z ; q

�1Fw�

h i
 �o
; (39)

where a; b½ � :¼ ra�rbð Þ � ẑ ¼ @xað Þ @yb
� �

� @xbð Þ @ya
� �

. Here, we exploited the identityð
D

d2x a; b½ �c ¼
ð

D

d2x c; a½ �b ¼
ð

D

d2x b; c½ �a; (40)

which holds for arbitrary functionals a, b, c under appropriate boundary conditions (e.g., periodic boundary conditions).

The antisymmetry of the bracket (39) follows naturally from the antisymmetry of the Poisson bracket a; b½ � ¼ � b; a½ � and

the vanishing of the boundary terms arising from integration by parts and Gauss’ theorem. The Jacobi identity of (39)

follows because of the reduction procedure. Similarly, by substitution, the symmetric representation of the Hamiltonian is

given by

HXMHD
TS ¼ 1

2

ð
D

d2x q v2
z þ jrvj2 þ jr!j2


 �
þ 2q !; v½ � þ U qð Þ

� �
þ B2

z þ jrwj2 þ d2
e

q
Dwð Þ2 þ jrBzj2

h i( )

¼
ð

D

d2x
q
2

v2
z þ jrvj2 þ jr!j2


 �
þ q !; v½ � þ U qð Þ
� �

þ B�z Bz

2
þrw� � rw

2

	 �
: (41)

With (41), the translationally symmetric equations of motion take the form @tuTS ¼ fuTS;HTSgXMHD
TS . The bracket (39) has

a more complicated form than its MHD counterpart obtained in Ref. 14, due to the terms that originate from the ion and elec-

tron contributions, having coefficients di and de, respectively. However, a remarkable transformation introduced in Ref. 4 can

simplify it. The new transformed bracket has the form of the translationally symmetric HMHD Poisson bracket, which can be

obtained by setting de¼ 0 in (39), but with dependence on a generalized magnetic field variable

B6 ¼ B� þ k�1
6 r� v : (42)

The new magnetic field variable B6, in view of Eqs. (22) and (23) can be written as

B6 ¼ B� þ k�1
6 r� v ¼ B�z þ k�1

6 X
� �

ẑ þr w� þ k�1
6 vz

� �
� ẑ ¼ B6

z ẑ þrw6 � ẑ ; (43)

i.e., we have

B6
z ¼ B�z þ k�1

6 X; w6 ¼ w� þ k�1
6 vz : (44)

We can prove that under the change

fq; vz;X;!;B
�
z ;w

�g $ fq; vz;X;!;B
6
z ;w6g

the functional derivatives change as follows:

Fvz
! Fvz

þ k�1
6 Fw6

; FX ! FX þ k�1
6 FB6

z
; F! ! F!; Fw� ! Fw6

; FB�z ! FB6
z
; (45)

with the change in variables of (44). Upon inserting the transformation of the functional derivatives of (45) into (39), we obtain

the following bracket:

fF;GgXMHD
TS ¼

ð
D

d2xfFqDGw�GqDFwþq�1X FX;GX½ �þ Fw;Gw½ �þrFw �rGX�rFX �rGwð Þþvz FX;q
�1Gvz


 �
� GX;q

�1Fvz


 ��
þr q�1Gvz

� �
�rFw�r q�1Fvz

� �
�rGwþq�1F!Gvz

�q�1G!Fvz
Þþw6 FX;q

�1Gw6

h i
� GX;q

�1Fw6

h i

þ FB6

z
;q�1Gvz

h i
� GB6

z
;q�1Fvz

h i
þrFw �r q�1Gw6


 �
�rGw �r q�1Fw6


 �
þq�1F!Gw6

�q�1G!Fw6

�
þq�1B6

z FX;GB6
z


 �
� GX;FB6

z


 �
þrFw �rGB6

z
�rGw �rFB6

z

� �
��6q�1B6

z FB6
z
;GB6

z


 �
þ�6w6 GB6

z
;q�1Fw6

h i
� FB6

z
;q�1Gw6

h i
 �o
; (46)

where �6 :¼ di � 2k�1
6 .
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As was the case for (39), the bracket (46) with the

Hamiltonian (41) generate the translationally symmetric XMHD

equations of motion according to @tuTS ¼ fuTS;HTSgXMHD
TS .

B. Translationally symmetric Casimirs

As in the 3D case, there exist Casimir invariants con-

served by the translationally symmetric dynamics. As

already mentioned, the Casimirs satisfy fF; Cg ¼ 0; 8F. For

the bracket (46), this givesð
D

d2x FqQ1 þ Fvz
Q2 þ FXQ3 þ FwQ4ð

þFB6
z
Q5 þ Fw6

Q6Þ ¼ 0; (47)

where the quantities Qi i ¼ 1; 2;…; 6ð Þ are given by the fol-

lowing expressions:

Q1 ¼ DCw ¼ C!; (48)

Q2 ¼ CX; vz½ � þ r � vzrCwð Þ � vzC! � w6; CB6
z


 �
; (49)

Q3 ¼ r � q�1XrCw

� �
� q�1X; CX


 �
� vz; q

�1Cvz


 �
� w6; q

�1Cw6

h i
� q�1B6

z ; CB6
z

h i
; (50)

Q4 ¼ D q�1vzCvz

� �
þ D q�1w6Cw6


 �
� DCq � q�1X; Cw


 �
�r �



q�1XrCX þ vzr q�1Cvz

� �
þw6r q�1Cw6


 �
þ q�1B6

z rCB6
z

�
; (51)

Q5 ¼ q�1Cvz
;w6


 �
þ CX; q�1B6

z


 �
þr � q�1B6

z rCw

� �
þ�6 w6; q

�1Cw6

h i
þ �6 q�1B6

z ; CB6
z

h i
; (52)

Q6 ¼ CX;w6½ � þ r � w6rCwð Þ � w6C! þ �6 w6; CB6
z


 �
:

(53)

For (47) to be satisfied for arbitrary variations, the coeffi-

cients Qi must vanish separately, i.e.,

Qi ¼ 0; i ¼ 1; 2;…; 6 : (54)

Equation Q1 ¼ 0, i.e., C! ¼ 0, implies that the Casimirs are

independent of !. Equations Q4 ¼ 0 and Q3 ¼ 0 are, respec-

tively, the divergence and the z component of the curl of the

following equation:

r q�1vzCvz

� �
þr q�1w6Cw6


 �
�rCq

�vzr q�1Cvz

� �
� w6r q�1Cw6


 �
� q�1B6

z rCB6
z

�q�1XrCw � ẑ � q�1XrCX ¼ 0: (55)

We observe that (55) is satisfied automatically for Cq ¼ con-

stant, which gives the first Casimir

Cm ¼
ð

D

d2x q : (56)

Note that, in general, a solution to Q4 ¼ 0 could be satisfied

by Cm ¼
Ð

Dd2x qU with U being a harmonic function,

DU ¼ 0. The equations Q2 ¼ 0 and Q6 ¼ 0 can be

combined by multiplying the first by �6 and adding it to the

second

�6Q2þQ6 ¼ CX;w6þ �6vz½ � þr � w6þ �6vzð ÞrCw½ � ¼ 0;

(57)

where we have used that C! ¼ 0. With the new variable

n6 ¼ w6 þ �6vz, (57) becomes

n6; CX½ � � r � n6rCwð Þ ¼ 0: (58)

Equivalently, we can write

rCX � ẑ �rCw ¼ n�1
6 rA6; (59)

for n6 6¼ 0 and A6 being arbitrary functions. The z-compo-

nent of the curl of Eq. (59) is

DCw ¼ C! ¼ A6; n
�1
6


 �
¼ 0: (60)

Therefore, A6 are arbitrary functions of n6, i.e.,

A6 ¼ A6 w6 þ �6vzð Þ: (61)

Now, divergence of (59) translates into

DCX ¼ r � n�1
6 rA6

� �
¼ r � A06n�1rn6

� �
¼ DA6; (62)

where the functions A6 are related to A6 via A06 :¼ n�1
6 A06.

According to (62), we have CX ¼ A6, up to a harmonic

function, therefore

C ¼
ð

D

d2x XA6 w6 þ �6vzð Þ þ F B6
z ;w6; vz

� �
: (63)

Inserting (63) into Q6 ¼ 0, we obtain

A6;w6½ � þ �6 w6;FB6
z


 �
¼ 0: (64)

From (64), we derive FB6
z
¼ ��1

6 A6 þ G6 w6ð Þ, with G6

being an arbitrary function of w6, which when combined

with (63) gives the following families of solutions

C6
1 ¼

Ð
Dd2x B6

z þ �6X
� �

A6 w6 þ �6vzð Þ þ ~F 6 vz;w6ð Þ;
(65)

C6
2 ¼

ð
D

d2x B6
z G6 w6ð Þ þ ~F6 vz;w6ð Þ; (66)

for G6 ¼ 0 and A6 ¼ 0 respectively. We remark here that

if after Eq. (62) one takes CX ¼ A6 þ U x; yð Þ, with U x; yð Þ
being a harmonic function, then it is not difficult to prove

that the additional functional, coming from U will be a

Casimir only if U ¼ U w6 þ �6vzð Þ or U ¼ U w6ð Þ. This

would result in special cases of C6
1 and C6

2 , which may be

valid if the motion of the variables w6 and vz is restricted by a

differential constraint. Having found the dependencies of the

Casimir invariants on X and B6
z , it remains to investigate any

additional dependencies on vz and w6, represented by ~F .

Upon substituting (65) intoQ5 ¼ 0, the latter reduces to

q�1 ~F vz
� �6

~F w6


 �
;w6

h i
¼ 0; (67)
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which additionally gives the following functionals:

C6
3 ¼

ð
D

d2x qK6 w6 þ �6vzð Þ; (68)

C6
4 ¼

ð
D

d2x qM6 w6ð Þ; (69)

whereM6 and K6 are arbitrary functions. The above func-

tionals express the conservation of canonical-like momenta

in the direction of symmetry. Also, they encapsulate conser-

vation of mass, since Cm is the special case with K6 ¼ 1,

and the conservation of the mechanical momentum along the

axis of symmetry. To make this clear, note that C4, for exam-

ple, if M6 is differentiable, can be written as C4 ¼
Ð

Dd2x
q
Ð w6

1
dsN6 sð Þ with N6 w6ð Þ ¼ M0

6 w6ð Þ. Under a change

of the integration variable, this takes the form C4 ¼
Ð

Dd2x qÐ vz

1
dsN6 w6 þ �6vz � �6sð Þ. For N6 ¼ 1, we recover the

conservation of mechanical momentum along the z-axis.

Notice that in view of (68) and (69), the term ~F6 in (65) and

(66) can be subtracted. It is not difficult to verify that C6
1 ;

C6
2 ; C6

3 ; C6
4 satisfy Q2;3;4 ¼ 0 as well and therefore all

Casimir-determining equations (54) are satisfied. Also, since

w6 ¼ w7 þ �7vz and B6
z ¼ B7

z þ �7X (because k�1
6 ¼ di

�k�1
7 ), the functionals (65)–(69) represent just four indepen-

dent families of invariants. Therefore, one may freely keep

either the set denoted by þð Þ or the �ð Þ representation. In

terms of the original magnetic variables B�z ;w
�� �

, the

XMHD Casimir invariants are written as

C1 ¼
ð

D

d2x B�z þ lX
� �

A w� þ lvzð Þ; (70)

C2 ¼
ð

D

d2x B�z þ k�1X
� �

G w� þ k�1vz

� �
; (71)

C3 ¼
ð

D

d2x qK w� þ lvzð Þ; (72)

C4 ¼
ð

D

d2x qM w� þ k�1vz

� �
; (73)

where the parameters k and l are either k; lð Þ ¼ kþ; lþð Þ or

k; lð Þ ¼ k�; l�ð Þ, with l6 :¼ �6 þ k�1
6 ¼ di � k�1

6 ¼ k�1
7 .

As discussed above, the Casimirs C3;4 express the con-

servation of mass and the conservation of (canonical)

momenta in the direction of symmetry. In addition, the

Casimirs C1;2 are the symmetric counterparts of the general-

ized helicities (14). Unlike the 3D Casimirs, the symmetric

invariants form infinite families, due to the existence of the

arbitrary functions A; G; K;M. Later, we will see that these

arbitrary functions are transferred, by the variational princi-

ple, into the equilibrium equations giving in principle the

possibility of constructing infinitely many classes of equilib-

ria, unlike the 3D case where all equilibria obtained from an

energy-Casimir variational principle belong to the same class

[see Eqs. (16)–(18)].

C. Hall MHD limit

Hall-MHD neglects electron inertia and therefore is

recovered by the XMHD model for de ! 0. If we assume

k; lð Þ ¼ kþ; lþð Þ and take the limit de ! 0, then B�z !
Bz; w� ! w; k�1 ! di and l! 0. In this case, the

Hamiltonian becomes identical in form to the ordinary MHD

symmetric Hamiltonian, that is

HHMHD
TS ¼ 1

2

ð
D

d2x q v2
z þ jrvj2 þ jr!j2


 �n
þ2q !; v½ � þ U qð Þ

� �
þ B2

z þ jrwj2
o
:

Also, the HMHD Casimir invariants are

CHMHD
1 ¼

ð
D

d2x BzA wð Þ; (74)

CHMHD
2 ¼

ð
D

d2x Bz þ diXð ÞG wþ divzð Þ; (75)

CHMHD
3 ¼

ð
D

d2x qK wð Þ; (76)

CHMHD
4 ¼

ð
D

d2x qM wþ divzð Þ: (77)

If we return to the symmetric XMHD Poisson bracket and

set de¼ 0, we can verify that the HMHD bracket possesses

the Casimirs (74)–(77). We remark that the “generalized var-

iables” Bz þ diX; wþ divz appear in (74)–(77) since the ion

canonical helicity
Ð

Vd3x Aþ divð Þ � Bþ dir� vð Þ is a

Casimir invariant in 3D HMHD.4

D. MHD limit

For the MHD limit, we additionally require di ! 0 in

(74)–(77), which yields only two of the translationally sym-

metric ideal MHD Casimir invariants of Refs. 14–16.

However, it was observed in the first Hamiltonian structure

that contained Hall physics,23 that care must be taken with

this limit (see also Ref. 9) which appears at the face value to

not obviously yield the MHD versions of the Casimirs

CHMHD
2 and CHMHD

3 .

To see how this transpires, we rewrite the invariants

CHMHD
2 and CHMHD

4 as follows:

CHMHD
2 ¼

ð
D

d2xd�1
i BzþdiXð Þ� G wð ÞþdivzG0 wð ÞþO d2

i

� �
 �
¼
ð

D

d2x d�1
i BzG wð ÞþXG wð Þþ vzBzG0 wð Þ



þdiXvzG0 wð ÞþO dið Þ�; (78)

CHMHD
4 ¼

ð
D

d2xqd�1
i M wð Þþ divzM0 wð ÞþO d2

i

� �
 �
; (79)

where we have scaled the arbitrary functions G and M by a

factor of di. If we then take di ! 0, the first term of CHMHD
2

in (78) is seen to diverge. However, this term is itself a spe-

cial case of CHMHD
1 , so it can be subtracted from (78), giving

CMHD
2 ¼

ð
D

d2x XG wð Þ þ vzBzG0 wð Þ
� �

¼
ð

D

d2x rv � rwþ vzBzð ÞG0 wð Þ: (80)
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A similar argument applies for the limit of the Casimir C4 of

(79). Therefore, in the MHD limit di ! 0, all Casimirs

approach their translationally symmetric MHD counterparts

of Refs. 14 and 15. To summarize (with a redefinition of the

arbitrary functions G and M), the following translationally

symmetric MHD Casimirs are obtained from the XMHD

Casimirs in the limit de ! 0 followed by di ! 0:

CMHD
1 ¼

ð
D

d2x BzA wð Þ; (81)

CMHD
2 ¼

ð
D

d2x Bzvz þrw � rvð ÞG wð Þ; (82)

CMHD
3 ¼

ð
D

d2x qK wð Þ; (83)

CMHD
4 ¼

ð
D

d2x qvzM wð Þ: (84)

Note that the Casimirs CMHD
1 ; CMHD

3 are identical to the

HMHD Casimir functionals given by (74) and (76). This follows

from the fact that the magnetic helicity is a common Casimir

invariant for both models. The MHD limit of the HMHD model

is also discussed in Refs. 24 and 25, although it is not shown

how to limit the HMHD Casmirs to their MHD values.

E. Inertial MHD limit

Inertial MHD (IMHD) occurs upon setting di¼ 0, while

de 6¼ 0, the reverse of the limit of Sec. III C. IMHD is valid

when the characteristic time scale for changes in the current

J is significantly shorter than the electron gyro-period.2 The

Hamiltonian of translationally symmetric IMHD is HIMHD
TS

¼ HXMHD
TS , as given by (41). In the inertial MHD limit

di ! 0, the parameters k6 ¼ ð�di6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

i þ 4d2
e

p
Þ= 2d2

e

� �
go

to 6d�1
e and hence limdi!0 l6 ¼ 7de, which leads to the

following form for the Casimir invariants:

CIMHD
1 ¼

ð
D

d2x B�z þ deX
� �

A w� þ devzð Þ; (85)

CIMHD
2 ¼

ð
D

d2x B�z � deX
� �

G w� � devzð Þ; (86)

CIMHD
3 ¼

ð
D

d2x qK w� þ devzð Þ; (87)

CIMHD
4 ¼

ð
D

d2x qM w� � devzð Þ: (88)

Upon taking de ! 0 in a manner similar to the di limits of

Sec. III D, one can show that the Casimirs of (85)–(88)

become the MHD Casimirs of (81)–(84). For example, upon

setting K ¼M; limde!0 CIMHD
3 � CIMHD

4

� �
=de becomes

CMHD
4 . The Casimir CMHD

2 follows similarly.

An interesting property of IMHD is that the well-known

MHD cross helicity is also a Casimir for IMHD, if B! B�,6

that is

Cc ¼
ð

V

d3x v � B�; (89)

is a Casimir invariant of the general 3D IMHD model. For a

translationally symmetric system, inserting the representa-

tions of (22) and (23) into (89) and assuming appropriate

boundary conditions, the symmetric version of the functional

above is

Cc ¼
ð

D

d2x vzB
�
z þ Xw�

� �
; (90)

which at a first glance is not included in (85)–(88).

However, it is easy to see that upon choosing A ¼ w�

þdevz and G ¼ w� �devz, the Casimir (90) is recovered

from CIMHD
1 � CIMHD

2

� �
= 2deð Þ.

IV. ENERGY-CASIMIR VARIATIONAL PRINCIPLE WITH
SYMMETRY

A. The variational principle

Having determined the invariants of the translationally

symmetric XMHD, we can easily construct the Energy-

Casimir variational principle of (12) for XMHD equilibria

that have translation symmetry. Similar variational principles

with symmetry can be found in Refs. 14–16 and 26.

Gathering together relations (41) and (70)–(73), the Energy-

Casimir principle dF ¼ 0 reads as follows:

d
ð

D

d2x
q
2

v2
z þ jrvj2 þ jr!j2


 �
þ q !; v½ � þ U qð Þ
� �	

þB�z Bz

2
þrw� � rw

2
� B�z þ lX
� �

A w� þ lvzð Þ

� B�z þ k�1X
� �

G w� þ k�1vz

� �
�qM w� þ k�1vz

� �
� qK w� þ lvzð Þ

o
¼ 0: (91)

Note, in (91), the Casimir Cm with the harmonic function U
has been omitted.

For the first variation of (91) to vanish, the coefficients

of the arbitrary variations must separately vanish, yielding

the following conditions:

dq :
v2

2
þ qU qð Þ

 �

q
�M /ð Þ � K uð Þ �

d2
e

q2

1

2
Dwð Þ2

	

þ 1

2
jrBzj2 �rBz � r A uð Þ þ G /ð Þ


 �
þDw B�z þ lX

� �
A0 uð Þ þ B�z þ k�1X

� �
G0 /ð Þ

h
þq M0 /ð Þ þ K0 uð Þ

 �io

¼ 0; (92)

dvz : qvz � k�1qM0 /ð Þ � lqK0 uð Þ
�l B�z þ lX
� �

A0 uð Þ � k�1 B�z þ k�1X
� �

G0 /ð Þ ¼ 0; (93)

dv : r � qrvð Þ � q;!½ � ¼ lDA uð Þ þ k�1DG /ð Þ; (94)

d! : r � qr!ð Þ ¼ v; q½ �; (95)

dB�z : Bz ¼ A uð Þ þ G /ð Þ; (96)

dw� : Dwþ qM0 /ð Þ þ qK0 uð Þ þ B�z þ lX
� �

A0 uð Þ
þ B�z þ k�1X
� �

G0 /ð Þ ¼ 0; (97)
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where / :¼ w� þ k�1vz; u :¼ w� þ lvz, and 0 denotes the

derivative with respect to argument. For the derivation of the

equilibrium equations above, we used the expressions for B�z ;
w� in terms of the ordinary magnetic field variables w and Bz

according to B� :¼ Bþ d2
er� q�1r� B

� �
¼ B�z x; yð Þẑ

þrw� x; yð Þ � ẑ with B ¼ Bz x; yð Þẑ þrw x; yð Þ � ẑ

B�z ¼ Bz � d2
er � q�1rBz

� �
; (98)

w� ¼ w� d2
eq
�1Dw: (99)

Equation (92) is a Bernoulli law, which describes the

effects of macroscopic ion flows and electron inertia on the

total pressure. Using (96) and (97), the Bernoulli equation

takes the form

~P qð Þ ¼ q M /ð Þ þ K uð Þ

 �

� q
v2

2
� d2

e

2q
Dwð Þ2 þ jrBzj2

h i
;

(100)

with the components of the flow velocity being described by

Eqs. (93)–(95) and ~P :¼ q qU qð Þ

 �

q
¼ cP= c� 1ð Þ, where P

is the total pressure (see Sec. II). Also, note that Eqs. (96)

and (98) can be used to express the quantity B�z in terms of

the arbitrary functions A and G

B�z ¼A uð ÞþG /ð Þ�d2
er� q�1rA uð Þ

h i
�d2

er� q�1rG /ð Þ

 �

:

(101)

B. The Grad-Shafranov-Bernoulli system

We can show (see Appendix B) that (93) and (97), with

the help of (94), (95), and the definition (99), can be written

as a Grad-Shafranov-like system of the form

a1A0 uð Þr �
A0 uð Þ

q
ru

 !
þ a2q u� /ð Þ � a3

q
d2

e

� w� u� kl/
1� kl

� �
¼ A uð Þ þ G /ð Þ

 �

A0 uð Þ þ qK0 uð Þ;

(102)

c1G0 /ð Þr � G
0 /ð Þ
q
r/

� �
þ c2q u� /ð Þ þ c3

q
d2

e

� w� u� kl/
1� kl

� �
¼ A uð Þ þ G /ð Þ

 �

G0 /ð Þ þ qM0 /ð Þ;

(103)

Dw ¼ q
d2

e

w� u� kl/
1� kl

� �
; (104)

where

a1 ¼ l2 þ d2
e ; a2 ¼

k2

1� klð Þ2
; a3 ¼

1

1� kl
;

c1 ¼ k�2 þ d2
e ; c2 ¼ �a2 ; c3 ¼ kl a3: (105)

The above equilibrium equations are coupled to the Bernoulli

law (100), comprising a Grad-Shafranov-Bernoulli (GSB)

system. The existence of three coupled equations for three

different flux functions, namely w;/;u, is a direct verifica-

tion that in the XMHD model, the ions and the electrons are

allowed to move individually and separate from the magnetic

surfaces, forming their own flow surfaces. Upon specifying

the free functions A ¼ A uð Þ; G ¼ G /ð Þ; K ¼ K uð Þ and

M¼M /ð Þ, and adopting an equation of state P ¼ P qð Þ,
one in principle, can solve the GSB system, at least numeri-

cally, to determine the functions u; /, w and q. The level

sets of the flux function w give the magnetic surfaces, on

which the magnetic field lines lie. From u and /, we can

compute w�

w� ¼ u� kl/
1� kl

; (106)

while the poloidal ion flow velocity is given by

vp ¼
1

q
lA0 uð Þruþ k�1G0 /ð Þr/

 �

� ẑ; (107)

and the longitudinal velocity component follows from:

vz ¼
k

1� kl
/� uð Þ: (108)

Note that the longitudinal component of the magnetic field is

directly related to u and / through (96), and the poloidal

field is simply given by Bp ¼ rw� ẑ. Thus, all equilibrium

quantities of interest can be specified upon solving the sys-

tem (102)–(104).

C. Special cases of equilibria

1. Equilibria with longitudinal flow vp50ð Þ

From (107), requiring vp ¼ 0, we deduce that

G /ð Þ ¼ �klA uð Þ; (109)

hence u ¼ f /ð Þ. According to (106), w� ¼ f /ð Þ � kl/ð Þ=
1� klð Þ i.e., two sets of flux surfaces exist, the electron sur-

faces and the magnetic surfaces. The ions and the electrons

can flow in the poloidal direction on the same surfaces, but

their relative velocities are constrained so that the total poloi-

dal velocity vanishes. Substituting (109) into the system

(102) and (103) and using u ¼ u w�ð Þ; / ¼ / w�ð Þ yields

c1G0 w�ð Þr � G
0 w�ð Þ
q
rw�

� �
þ c2q u� /ð Þ þ c3

q
d2

e

w� w�ð Þ

¼ kl� 1

kl
G w�ð ÞG0 w�ð Þ þ qM0 w�ð Þ; (110)

Dw ¼ q
d2

e

w� w�ð Þ; (111)

with u� / given by

u� / ¼ l� k�1
� �

lK0 w�ð Þ þ k�1M0 w�ð Þ

 �

: (112)

2. Static equilibria

For the case of static XMHD equilibria, where the

macroscopic flow is neglected completely, we require addi-

tionally vz¼ 0. Hence, the flux functions / and u are equal
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to w� ¼ w� d2
eq
�1Dw i.e., f /ð Þ ¼ / ¼ w�. Hence, Eqs.

(110) and (111) reduce to

c1G0 w�ð Þr � G
0 w�ð Þ
q
rw�

� �
þ c3

q
d2

e

w� w�ð Þ

¼ kl� 1

kl
G w�ð ÞG0 w�ð Þ þ qM0 w�ð Þ; (113)

Dw ¼ q
d2

e

w� w�ð Þ: (114)

As above, two sets of flux surfaces exist, the electron-ion surfa-

ces and the magnetic surfaces. Note that the electrons and the

ions are allowed to move (in order to carry the electric current)

but their velocities should satisfy the constraint mivi þ meve

¼ 0. In this static case, the Bernoulli equation (100) becomes

~P ¼ qM w�ð Þ þ K w�ð Þ½ � � d2
e

2q
Dwð Þ2 þ jrBzj2

h i
; (115)

closing the GSB system.

3. Hall MHD equilibria

The HMHD GSB equilibrium equations can be obtained

from the system of Eqs. (102)–(103) and (100) upon setting

de¼ 0. To take properly this limit, one should substitute the

third term of the LHS of Eqs. (102) and (103) by (104).

Adopting k; lð Þ ¼ kþ; lþð Þ, for de ! 0, we have l! 0 and

k�1 ! di; therefore, the independent flux functions are the

poloidal magnetic flux function w and the ion flow function

/ :¼ wþ divz. Using the definition of /, vz becomes

vz ¼ d�1
i /� wð Þ: (116)

Also, from (107), we take

vp ¼
di

q
G0 /ð ÞBip; where Bip :¼ r/� ẑ: (117)

Next, with de¼ 0, Eqs. (102) and (103), in view of (104),

reduce to

d2
i G0 /ð Þr G0 /ð Þ

q
r/

� �
þ q

d2
i

/� wð Þ

� G /ð Þ þ A wð Þ

 �

G0 /ð Þ � qM0 /ð Þ ¼ 0; (118)

Dwþ q
d2

i

/�wð ÞþqK0 wð Þþ G /ð ÞþA wð Þ

 �

A0 wð Þ¼0: (119)

Finally, we close the system by writing the Bernoulli equa-

tion (100) with de¼ 0, in terms of q and the ion and magnetic

flux functions. To do so, we express the kinetic term using

(116) and (117) arriving at

~P qð Þ ¼ q K wð Þ þM /ð Þ � /� wð Þ2

2d2
i

" #
� d2

i

2q
G0 /ð Þ
� �2jr/j2:

(120)

To summarize, translationally symmetric barotropic Hall

MHD equilibria are governed by the GSB system (118)–(120)

with K wð Þ;M /ð Þ; A wð Þ; G /ð Þ being arbitrary functions,

and the pressure ~P qð Þ obeys a barotropic equation of state.

These are the barotropic translationally symmetric counterparts

of the baroclinic axisymmetric equilibrium equations derived

by an Euler-Lagrange variational principle in Ref. 25 and of

the barotropic axisymmetric equilibrium equations derived in

Ref. 27 by a direct projection of the 3D equilibrium equations.

Other derivations of the two-fluid equilibrium equations, which

do not ignore electron inertia, have been made by various

authors, e.g., Refs. 28–30. As expected, the sets of equilibrium

equations derived there are mostly of the type of the system

(102)–(104) because XMHD is closer to a full two-fluid

description than HMHD.

Despite the simpler structure of HMHD, the system of

(118)–(120) forms rather complex classes of equilibria. It

requires the simultaneous solution of two coupled nonlinear

PDEs, the Grad-Shafranov equations, which are additionally

coupled to a Bernoulli equation and generally the existence

of equilibrium solutions is not guaranteed. Due to this strong

coupling, studies of two-fluid equilibria have been carried

out numerically e.g., see Refs. 31 and 32. Here, we follow

this approach for Hall MHD, giving an example of an equi-

librium configuration (Fig. 1) computed by means of a sim-

ple finite difference iterative code, implemented on Matlab.

More information and possible improvements of this compu-

tation will be given in a future work. For the sake of clarity,

we mention that we used an MHD initial guess for w, and the

ion flux function / was initialized on the basis of this initial

FIG. 1. Ion flow surfaces (solid-red) (/ ¼ constant) and magnetic surfaces

(dashed-blue) (w ¼ constant) with a dimensionless Hall parameter di ¼ 0:03

(normalized ion skin depth) for a “straight” Tokamak HMHD equilibrium.

The solid black line represents the boundary. Departure of the flow surfaces

from the magnetic surfaces due to the Hall term in Ohm’s law is observed,

with a separation distance of the order of 0:04 L0.
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guess. The initial density q was set as a linear function of ini-

tialized flux function. These quantities are used for the calcu-

lation of their updated counterparts in the next iteration, and

so on, until the resulting state converges. For this particular

example, we adopted the following choices:

G /ð Þ ¼ g0 þ g1/þ g2/
2;

A wð Þ ¼ a0 þ a1wþ a2w
2;

M /ð Þ ¼ m0 þ m1/þ m2/
2;

K wð Þ ¼ k0 þ k1wþ k2w
2;

~P qð Þ ¼ p1q
c; (121)

where c ¼ 5=3 is the specific heat ratio. Note that because

we assumed that the plasma is barotropic, p1 can be a con-

stant, or at most a function of q. If we assume additionally

that p1 is a function of w and /, then the mass density should

also be a function of w and /, and due to the Bernoulli equa-

tion, Equation (120), v2 should be a function of the poloidal

ion and magnetic fluxes, a property that demands certain

restrictions on the permissible equilibrium configurations.

The present study though, can be extended to the more

generic case of baroclinic closure, i.e., when the internal

energy is a function of the density and specific entropies,25

which yield a dependence of the pressure on the flux func-

tions without restricting the equilibria. This will be consid-

ered in our future work.

For the computation of the equilibrium, we imposed

Dirichlet boundary conditions on the fluxes w and / on a D-

shaped boundary relevant to fusion experiments with elonga-

tion j ¼ 1:7 and triangularity d ¼ 0:4. In Fig. 1, we observe

the “departure” of the flow surfaces from magnetic surfaces,

a result qualitatively consistent with the configurations pre-

sented in Ref. 32, where the baroclinic, axisymmetric,

HMHD equilibrium equations were solved by means of the

FLOW2 code. The observed departure is due to the Hall

term diJ� B=q in Ohm’s law, which “breaks” the frozen

flux condition of ideal MHD. In Hall MHD, the flow surfaces

are frozen into the “ion fluid,” while the magnetic surfaces

are frozen into the “electron fluid.” An estimate of the poloi-

dal separation distance Dr, a measure of the departure of the

ion flow surfaces from the magnetic surfaces, was given in

Ref. 25. For typical Tokamak experiments, this quantity is of

the order of the ion poloidal Larmor radius, which is used as

a typical step size in neoclassical transport studies. The sepa-

ration distance can be approximated by Dr 	 divz=Bp. For

our computed equilibrium depicted in Fig. 1, the normalized

poloidal separation distance is Dr 	 0:04 (for di ¼ 0:03, and

using the average values of vz and Bp).

Although our purpose of this numerical example was to

demonstrate the qualitative way ion surfaces depart from the

magnetic surfaces, which is predicted by HMHD theory, we

briefly mention some equilibrium characteristics of our exam-

ple. The maximum b in the plasma core is bmax ¼ 1:2%, the

current density profile is peaked on the axis, i.e., it appears to

have a maximum in the central region with maximum values

of the order of 1� B0= l0L0ð Þ, while it reverses in the outer

region. The plasma response to the external magnetic field is

purely diamagnetic, since the center drops to 0:8� B0 from

1� B0 at the boundary. Lastly, the flow in the z-direction is

peaked on the axis with a maximum value at 0:25� vA,

where vA ¼ B0=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
, and the poloidal velocity component

has a maximum value of 0:1� vA. The constants B0, q0, and

L0 are reference values for the magnetic field, the mass den-

sity, and the characteristic length scale, respectively. The val-

ues and the shapes of the profiles can be adjusted by

regulating the free parameters in Ansatz (121) and adding

some additional nonlinear terms. However, for the sake of

simplicity, here, we consider this Ansatz with parametric val-

ues that favor fast convergence and results in configurations

with distinct surface separation.

As a final note, a similar numerical procedure as that

employed above for Hall MHD equilibria can be utilized for

the numerical integration of the GS systems (110)–(111) and

(113)–(114) for XMHD equilibria with longitudinal flows

and static XMHD equilibria respectively.

V. CONCLUSION

In this paper, we presented the Hamiltonian formula-

tion of translationally symmetric barotropic extended mag-

netohydrodynamics. We derived the symmetric Casimir

integrals of motion and produced the Energy-Casimir vari-

ational principle for obtaining the generalized equilibrium

equations, which govern XMHD stationary states. These

states may be particularly interesting for the study of 2D

collisionless reconnection configurations. Also, since two-

fluid effects become significant for smaller length scales,

increased values of plasma b, and flows approaching the

ion diamagnetic drift speed, equilibrium studies based on

XMHD equations could be useful for an adequate descrip-

tion of magnetically confined plasmas with such charac-

teristics. The equilibrium system of equations was shown

to be of Grad-Shafranov-Bernoulli type, and we studied

special cases of XMHD equilibria and HMHD equilibria

with arbitrary flow. In the case of HMHD equilibria with

arbitrary flow, we computed a numerical equilibrium on a

D-shaped domain, relevant to fusion experiments. The

resulting configuration is representative of the predicted

separation of the ion-flow and magnetic surfaces.

Extension of the present study to cases of arbitrary sym-

metry, as done for MHD in Ref. 15, in particular, for

helically symmetric configurations, is in progress and will

be published in a future work.
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APPENDIX A: DERIVATION OF THE SYMMETRIC
POISSON BRACKET (39)

1. Compressional part

fF;Ggc ¼ �
ð

V

d3x Fqr � Gv � Gqr � Fvð Þ: (A1)

Using the relation r � Fv ¼ �DFw, we obtain

fF;Ggc
TS ¼

ð
D

d2x FqDGw � GqDFwð Þ: (A2)

2. Vortical part

fF;Ggv ¼
ð

V

d3x q�1 r� vð Þ � Fv � Gvð Þ: (A3)

Using (23) and X :¼ �Dv, the vorticity is

r� v ¼ Xẑ þrvz � ẑ ; (A4)

therefore, we have

q�1 r� vð Þ � Fv � Gvð Þ
¼ q�1Xẑ � Fv � Gvð Þz þ q�1 rvz � ẑð Þ � Fv � Gvð Þp:

The subscripts z and p denote the z and poloidal components,

respectively, which read as follows:

Fv � Gvð Þz ¼ rFw �rGw �rFX � ẑ �rGXð Þẑ
þ rFw � rGXð Þẑ � rFX � rGwð Þẑ; (A5)

Fv�Gvð Þp¼Fvz
rGX�Gvz

rFXþFvz
rGw� ẑ�Gvz

rFw� ẑ:

(A6)

Using a; b½ � ¼ ra�rbð Þ � ẑ,

q�1Xẑ � Fv � Gvð Þz ¼q�1X FX;GX½ � þ rFw � rGXð
� rFX � rFw þ Fw;Gw½ �Þ; (A7)

q�1 rvz� ẑð Þ � Fv�Gvð Þp¼q�1 Fvz
GX;vz½ ��Gvz

FX;vz½ �
�

þFvz
rvz �rGw�Gvz

rvz �rFwÞ;
(A8)

integrating over the domain D and exploiting (40), it gives

ð
D

d2x q�1 rvz � ẑð Þ � Fv � Gvð Þp

¼
ð

D

d2x vzf FX; q
�1Gvz


 �
� GX; q

�1Fvz


 �
þrFw � r q�1Gvz

� �
�rGw � r q�1Fvz

� �
þq�1F!Gvz

� q�1G!Fvz
g: (A9)

Integrating (A7) over D and adding it to (A9) gives the vorti-

cal part of the translationally symmetric bracket.

3. Magnetic field-flow part

The magnetic field-flow (MHD) contribution is

fF;Ggmf ¼
ð

V

d3xq�1B� � Fv� r�GB�ð Þ�Gv� r�FB�ð Þ½ �;

(A10)

hence, one needs to compute q�1B� � Fv � r� GB�ð Þ½ �,
since the second term of (A10) follows by interchanging F
and G. From (36) and (38), we get

Fv � r� GB�ð Þ ¼ Fvz
ẑ þrFX � ẑ �rFwð Þ

� Gw� ẑ þrGB�z � ẑ
� �

¼ Fvz
rGB�z � Gw�rFX þ FX;GB�z


 �
ẑ

�Gw�rFw � ẑ þrFw � rGBz
ẑ; (A11)

and since B� ¼ B�z ẑ þrw� � ẑ, one can derive

q�1B� � Fv � r� GB�ð Þ

¼ q�1fB�z FX;GB�z


 �
þrFw � rGB�z

� �
þ Fvz

GB�z ;w
�
 �

þGw� w�;FX½ � � Gw�rFw � rw�g: (A12)

Integrating over D and using (40) givesð
D

d2x q�1B�z FX;GB�z


 �
þrFw � rGB�z

� �n

þw� FX; q
�1Gw�

h i
þ q�1Fvz

;GB�z

h i�

þrFw � r q�1G�w


 �
þ q�1F!Gw�

�o
: (A13)

The second term of (A10) can be computed by (A13) upon

interchanging F and G.

4. Hall part

The Hall part of the bracket (7) is

fF;Gghall ¼ �di

ð
V

d3x q�1B� � r � FB�ð Þ � r � GB�ð Þ½ � :

Using Eq. (38), we obtain

r� FB�ð Þ � r � GB�ð Þ
¼ FB�z ;GB�z


 �
ẑ þ Fw�rFB�z � Gw�rFB�z : (A14)

Taking the inner product with q�1B�, the expression above

gives

q�1 B�z FB�z ;GB�z


 �
þ Fw� GB�z ;w

�
 �
� Gw� FB�z ;w

�
 �
 �
:

which upon integrating over D and using (40) gives

fF;Gghall
TS ¼ �di

ð
D

d2x q�1B�z FB�z ;GB�z


 �n
þw� FB�z ; q

�1Gw�

h i
� GB�z ; q

�1Fw�

h i
 �o
:
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5. Electron inertial part

fF;Gginertial¼d2
e

ð
V

d3xq�1 r�vð Þ � r�FB�ð Þ� r�GB�ð Þ½ �:

For this part, we take the inner product of (A14) with

q�1r� v, where the curl of v is given by (A4). Following

the same steps, as before, gives

fF;Gginertial
TS ¼ d2

e

ð
D

d2x q�1X FB�z ;GB�z


 �n
þvz FB�z ; q

�1Gw�

h i
� GB�z ; q

�1Fw�

h i
 �o
:

APPENDIX B: DERIVATION OF (102)–(104)

From (94) and (95), we deduce the following (except for

the gradients of two harmonic functions that can be

neglected):

lrAþ k�1rG ¼ qrv� qr!� ẑ; (B1)

qr! ¼ vrq� ẑ: (B2)

Taking the cross product of (B1) with ẑ gives

vp ¼ q�1 lA0 uð Þruþ k�1G0 /ð Þr/
h i

� ẑ: (B3)

Now, from the curl of (B3), we obtain

Dv ¼ lr � A
0

q
ru

 !
þ k�1r � G

0

q
r/

� �
¼ �X; (B4)

and substituting the expression above into (93) gives

l2A0 þ k�2G0
� �

r � l
A0

q
ruþ k�1 G0

q
r/

 !

¼ kq
1� kl

u� /ð Þ þ lqK0 þ k�1qM0 þ B�z lA0 þ k�1G0
� �

;

(B5)

where we used vz ¼ k u� /ð Þ= kl� 1ð Þ, which follows from

the definitions of u and /. Using Eq. (101), we can write Eq.

(B5) as

l3þ ld2
e

� �
A0r � A

0

q
ru

 !
þ k�3þ k�1d2

e


 �
G0r � G

0

q
r/

� �

¼ kq
1� kl

u�/ð Þ þ q lK0 þ k�1M0� �
þ lA0 þ k�1G0
� �

AþGð Þ: (B6)

Inserting Eqs. (98) and (B4) into (97) and following a similar

procedure as above, we derive a second GS-like equation,

l2þ d2
e

� �
A0r � A

0

q
ru

 !
þ k�2þ d2

e


 �
G0r � G

0

q
r/

� �

¼ q
d2

e

w�u� kl/
1� kl

� �
þq K0 þM0ð Þþ A0 þG0ð Þ AþGð Þ;

(B7)

and w is connected to u and / by

Dw ¼ q
d2

e

w� u� kl/
1� kl

� �
: (B8)

The last equation can be derived from (99), using the defini-

tions of u and /. Finally, we may refine the GS system a bit

more by combining (B6) and (B7). After careful manipula-

tion, this system leads to (102) and (103).
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