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A simulated annealing (SA) relaxation method is used for the calculation of high-beta reduced mag-

netohydrodynamics (MHD) equilibria in toroidal geometry. The SA method, based on artificial

dynamics derived from the MHD Hamiltonian structure, is used to calculate equilibria of large-

aspect-ratio and circular-cross-section tokamaks as well as toroidally averaged stellarators.

Tokamak equilibria including incompressible poloidal rotations are obtained and the Shafranov shift

is seen to increase nearly quadratically in the rotation speed. A mapping procedure between non-

rotating and poloidally rotating equilibria is shown to explain the quadratic dependence of equilibria

shift on rotation. Calculated stellarator equilibria are seen to agree reasonably with previous results.

The numerical results demonstrate the first successful application of the SA method to obtain toroi-

dal equilibria. Published by AIP Publishing. https://doi.org/10.1063/1.5038043

I. INTRODUCTION

The calculation of magnetohydrodynamics (MHD) equi-

libria is an indispensable element of basic plasma physics, as

well as the application to magnetic fusion research. Many

methods for equilibrium calculations have been developed

for two-dimensional and three-dimensional toroidal plasmas.

The present work utilizes and develops the alternative simu-

lated annealing (SA) method of Ref. 1 for the calculation of

equilibria. This method is based on the fact that ideal fluid

dynamics, including ideal MHD, possesses a Hamiltonian

form in terms of a noncanonical Poisson bracket.2 Because

of the Hamiltonian form, ideal MHD conserves the energy of

the system and has so-called Casimir invariants that arise

from degeneracy of the Poisson bracket. With the SA

method, we solve an artificial dynamics that is derived so

that the energy of the system changes monotonically while

the Casimir invariants are preserved. Given that equilibria

are obtained by extremizing the energy at fixed Casimir

invariants,3–5 we can obtain an MHD equilibrium by solving

the artificial SA dynamics as an initial-value problem.

A SA method was first developed for two-dimensional

neutral fluid flows.6–8 The method was significantly general-

ized in Ref. 1 by developing several kinds of brackets that

monotonically change the energy of the system while preserv-

ing the Casimir or other invariants of the original system.

There, a symmetric bracket with the possibility of various

effects such as smoothing through a symmetric kernel and the

preservation of chosen constraints, ones not inherent in the

original dynamics, was introduced by making use of a Dirac

bracket, and the general use of such brackets for obtaining

equilibria was termed as “simulated annealing.”

The SA method was applied to low-beta reduced MHD9

in Ref. 10, using the reduced MHD Hamiltonian structure of

Refs. 11 and 12. Various equilibria were successfully

obtained in a two-dimensional rectangular domain with peri-

odic boundaries in both dimensions. Moreover, a method

was developed for pre-adjusting values of the Casimir invari-

ants of an initial condition for the SA.13 More recently, low-

beta reduced MHD equilibria in cylindrical geometry were

calculated by SA, where the inside of the plasma was heli-

cally deformed, even including magnetic islands.14 The sym-

metric bracket with a smoothing effect was adopted in these

studies, demonstrating the usefulness of SA for the MHD

equilibrium calculation. For an overview of structure and

structure-preserving algorithms for plasma physics from

much wider view point, including SA, we refer to Ref. 15.

In the present paper, SA is applied to calculate high-beta

reduced MHD16 equilibria in toroidal geometry, which is pos-

sible because high-beta reduced MHD is also a Hamiltonian

system.11 Large-aspect-ratio and circular-cross-section toka-

maks as well as toroidally averaged stellarator equilibria are

calculated. The results obtained take into account the effect

of toroidicity, where a proper accounting of the Shafranov

shift17 is observed. We compare our numerical results with

the previous studies and obtain reasonable agreement. For

tokamak equilibria, we also include incompressible poloidal

rotation. This highlights one of the advantages of the SA

method. The results given here comprise a significant next

step towards ultimate goal of calculating MHD equilibrium

in fully toroidal geometry.

Furthermore, in the present paper, we use a mapping

procedure between non-rotating and poloidally rotating equi-

libria for high-beta reduced MHD. This is an extension to

high-beta reduced MHD of the low-beta reduced MHD map

first given in Ref. 18, which is a special case of thea)furukawa@tottori-u.ac.jp
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generalization of Refs. 19 and 20. This map nicely explains

how equilibria change with poloidal rotation.

This paper is organized as follows. In Sec. II, the theory

of the SA is described for high-beta reduced MHD. Next, we

will explain numerical schemes for solving the equations of

the SA and the convergence criterion in Sec. III. Then, equi-

libria of tokamaks and toroidally averaged stellarators are

presented in Sec. IV. The results include tokamak equilibria

with poloidal rotation. There these numerical results are

compared and contrasted with the previous studies. The map-

ping procedure is also presented in Sec. IV. Conclusions are

given in Sec. V.

II. FORMULATION

A. High-beta reduced MHD and normalization

The high-beta reduced MHD equations16 are given by

@U

@t
¼ U;u½ � þ w; J½ � � e

@J

@f
þ P; h½ � ¼: f 1; (1)

@w
@t
¼ w;u½ � � e

@u
@f
¼: f 2; (2)

@P

@t
¼ P;u½ � ¼: f 3: (3)

Here, the fluid velocity v and the magnetic field B are

expressed by

v ¼ ẑ �ru; (4)

B ¼ rw� ẑ þ ẑ; (5)

where the unit vector in the toroidal direction is denoted by

ẑ. A coordinate system (r, h, f) is used, where r is the minor

radius, h is the poloidal angle, and f is the toroidal angle.

The length in the toroidal direction is measured by z:¼R0f
with R0 being the major radius of the toroidal plasma and

x :¼ r cos h. The stream function and the magnetic flux func-

tion are denoted by u and w, respectively, with the vorticity

in the f-direction defined by U :¼ �?u and the current den-

sity in the negative f-direction defined by J :¼ �?w. The

two-dimensional gradient operator r? is defined in the r–h
plane, and the corresponding Laplacian is defined as usual

by �? :¼ r? � r?. The Poisson bracket between any func-

tions f and g is defined by ½f ; g� :¼ ẑ � rf �rg. Quantities

appearing in the equations above are normalized by the

plasma minor radius a, a typical mass density q0, a typical

pressure p0, a toroidal magnetic field B0, an Alfv�en velocity

defined by vA :¼ B0=
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
, where l0 is the vacuum perme-

ability, and an Alfv�en time defined by sA :¼ a=vA. An

inverse aspect ratio is defined by e :¼ a=R0. Finally, P
:¼b0p with b0 :¼ 2l0p0=B2

0 and p being the normalized

pressure, and h :¼ ex. The right-hand sides f1, f2, and f3 are

defined for later use.

Note that if the f-derivative terms in Eqs. (1) and (2) are

dropped, then the system reduces to axisymmetric dynamics.

The effect of the toroidal geometry appears only through the

last term of Eq. (1).

We also note that the reduced MHD equations (1)–(3)

have the same form as the reduced MHD equations for heli-

cal plasmas derived under the stellarator expansion.21

However, three changes of Eqs. (1)–(3) are needed for stella-

rators. First, the toroidal angle f is understood as a toroidal

angle for long wavelength structures; short wavelength struc-

tures are averaged out in the toroidal direction. Second, the

poloidal flux function w is replaced by a total poloidal flux

function W :¼Wh þ w, where Wh is a helical flux generated

by external coils. Third, the curvature term h is replaced by
1
2
X, where X is the sum of the curvature of the toroidal mag-

netic field and that of the helical magnetic field. Details of

Wh and X will be given in Sec. IV C.

B. Hamiltonian formulation

For the high-beta reduced MHD equations, the

Hamiltonian form was presented in Refs. 11 and 12. The

Hamiltonian is given by

H u½ � :¼
ð
D

d3x
1

2
jr?ð��1

? UÞj2 þ 1

2
jr?wj2 � hP

� �
; (6)

where the state vector u :¼ ðU;w;PÞT and the domain is

denoted by D.

The functional derivative of H½u� is defined through

lim
du!0
ðH uþ du½ � � H u½ �Þ ¼

ð
D

d3x
dH u½ �
dui

dui; (7)

where i¼ 1, 2, 3 and we sum over the repeated indices.

Then, dH½u�=du is obtained as

dH u½ �
du
¼

�u
�J
�h

0
@

1
A: (8)

By defining the Poisson operator as

J :¼

� U; �½ � � w; �½ � þ e
@

@f
� P; �½ �

� w; �½ � þ e
@

@f
0 0

� P; �½ � 0 0

0
BBBBB@

1
CCCCCA
; (9)

high-beta reduced MHD can be written in Hamiltonian form

as

@u

@t
¼ J dH u½ �

du
¼ u;Hf g ; (10)

where in the last equality the Poisson bracket is used. A gen-

eral noncanonical Poisson bracket has the form

F;Gf g :¼
ð
D

d3x0
ð
D

d3x00
dF u½ �
duiðx0Þ J

ijðx0; x00Þ dG u½ �
dujðx00Þ ; (11)

where Jij denoting the components of a Poisson operator. In

our case, J ¼ d3ðx0 � x00ÞJ , with J being given by Eq. (9).

(See Ref. 5 for further details.)
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C. Casimir invariant

A Casimir invariant is defined to be a functional C½u�
that satisfies {C, F}¼ 0 for any functional F½u�, where the

curly bracket denotes a noncanonical (degenerate) Poisson

bracket. It is easily shown that the high-beta reduced MHD

bracket defined by (9) has the following three Casimir

invariants:

Cv :¼
ð
D

d3x U; (12)

Cm :¼
ð
D

d3x w; (13)

Cp :¼
ð
D

d3x P: (14)

D. Artificial dynamics for relaxation

In this paper, we adopt an artificial dynamics defined by

the following double bracket:1,15

ððF;GÞÞ :¼
ð
D

d3x0
ð
D

d3x00 fF; uiðx0ÞgKijðx0; x00Þfujðx00Þ;Gg ;

(15)

defined for any functionals F½u� and G½u�, where i, j¼ 1, 2, 3

and (Kij) is a symmetric kernel with a definite sign. The curly

bracket in Eq. (15) is, in general, any Poisson bracket of the

form of (11). When we take (Kij) as positive definite, then

the energy of the system decreases monotonically by the arti-

ficial dynamics

@u

@t
¼ ððu;HÞÞ: (16)

For the case at hand, it is convenient to introduce the

following artificial convection fields:

~uðxÞ :¼ �
ð
D

d3x0 K1iðx; x0Þf iðx0Þ; (17)

~JðxÞ :¼ �
ð
D

d3x0 K2iðx; x0Þf iðx0Þ; (18)

~hðxÞ :¼ �
ð
D

d3x0 K3iðx; x0Þf iðx0Þ; (19)

in terms of which the artificial evolution of Eq. (16) can be

written compactly as

@U

@t
¼ U; ~u½ � þ w; ~J

� �
� e

@ ~J

@f
þ P; ~h
� �

¼: ~f 1; (20)

@w
@t
¼ w; ~u½ � � e

@~u
@f
¼: ~f 2; (21)

@P

@t
¼ P; ~u½ � ¼: ~f 3: (22)

As we see, the convection fields u, J, and h of the original

evolution equations (1)–(3) are replaced by the artificial

convection fields ~u; ~J , and ~h, respectively. The right-hand

sides ~f 1; ~f 2, and ~f 3 are again defined for later use.

Finally, we explain the boundary conditions. We will

use a Fourier mode expansion in the poloidal and toroidal

directions. For the poloidal mode number m¼ 0 components,

the radial derivatives are set to be zero at r¼ 0, for the other

m components, their values are set to be zero. At the plasma

edge, all the Fourier components are set to be zero.

III. NUMERICAL SCHEMES AND CONVERGENCE
CRITERION

A. Numerical schemes

In addition to the Fourier mode expansion in h and f, the

numerical scheme we adopt for solving Eqs. (20)–(22)

employs a second-order finite difference method in r. Here,

we only consider axisymmetric configurations; consequently,

the mode number n for f only takes the value 0. The second-

order implicit Runge-Kutta method is used for the time step-

ping, which is time-reversal symmetric and symplectic. The

implicit equation associated with this procedure is solved by

the Newton–Raphson method that uses the generalized mini-

mum residual (GMRES) method22 implemented in the

Jacobian-free form.

We assume that the symmetric kernel (Kij) in Eq. (15) is

diagonal, as in Ref. 14, and we choose each diagonal term to

have the form aigðx0; x00Þ, where ai is a constant and gðx0; x00Þ
is the three-dimensional Green’s function defined through

the Poisson equation

�gðx; x00Þ ¼ �d3ðx� x00Þ: (23)

Here, the three-dimensional Laplacian is written as � and

d3ðx� x00Þ is the three-dimensional Dirac delta function.

This choice of (Kij) introduces a smoothing effect in all

directions.

B. Convergence criterion

The code used for the present calculations evolves the

Fourier components of U, w, and P. Thus, the right-hand side

of the evolution equations (20)–(22) is also Fourier decom-

posed. We write the Fourier coefficients of ððu;HÞÞ, i.e., ~f i as
~f i

mn, where m and n denote the poloidal and toroidal mode

numbers, respectively. We also write the Fourier coefficients

of f i of the original evolution equations (1)–(3) as f i
mn. Then,

the convergence criterion is set such that the maximum abso-

lute values among f i
mn and ~f i

mn become smaller than a thresh-

old value. We took 10�6, or smaller in some cases, as the

threshold value in the numerical results in this paper.

IV. NUMERICAL RESULTS

A. Axisymmetric tokamak equilibrium without rotation

Let us turn to our first example, the calculation of large-

aspect-ratio, circular-cross-section tokamak equilibria using

SA. The initial conditions are chosen to be cylindrically

symmetric with the profiles of the safety factor q and the

pressure p as plotted in Fig. 1. We take P¼b0p and consider

three cases with b0¼ 0.1%, 0.5%, and 1%. The rotation
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velocity is chosen to be zero and, consistently, the stream

function u � 0. In Subsection IV B, we will consider the

case of finite poloidal rotation. Throughout, the inverse

aspect ratio is set to be e¼ 1/10.

The time evolution of the total and various components of

the energy is shown in Fig. 2 for the case of b0¼ 1%. The

kinetic, magnetic, and internal energies are denoted by Ek, Em,

and Ep, respectively. The magnetic energy increases as the

time proceeds, while the internal energy decreases with the

total energy decreasing monotonically. Note that the kinetic

energy remains zero, a consequence of ((U, H)) being zero for

the chosen initial condition, resulting in U remaining zero.

Note that the time evolution for the cases b0¼ 0.1% and 0.5%

is similar to those of Fig. 2. Also note that the Casimir invari-

ants Cv, Cm, and Cp are well conserved in the simulation.

Figure 3 shows contour plots of w for the equilibria

obtained in our three cases. The horizontal axis x is the

distance along the major radius measured from the plasma

center R0. The vertical axis y is the height from the mid-

plane. Observe, the Shafranov shift increases as b0 is

increased.

Figure 4 shows plots of the w profiles on the midplane

of the three obtained equilibria, along with the initial w pro-

file common to each case. As b0 is increased, the peak of w
moves outward. This is due to the increase in the m¼61

and n¼ 0 components of w. For these numerical results, the

m¼62 and n¼ 0 components are very small for the inverse

aspect ratio e¼ 1/10. The pressure profiles also have the sim-

ilar outward shift of their peaks.

From the peaks of the w profiles, we evaluated the

Shafranov shift D(0), which is shown in Fig. 5. The result of

our calculations denoted by “SA” is compared with the

Shafranov shift obtained from the analytic solution using the

large-aspect-ratio expansion,23 denoted by “Shafranov eq.”.

In the latter, the Shafranov shift remains at b0¼ 0 since

the toroidicity remains even at zero beta; however, the

Shafranov shift seems to be zero at b0¼ 0 for SA. This is

because the toroidal effect fully disappears at zero beta in

high-beta reduced MHD.

We also note that w and P are convected by the same

convection field ~u in the two-dimensional case. Therefore, the

initial relation between w and P is retained, i.e., if we give an

initial condition in a form P¼P(w), the same relation holds in

the obtained equilibrium. This is shown in Fig. 6. We observe

that the initial relation between w and P is retained for each

b0. This means, in a sense, that we can specify the pressure

profile of the two-dimensional equilibrium to be obtained, as

is usual when solving the Grad-Shafranov equation.

With SA, the total poloidal flux is conserved because of

the Dirichlet boundary condition at the plasma edge.

Therefore, the maximum value of w does not change from

the initial condition, as we see in Fig. 6 as well as in Fig. 4.

However, the safety factor profile changes from the initial

condition. In tokamak equilibrium calculations, it may be

necessary to control the safety factor profile. Such local pro-

file control using SA will be a future issue.

FIG. 1. The initial safety factor q and the pressure p profiles.

FIG. 2. Time evolution of the kinetic energy Ek, the magnetic energy Em,

the internal energy Ep, and the total energy Ek þ Em þ Ep. The magnetic

energy increases as the time proceeds, while the internal energy decreases

more, resulting in the total energy decreasing monotonically.

FIG. 3. Contour plots of w for (a)

b0¼ 0.1%, (b) 0.5%, and (c) 1%. The

horizontal axis x denotes the distance

along the major radius direction mea-

sured from the center of the plasma R0.

The vertical axis y is the height from

the midplane.
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B. Axisymmetric tokamak equilibrium with poloidal
rotation

One of the advantages of SA is that it can handle various

types of plasma rotation. Substantial literature exists for axi-

symmetric tokamak equilibria with plasma rotations and we

mention Refs. 24–27 as examples, and there are recent results

on a numerical code for equilibrium calculations of two-fluid

equations,28 where both toroidal and poloidal rotations can

exist in the equilibrium. In the present model, the rotation is

in the poloidal direction. Note that the purely poloidal rotation

is possible only in the large aspect ratio limit, under which the

reduced MHD model is derived. Because the flow is incom-

pressible, there is no difficulty in calculating such equilibria.

We performed SA starting from the same initial conditions in

Subsection IV A for w and P, but now we choose a u that

gives vh ¼ 4vhmaxrð1� rÞ. Therefore, vh has its maximum

value vhmax at r¼ 1/2 when t¼ 0. The rotation profile can

change as time proceeds. Indeed, u must be a function of w in

the equilibrium according to the Ohm’s law (2) with axisym-

metry. The flux surfaces shift outward in the major radius

direction at finite beta, and thus u must also change from the

initial condition to meet the equilibrium condition. Figure 7

shows that the Shafranov shift of the magnetic axis D(0)

increases approximately quadratically in the poloidal rotation

speed. This is due to the dynamic pressure of the flow. Here,

the poloidal rotation speed is normalized by the toroidal

Alfv�en velocity, but if we normalize it by the poloidal Alfv�en

velocity at the plasma edge, vh¼ 10�2 corresponds to 3.5% of

the poloidal Alfv�en velocity. The increase in the Shafranov

shift is about 5%–7% compared to the non-rotating equilib-

rium at vhmax¼ 10�2; however, the flux surface shape does

not change much.

Here, we explain a mapping procedure between an equi-

librium without rotation and poloidally rotating equilibria for

the high-beta reduced MHD and then show that the quadratic

dependence on the poloidal rotation speed can be explained

by the map. The map is an extension of a map first derived

for the low-beta reduced MHD in Ref. 18 and a special case

of that of Refs. 19 and 20. The equilibrium equations includ-

ing the poloidal rotation are given by f i¼ 0 (i¼ 1, 2, 3).

From the equation for i¼ 2, or [w, u]¼ 0, we obtain

u¼G(w), where G is an arbitrary function. Also from the

FIG. 4. The w profiles on the midplane for three equilibria obtained by simu-

lated annealing, along with the initial w profile common to each case.

FIG. 5. The Shafranov shift D(0) vs. b0. Here, “SA” denotes the simulated

annealing result, while “Shafranov eq.” denotes the analytic solution

obtained by large-aspect-ratio expansion.

FIG. 6. The relation between w and P¼b0p is shown in a scatter plot using

w and P at 104 points on the poloidal cross section. For each b0, the initial

relation between w and P is retained.

FIG. 7. The effect of poloidal rotation on the Shafranov shift for b0¼ 0.1%

and 1%. The Shafranov shift increases quadratically in vhmax.
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equation for i¼ 3, or [P, u]¼ 0, we obtain P ¼ KðuÞ
¼ K � GðwÞ ¼: LðwÞ, where K is an arbitrary function.

Noting that J ¼ �?w and

U ¼ �?u ¼ G0ðwÞ�?wþ G00ðwÞjr?wj2; (24)

f1¼ 0 reads

G02ðwÞ�?wþ G0ðwÞG00ðwÞjr?wj2;w
h i

� �?w;w½ � � hL0ðwÞ;w
� �

¼ 0: (25)

Therefore, we obtain12

ð1� G02ðwÞÞ�?w� G0ðwÞG00ðwÞjr?wj2

þ hL0ðwÞ þ FðwÞ ¼ 0; (26)

where F(w) is an arbitrary function. This is an extended

Grad-Shafranov equation for a poloidally rotating equilib-

rium. By setting G(w) � 0, we obtain the Grad-Shafranov

equation without rotation as

�?wþ hL0ðwÞ þ FðwÞ ¼ 0: (27)

Now, if we define

v ¼ XðwÞ :¼
ðw ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� G02ðw0Þ
q

dw0; (28)

the equilibrium equation can be rewritten as

�?vþ h �L
0ðvÞ þ �FðvÞ ¼ 0; (29)

where

�L
0ðvÞ :¼ L0ðX�1ðvÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� G02ðX�1ðvÞÞ
p ; (30)

�FðvÞ :¼ FðX�1ðvÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G02ðX�1ðvÞÞ

p : (31)

Note that X�1(v)¼w. Equation (29) has the same form as

Eq. (27) for an equilibrium without rotation. Therefore, an

equilibrium without rotation can be mapped to equilibria

with poloidal rotation. We see that the source terms of Eq.

(29) are changed by the factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G02ðwÞ

p
. Here, G0ðwÞ

expresses the poloidal rotation velocity normalized by the

poloidal Alfv�en velocity. When jG02ðwÞj � 1, the factor can

be approximated as 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G02ðwÞ

p
’ 1þ 1

2
G02ðwÞ that

indicates effective increase in the source term, such as the

pressure gradient, quadratically in the poloidal rotation

speed. This explains the quadratic dependence of the

Shafranov shift on the poloidal rotation speed. We also point

out that any equilibria without rotation can be identified with

one with rotation by a choice of G. This, of course, includes

the equilibria obtained here by SA.

C. Heliotron equilibrium averaged over toroidal
direction

For our next example, we consider heliotron equilibria

averaged over the toroidal direction. As mentioned at the end

of Sec. II A, the reduced MHD equations (1)–(3) can be used

for stellarators under an appropriate replacement of variables.

Here, we further assume that the dependence of the equilib-

rium quantities on f, the toroidal angle for the long wavelength

structure, vanishes. Then, the f-derivative terms drop out.

The poloidal flux function w is replaced by a total poloi-

dal flux function W :¼Wh þ w, where Wh is independent of

time. Thus, @Wh/@t¼ 0 and only w on the right-hand side

needs to be replaced. The poloidal flux function due to heli-

cal coils, derived under the cylindrical approximation, is

given in normalized form by

Wh :¼ � i-hðaÞ
M

FðMerÞ
F0ðMeÞ ; (32)

where i-hðaÞ is a rotational transform generated by the helical

coils, evaluated at the plasma edge, M is the pitch number, e
is the inverse aspect ratio, and

FðMerÞ :¼ ‘

Mer
I‘ðMerÞI0‘ðMerÞ: (33)

Here, ‘ is the pole number, I‘(z) denotes the ‘-th order modi-

fied Bessel function of the first kind, and I0‘ðzÞ denotes a z
derivative of I‘(z).

The curvature term X, derived under cylindrical approx-

imation, is given in normalized form by

X :¼ 2er cos hþ ei-hðaÞ
GðMerÞ
F0ðMeÞ ; (34)

where F0ðMeÞ denotes the derivative of F with respect to

Mer and is evaluated at r¼ 1, and

GðMerÞ :¼ I0‘ðMerÞ
� �2 þ ‘

2 þ ðMerÞ2

ðMerÞ2
I‘ðMerÞð Þ2: (35)

The first and the second terms of X are the toroidal magnetic

field curvature and the helical curvature, respectively.

FIG. 8. The magnetic axis position Rax plotted against b0.
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We seek to reproduce simulations of the Heliotron E

device published in Ref. 29. We assume the inverse aspect

ratio e¼ 1/10, which is similar to that of the Heliotron E

device, and that the poloidal cross section has a circular

shape. Also, we set the pole number ‘¼ 2 and the pitch num-

ber M¼ 19.

For the initial pressure profile, we take P¼ b0(1 – s)2

with s :¼ (W – W(0))/(W(a) – W(0)) being a normalized total

poloidal flux function, where W(0) and W(a) are evaluated at

the magnetic axis and at the plasma edge, respectively. This

is the same profile as that of Ref. 29. Note that this pressure

profile remains unchanged during the artificial SA dynamics,

as explained in the last part of Sec. IV A.

It is difficult to completely reproduce the results of Ref.

29 for several reasons. First, the net plasma current in the

toroidal direction on each flux surface cannot be kept zero

with the form of SA used here, while in Ref. 29 it is set to be

zero. The second reason is that there is difficulty in control-

ling the local profile of the rotational transform -i with SA.

Because of these two reasons, we cannot perfectly match the

rotational transform with that of Ref. 29. A third reason is

that the expressions for the helical flux Wh in Eq. (32) and

the magnetic curvature X in Eq. (34) are derived under the

cylindrical approximation, while those in Ref. 29 are calcu-

lated numerically from helical coil currents in toroidal geom-

etry. The last reason is due to the difference of the shape of

the plasma edge. In our simulation, it is exactly circular,

while it is slightly elongated in Ref. 29. The aspect ratio is

also not exactly matched. Despite these reasons, we observe

reasonable agreement between our SA results and those of

Ref. 29.

Figure 8 shows the magnetic axis position Rax as a func-

tion of b0. Observe that the tendency and the magnitude of

the magnetic axis shift agree reasonably with Fig. 2(a) of

Ref. 29, despite the differences explained above.

The shapes of the flux surfaces are shown in Fig. 9.

A similar figure of flux surfaces is presented in Fig. 3 of

Ref. 29 for b0¼ 7%. The shapes of the flux surfaces in the

central region of the plasma, especially the deformation to

the D shape at high beta, show behavior similar to that of

Ref. 29.

Figure 10 depicts the rotational transform. Here, in Fig.

10(a), the radial profiles of -i for b0¼ 3%, 7%, and 11% are

plotted as functions of the normalized total poloidal flux s.

Also -i at the magnetic axis -ið0Þ, at its minimum -imin, and at

the plasma edge -iðaÞ as functions of b0 are shown in Fig.

10(b). Although it is difficult to identify from the figure, -iðaÞ
slightly decreases and -ið0Þ slightly increases as b0 is

increased. We do not observe a difference between -ið0Þ and

-imin, as was observed in Ref. 29. The main reason for this dif-

ference is that the net current free condition in the equilibria

of Ref. 29 is not imposed in our equilibria. The difference

FIG. 9. Contour plots of W for (a) b0¼ 3%, (b) b0¼ 7%, and (c) b0¼ 11%.

FIG. 10. (a) The radial profiles of -i for

several values of b0 as functions of the

normalized total poloidal flux s. (b)

The rotational transform at the mag-

netic axis -ið0Þ, at its minimum -imin,

and at the plasma edge -iðaÞ plotted

against b0.
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between -ið0Þ and -imin arises because of the magnetic shear

reversal that is caused by forcing the net zero current.

In summary, because of some differences in the equilib-

rium parameters, e.g., the net current, we do not obtain per-

fect agreement with Ref. 29. However, we obtain reasonable

agreement, especially in the Shafranov shift and the flux sur-

face shapes.

V. CONCLUSIONS

We have developed the theory of the simulated anneal-

ing for calculating high-beta reduced MHD equilibria in

toroidal geometry. Large-aspect-ratio circular-cross section

tokamak and toroidally averaged stellarator equilibria were

successfully calculated. These equilibria possess the proper

Shafranov shift according to the toroidal effect. We obtain

reasonable agreement of our results with the previous stud-

ies. Especially for the tokamak equilibrium calculation, we

obtained equilibria including poloidal rotation. For this case,

the Shafranov shift of the magnetic axis increased quadrati-

cally in the poloidal rotation speed. The quadratic depen-

dence is explained by the mapping procedure between non-

rotating and poloidally rotating equilibria for high-beta

reduced MHD. This achievement highlights one of the

advantages of the simulated annealing method, i.e., it can

handle equilibria with rotation.
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