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Hamiltonian extended magnetohydrodynamics (XMHD) is restricted to respect helical
symmetry by reducing the Poisson bracket for the three-dimensional dynamics to
a helically symmetric one, as an extension of the previous study for translationally
symmetric XMHD (Kaltsas et al., Phys. Plasmas, vol. 24, 2017, 092504). Four
families of Casimir invariants are obtained directly from the symmetric Poisson
bracket and they are used to construct Energy–Casimir variational principles for
deriving generalized XMHD equilibrium equations with arbitrary macroscopic flows.
The system is then cast into the form of Grad–Shafranov–Bernoulli equilibrium
equations. The axisymmetric and the translationally symmetric formulations can be
retrieved as geometric reductions of the helically symmetric one. As special cases,
the derivation of the corresponding equilibrium equations for incompressible plasmas
is discussed and the helically symmetric equilibrium equations for the Hall MHD
system are obtained upon neglecting electron inertia. An example of an incompressible
double-Beltrami equilibrium is presented in connection with a magnetic configuration
having non-planar helical magnetic axis.
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1. Introduction
Extended magnetohydrodynamics (XMHD) is perhaps the simplest consistent,

in terms of energy conservation (Kimura & Morrison 2014), fluid plasma model
containing both Hall drift and electron inertial effects. It is obtained by reduction of
the standard two-fluid plasma model, when the quasineutrality assumption is imposed
and expansion in the smallness of the electron–ion mass ratio is performed (Lüst
1959; Kimura & Morrison 2014), although the latter expansion need not be done
(see Kawazura, Miloshevich & Morrison (2017, § VI)). The Hamiltonian structure
of this model was first identified in Abdelhamid, Kawazura & Yoshida (2015) for
its barotropic version and corroborated in Lingam, Morrison & Miloshevich (2015b),
where transformations to the Hamiltonian structures of Hall MHD (HMHD) (e.g.
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2 D. A. Kaltsas, G. N. Throumoulopoulos and P. J. Morrison

Lighthill (1960)), inertial MHD (IMHD) (Kimura & Morrison 2014; Lingam, Morrison
& Tassi 2015a) and the ordinary ideal MHD model were identified. The Hamiltonian
structure of XMHD served as the starting points for two subsequent papers that dealt
with applications of its translationally symmetric counterpart to magnetic reconnection
(Grasso et al. 2017) and equilibria (Kaltsas, Throumoulopoulos & Morrison 2017). In
the former publication the incompressible case with homogeneous mass density was
considered, while in the latter the analysis concerned the compressible, barotropic
version of the model.

Here we present the Hamiltonian formulation of the barotropic XMHD model in the
presence of continuous helical symmetry, an extension of our previous work (Kaltsas
et al. 2017) that was concerned with translationally symmetric plasmas. Helical
symmetry is a general case that includes both axial and translational symmetry.
Therefore the results obtained within the context of a helically symmetric formulation
can be directly applied to the sub-cases of axial and translational symmetry. This
provides a unified framework for the study of equilibrium and stability of symmetric
configurations, which is important because purely or nearly helical structures are
very common in plasma systems. For example, three-dimensional (3-D) equilibrium
states with internal helical structures with toroidicity, e.g. helical cores, have been
observed experimentally (Weller et al. 1987; Pecquet et al. 1997) and simulated
(Cooper et al. 2010; Cooper, Graves & Sauter 2011) in tokamaks and RFPs (e.g.
Lorenzini et al. 2009; Puiatti et al. 2009; Terranova et al. 2010; Bergerson et al.
2011). Another example of helical structures that emerge from plasma instabilities,
such as the resistive or collisionless tearing modes or as a result of externally imposed
symmetry-breaking perturbations, are magnetic islands (Waelbroeck 2009). In addition
the helix may serve as a rough approximation of helical non-axisymmetric devices
(Uo 1961) and can be useful to investigate some features of stellarators (Spitzer
1958; Helander et al. 2012), the second major class of magnetic confinement devices
alongside the tokamak, in the large aspect-ratio limit. Also helical magnetic structures
are common in astrophysics, e.g. in astrophysical jets (de Gouveia Dal Pino 2005;
Pudritz, Hardcastle & Gabuzda 2012). Therefore it is of interest to derive a joint tool
for two-fluid equilibrium and stability studies of systems with helical symmetry, with
the understanding that for most cases of laboratory applications, helical symmetry is
an idealized approximation.

As in our previous work (Kaltsas et al. 2017), we use the energy–Casimir (EC)
variational principle to obtain equilibrium conditions. However it is known that the
EC principle can be extended for the study of linear, and nonlinear stability (Holm
et al. 1985; Morrison 1998) by investigating the positiveness of the second variation
of the EC functional, an idea that dates to the early plasma literature (Kruskal
& Oberman 1958). Many works that employ such principles for the derivation of
equilibrium conditions and sufficient MHD stability criteria, arising as consequences
of the non-canonical Hamiltonian structure of ideal MHD (Morrison & Greene 1980),
have been published over the last decades for several geometric configurations (Holm
et al. 1985; Holm 1987; Almaguer et al. 1988; Andreussi, Morrison & Pegoraro
2013, 2016; Moawad 2013; Morrison, Tassi & Tronko 2013; Moawad et al. 2017). In
Andreussi, Morrison & Pegoraro (2012) and Andreussi et al. (2013) EC equilibrium
and stability principles were used in the case of helically symmetric formulation. A
similar equilibrium variational principle was applied in the case of XMHD (Kaltsas
et al. 2017) for plasmas with translational symmetry. Therefore the use of such
principles in the case of helically symmetric XMHD seems a natural generalization
of the previous studies. To accomplish this task we first derive the Poisson bracket of
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Helically symmetric extended MHD 3

the helically symmetric barotropic XMHD and its corresponding families of Casimir
invariants. Those invariants, along with the symmetric version of the Hamiltonian
function, are used in an EC variational principle in order to obtain the equilibrium
equations for helical plasmas described by XMHD. To our knowledge this is the first
time that equilibrium equations containing two-fluid physics are derived for helical
configurations, especially exploiting Hamiltonian techniques.

The present study is organized as follows: in § 2 we present briefly the Hamiltonian
field theory of barotropic XMHD. In § 3 we introduce the requisite description of
the helical coordinate and representations of the helically symmetric magnetic and
velocity fields. Then, the XMHD Poisson bracket is reduced to its helically symmetric
counterpart. In § 4 the Casimir invariants of the symmetric bracket are obtained and
their MHD limit is considered. Also we establish the symmetric EC variational
principle, from which we derive generalized equilibrium equations for helical systems.
Special cases of equilibria, such as the Hall MHD equilibria, are discussed in detail
in § 5. We conclude with § 6, where we discuss the results of our study.

2. Barotropic XMHD
2.1. Evolution equations

The barotropic XMHD equations, presented in a series of recent articles (Kimura &
Morrison 2014; Abdelhamid et al. 2015; Lingam et al. 2015b; Grasso et al. 2017;
Kaltsas et al. 2017), in Alfvén units, are given by:

∂tρ =−∇ · (ρv), (2.1)

∂tv = v× (∇× v)−∇v2/2− ρ−1
∇p+ ρ−1J×B∗ − d2

e∇

( |J|2
2ρ2

)
, (2.2)

∂tB∗ =∇× (v×B∗)− di∇× (ρ−1J×B∗)+ d2
e∇× [ρ−1J× (∇× v)], (2.3)

where

J=∇×B, B∗ =B+ d2
e∇×

(
∇×B
ρ

)
. (2.4a,b)

The parameters di and de are the normalized ion and electron skin depths respectively,
p = p(ρ) is the total pressure and ρ, v, B and J represent the mass density, the
velocity, the magnetic field and the current density, respectively.

2.2. Hamiltonian formulation
It has been recognized that (2.1)–(2.3) possess a non-canonical Hamiltonian structure,
i.e. the dynamics can be described by a set of generalized Hamiltonian equations
(Morrison 1982, 1998)

∂tη= {η,H}, (2.5)

where η = (ρ, v, B∗) are non-canonical dynamical variables (not consisting of
canonically conjugate pairs), H[ρ, v, B∗] is a real valued Hamiltonian functional
and {F, G} is a Poisson bracket acting on functionals of the variables η, which is
bilinear, antisymmetric, and satisfies the Jacobi identity. The appropriate Hamiltonian
for our system is the following:

H=
∫

D
d3x
[
ρ
v2

2
+ ρU(ρ)+ B ·B∗

2

]
, (2.6)
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4 D. A. Kaltsas, G. N. Throumoulopoulos and P. J. Morrison

where D ⊆ R3 and U is the internal energy function (p = ρ2 dU/dρ), while the
corresponding non-canonical Poisson bracket is

{F,G} =
∫

D
d3x { Gρ∇ · Fv − Fρ∇ ·Gv + ρ−1(∇× v) · (Fv ×Gv)

+ ρ−1B∗ · [Fv × (∇×GB∗)−Gv × (∇× FB∗)]
− diρ

−1B∗ · [(∇× FB∗)× (∇×GB∗)]
+ d2

eρ
−1(∇× v) · [(∇× FB∗)× (∇×GB∗)] }, (2.7)

where Fz := δF/δz denotes the functional derivative of F with respect to the dynamical
variable z, defined by δF[z, δz] = ∫D d3x δz · (δF/δz). For the computation of the
functional derivatives of the field variables we make use of δzi(x′)/δzj(x)= δijδ(x′− x).

For non-canonical (degenerate) Poisson brackets, such as the bracket (2.7), there
exist functionals C[η] that commute with every arbitrary functional F[η]

{F, C} = 0, ∀F. (2.8)

These functionals C are called Casimir invariants and obviously they do not change
the dynamics if H→ F=H−∑i Ci, that is

∂tη= {η, F}, (2.9)

describes the same dynamics as (2.5).
Equilibrium solutions satisfy {η, F} = 0, which is true if the first variation of the

generalized Hamiltonian functional F vanishes at the equilibrium point, i.e.

δF= δ
(
H−

∑
i

Ci

)
= 0, (2.10)

is a sufficient but not necessary condition for equilibria (Morrison 1998; Yoshida,
Morrison & Dobarro 2014). To obtain stability criteria one may take the second
variation of the EC functional. It is known that if the second variation δ2F at the
equilibrium point is positive definite, then it provides a norm which is conserved by
the linear dynamics, so the equilibrium is linearly stable (Kruskal & Oberman 1958;
Holm et al. 1985; Morrison 1998).

The aim of the following sections is to derive the Casimir invariants of the helically
symmetric XMHD and then to find the corresponding equilibrium equations via the
condition (2.10). For the general 3-D version of the model described by means of
(2.6) and (2.7), the Casimir invariants are

C1 =
∫

D
d3xρ, (2.11)

C2,3 =
∫

D
d3x(A∗ + γ±v) · (B∗ + γ±∇× v), (2.12)

with B∗ =∇ × A∗ and γ± the two roots of the quadratic equation γ 2 − diγ − d2
e = 0,

i.e. γ± = (di ±
√

d2
i + 4d2

e)/2.
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Helically symmetric extended MHD 5

3. Helically symmetric formulation
As mentioned above, the helically symmetric formulation includes both the

translationally symmetric and axisymmetric cases, while being the most generic
case for which a poloidal representation of the magnetic field is possible, i.e. a
global description in terms of a component parallel to the symmetry direction and a
flux function describing the field that lies on a plane perpendicular to this direction
(poloidal plane), a representation which provides well-defined magnetic surfaces. In
a series of papers this symmetry was employed for deriving equilibrium equations of
the Grad–Shafranov type, i.e. second order partial differential equations (PDEs) with
solutions being poloidal magnetic flux functions, (Johnson et al. 1958; Tsinganos
1982; Throumoulopoulos & Tasso 1999; Bogoyavlenskij 2000; Andreussi et al. 2012;
Evangelias, Kuiroukidis & Throumoulopoulos 2018) in the context of standard MHD
theory. Particularly in Andreussi et al. (2012) the equilibrium Grad–Shafranov or
Johnson–Frieman–Kulsrud–Oberman (JFKO) (Johnson et al. 1958; Bogoyavlenskij
2000) equation was derived using a Hamiltonian variational principle. The same
approach is adopted also for our derivation, however, for the more complicated
XMHD theory.

3.1. Helical symmetry and Poisson bracket reduction
The helical symmetry can be imposed by assuming that in a cylindrical coordinate
system (r, φ, z) all equations of motion depend spatially on r and the helical
coordinate u = `φ + nz, where ` = sin(a) and n = −cos(a) with a being the helical
angle. For a= 0 we obtain the axisymmetric case and for a=π/2 the translationally
symmetric case. The contravariant unit vector in the direction of the u coordinate is
eu =∇u/|∇u| = `keφ + nkrez, where k is

k := 1√
`2 + n2r2

. (3.1)

The tangent to the direction of the helix r= const. u= const. is given by eh = er × eu
and one can prove that the following relations hold:

∇ · h= 0, ∇× h=−2n`k2h, (3.2a,b)

where h = keh, hence h · h = k2. Helical symmetry means that h · ∇f = 0 where f
is arbitrary scalar function. The relations (3.2) give us the opportunity to introduce
the so-called poloidal representation for the divergence-free magnetic field and also
a poloidal representation for the velocity field, including additionally a potential field
contribution accounting for the compressibility of the flow, i.e.

B∗ = k−1B∗h(r, u, t)h+∇ψ∗(r, u, t)× h, (3.3)
v = k−1vh(r, u, t)h+∇χ(r, u, t)× h+∇Υ (r, u, t). (3.4)

For incompressible flows Υ is harmonic or constant. In view of (3.2), the divergence
and the curl of (3.3) and (3.4) are given by

∇ · v =1Υ , ∇ ·B∗ = 0, (3.5a,b)
∇× v = [k−2Lχ − 2n`kvh]h+∇(k−1vh)× h, (3.6)
∇×B∗ = [k−2Lψ∗ − 2n`kB∗h]h+∇(k−1B∗h)× h, (3.7)
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6 D. A. Kaltsas, G. N. Throumoulopoulos and P. J. Morrison

where ∆ :=∇2 and L :=−∇ · (k2∇()) is a linear, self-adjoint differential operator. For
convenience we define the following quantities: w :=1Υ or Υ =∆−1w and Ω =Lχ
or χ =L−1Ω .

Having introduced the representation of (3.3)–(3.4) for the helically symmetric
fields, in order to derive the helically symmetric Hamiltonian formulation we need
to express the Hamiltonian (2.6) and the Poisson bracket (2.7) in terms of the scalar
field variables ηHS = (ρ, vh, χ, Υ , B∗h, ψ

∗). This is achieved not only by expressing
the fields η3D = (ρ, v, B∗) in terms of the scalar field variables but it requires also
the transformation of the functional derivatives from derivatives with respect to η3D to
functional derivatives with respect to the scalar fields ηHS. As in Andreussi, Morrison
& Pegoraro (2010), Andreussi et al. (2012) and Kaltsas et al. (2017), we accomplish
this transformation by employing a chain rule reduction,

Fρ = Fρ, Fv = k−1Fvhh+∇FΩ × h−∇Fw, (3.8a,b)

FB∗ = k−1FB∗h h− k−2
∇(∆−1Fψ∗)× h, (3.9)

where
Fw =∆−1FΥ , FΩ =L−1Fχ , (3.10a,b)

which follow from ∫
D

d3xFχδχ =
∫

D
d3xFΩδΩ, (3.11)∫

D
d3xFΥ δΥ =

∫
D

d3xFwδw, (3.12)

upon introducing the relations δΩ = Lδχ , δw = 1δΥ and exploiting the self-
adjointness of the operators ∆ and L. Also we observe that in (2.7) there exist
bracket blocks which contain the curl of FB∗ , which is

∇× FB∗ = (k−2Fψ∗ − 2n`kFB∗h)h+∇(k−1FB∗h)× h. (3.13)

The helically symmetric Poisson bracket occurs by substituting (3.3), (3.6), (3.8) and
(3.13) into (2.7) and assuming that any surface-boundary terms which emerge due
to integrations by parts, vanish due to appropriate boundary conditions, for example
periodic conditions or vanishing field variables ηHS on ∂D, except for the mass density
ρ because various terms diverge as ρ approaches zero, as is evident even from (2.7).
However, in view of the actual physical situation one can assume that the mass density
on the boundary is sufficiently small. The Poisson bracket takes the form

{F,G}XMHD
HS =

∫
D

d3x { Fρ1Gw −Gρ1Fw + ρ−1(Ω − 2n`k3vh)

× ([FΩ,GΩ] + k−2[Fw,Gw] +∇Fw · ∇GΩ −∇FΩ · ∇Gw)

+ k−1vh ( [FΩ, ρ−1kGvh] − [GΩ, ρ
−1kFvh]

+∇ · (ρ−1kGvh∇Fw)−∇ · (ρ−1kFvh∇Gw))

+ ρ−1kB∗h ( [FΩ, k−1GB∗h ] − [GΩ, k−1FB∗h ]
+∇Fw · ∇(k−1GB∗h)−∇Gw · ∇(k−1FB∗h))

+ψ∗ ( [FΩ, ρ−1Gψ∗] − [GΩ, ρ
−1Fψ∗] + [k−1FB∗h , ρ

−1kGvh]
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Helically symmetric extended MHD 7

− [k−1GB∗h , ρ
−1kFvh] +∇ · (ρ−1Gψ∗∇Fw)−∇ · (ρ−1Fψ∗∇Gw))

− 2n`ψ∗ ( [FΩ, ρ−1k3GB∗h ] − [GΩ, ρ
−1k3FB∗h ]

+∇(ρ−1k3GB∗h∇Fw)−∇(ρ−1k3FB∗h∇Gw))

− diρ
−1kB∗h[k−1FB∗h , k−1GB∗h ]

− diψ
∗([ρ−1Fψ∗, k−1GB∗h ] − [ρ−1Gψ∗, k−1FB∗h ])

+ 2n`diψ
∗([ρ−1k3FB∗h , k−1GB∗h ] − [ρ−1k3GB∗h , k−1FB∗h ])

+ d2
eρ
−1(Ω − 2n`k3vh)[k−1FB∗h , k−1GB∗h ]

+ d2
e k−1vh([ρ−1Fψ∗, k−1GB∗h ] − [ρ−1Gψ∗, k−1FB∗h ])

− 2n`d2
e k−1vh([ρ−1k3FB∗h , k−1GB∗h ] − [ρ−1k3GB∗h , k−1FB∗h ]) }, (3.14)

where [ f , g] := (∇f × ∇g) · h is the helical Jacobi–Poisson bracket. One may prove
that with appropriate boundary conditions, e.g. such as those mentioned above, the
identity ∫

D
d3x[ f , g]h=

∫
D

d3x[h, f ]g=
∫

D
d3x[g, h] f , (3.15)

holds for arbitrary functions f , g, h. These conditions are necessary to derive the
bracket (3.14) and also for finding the Casimir determining equations.

It is not difficult to show that if we set a = π/2 the bracket (3.14) reduces to
the translationally symmetric XMHD bracket derived in Kaltsas et al. (2017). The
corresponding axisymmetric bracket can be obtained by setting a = 0. In this case
the purely helical terms which contain a coefficient 2n` vanish and the scale factor k
becomes 1/r.

To complete the Hamiltonian description of helically symmetric XMHD dynamics
we need to express the Hamiltonian (2.6) in terms of the scalar fields ηHS, leading to

H =
∫

D
d3x
{
ρ

2
(v2

h + k2|∇χ |2 + |∇Υ |2)

+ ρ([Υ , χ ] +U(ρ))+ B∗hBh

2
+ k2∇ψ

∗ · ∇ψ
2

}
. (3.16)

Also from the definition of the generalized magnetic field B∗ (2.4) and the helical
representation (3.3) one may derive the following relations for the generalized
variables B∗h and ψ∗:

B∗h = (1+ 4n2`2d2
eρ
−1k4)Bh + d2

e [ρ−1k−1L(k−1Bh)

− 2n`ρ−1kLψ − k∇ρ−1
· ∇(k−1Bh)], (3.17)

ψ∗ =ψ + d2
e [ρ−1k−2Lψ − 2n`ρ−1kBh], (3.18)

where Bh is the helical component and ψ the poloidal flux function of the magnetic
field B. Note that terms containing the parameters n and ` are purely helical, i.e. they
vanish in the cases of axial and translational symmetry. Also the last term of (3.17) is
purely compressible, i.e. it vanishes if we consider incompressible plasmas. Another
interesting observation is that due to the non-orthogonality of the helical coordinates,
there is a poloidal magnetic field contribution in the helical component of the
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8 D. A. Kaltsas, G. N. Throumoulopoulos and P. J. Morrison

generalized magnetic field B∗h and helical magnetic contribution Bh in the poloidal
flux function ψ∗. This mixing makes the subsequent dynamical and equilibrium
analyses appear much more involved than in our previous study, however it can be
simplified upon observing that∫

D
d3x[B∗hδBh +L(ψ∗)δψ]

=
∫

D
d3x
[

BhδB∗h +L(ψ)δψ∗ + d2
e

ρ2
(J2

h + k2|∇(k−1Bh)|2)δρ
]
, (3.19)

where Jh= k−1Lψ −2n`k2Bh is the helical component of the current density. Therefore
the variation of the magnetic part of the Hamiltonian can be written as

δHm =
∫

D
d3x
[

1
2

B∗hδBh + 1
2

BhδB∗h +
1
2
L(ψ∗)δψ + 1

2
L(ψ)δψ∗

]
=
∫

D
d3x
[

BhδB∗h +L(ψ)δψ∗ + d2
e

2ρ2
(J2

h + k2|∇(k−1Bh)|2)δρ
]

=
∫

D
d3x
[

B∗hδBh +L(ψ∗)δψ − d2
e

2ρ2
(J2

h + k2|∇(k−1Bh)|2)δρ
]
, (3.20)

leading to the following relations for the functional derivatives of the Hamiltonian:

δH
δBh
= B∗h,

δH
δψ
=Lψ∗, (3.21a,b)

δH
δB∗h
= Bh,

δH
δψ∗
=Lψ, (3.22a,b)

δH
δρ

∣∣∣∣
B∗h,ψ∗
= v

2

2
+ [ρU(ρ)]ρ + d2

e

2ρ2
(J2

h + k2|∇(k−1Bh)|2), (3.23)

δH
δρ

∣∣∣∣
Bh,ψ

= v
2

2
+ [ρU(ρ)]ρ − d2

e

2ρ2
(J2

h + k2|∇(k−1Bh)|2). (3.24)

In addition, the functional derivatives with respect to the velocity related variables are
given by

δH
δvh
= ρvh,

δH
δχ
=−∇ · (ρk2

∇χ)+ [ρ, Υ ], (3.25a,b)

δH
δΥ
=−∇ · (ρ∇Υ )+ [χ, ρ], δH

δΩ
=L−1 δH

δχ
,

δH
δw
=∆−1 δH

δΥ
. (3.26a−c)

3.2. Helically symmetric dynamics
The helically symmetric dynamics is described by means of the Hamiltonian (3.16)
and the Poisson bracket (3.14) as ∂tηHS = {ηHS,H}XMHD

HS . Due to the helical symmetry
and the compressibility, the equations of motion appear much more involved than the
corresponding equations of motion in Grasso et al. (2017). For this reason we present

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0022377818000338
Downloaded from https://www.cambridge.org/core. IP address: 79.107.245.254, on 25 May 2018 at 18:59:41, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022377818000338
https://www.cambridge.org/core


Helically symmetric extended MHD 9

here the dynamical equations for incompressible plasmas (ρ = 1). Incompressible
equations are obtained from the Hamiltonian and the Poisson bracket that correspond
to ρ = 1 and w = 0, or equivalently by the compressible equations of motion by
neglecting the dynamical equations for ρ and w and substituting Hw= 0 and HΩ =χ
in the rest (see the appendix A),

∂tvh = k([χ, k−1vh] + [k−1Bh, ψ
∗]), (3.27)

∂tΩ = [χ, Ω] − 2n`[χ, k3vh] + [kvh, k−1vh]
+ [k−1Bh, kB∗h] + [Lψ, ψ∗] − 2n`[k3Bh, ψ

∗], (3.28)

∂tB∗h = k−1 ([χ, kB∗h] + [kvh, ψ
∗] − 2n`k4[χ, ψ∗] + di[kB∗h, k−1Bh] − di[Lψ, ψ∗]

− 2n`dik4[ψ∗, k−1Bh] + 2n`di[k3Bh, ψ
∗] + d2

e [k−1Bh, Ω] − 2n`d2
e [k−1Bh, k3vh]

+ d2
e [Lψ, k−1vh] − 2n`d2

e k4[k−1Bh, k−1vh] − 2n`d2
e [k3Bh, k−1vh]), (3.29)

∂tψ
∗ = [χ, ψ∗] + di[ψ∗, k−1Bh] + d2

e [k−1Bh, k−1vh]. (3.30)

Equations (3.27)–(3.30) differ from the corresponding dynamical equations of
reference (Grasso et al. 2017) owing to the presence of the scale factor k and the
purely helical terms with the coefficients n`. Setting n= 0 we recover the equations
of motion for incompressible, translationally symmetric plasmas, whereas for ` = 0
we restrict the motion to respect axial symmetry.

3.3. Bracket transformation
In Lingam et al. (2015b) the authors proved that the XMHD bracket (2.7) can be
simplified to a form identical to the HMHD bracket by introducing a generalized
vorticity variable

B± =B∗ + γ±∇× v. (3.31)

This transformation was utilized in Grasso et al. (2017) and Kaltsas et al. (2017) in
order to simplify the bracket and the derivation of the symmetric families of Casimir
invariants. For this reason we perform the transformation also for the helically
symmetric bracket (3.14), rendering the subsequent analysis more tractable. One
can see that the corresponding scalar field variables, necessary for the poloidal
representation of B±, are connected to the variables ηHS as follows:

B±h = B∗h + γ±(k−1Ω − 2n`k2vh), (3.32)
ψ± =ψ∗ + γ±k−1vh. (3.33)

Transformation of the bracket requires expressing the functional derivatives in the new
representation (vh, χ, Υ ,B±h , ψ±). Following an analogous procedure to that employed
in Lingam et al. (2015b), Grasso et al. (2017) and Kaltsas et al. (2017) we find

F̄vh = Fvh + γ±k−1Fψ± − 2n`γ±k2FB±h , (3.34)

F̄Ω = FΩ + γ±k−1FB±h , F̄w = Fw, (3.35a,b)

F̄ψ∗ = Fψ±, F̄B∗h = FB±h , (3.36)

where F̄ denotes the functionals expressed in the original variable representation. Upon
inserting the transformation of the functional derivatives of (3.34)–(3.36) into (3.14)
and expressing B∗h and ψ∗ in terms of B±h and ψ± we obtain the following bracket:
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10 D. A. Kaltsas, G. N. Throumoulopoulos and P. J. Morrison

{F,G}XMHD
HS =

∫
D

d3x { Fρ1Gw −Gρ1Fw + ρ−1(Ω − 2n`k3vh)

× ([FΩ,GΩ] + k−2[Fw,Gw] +∇Fw · ∇GΩ −∇FΩ · ∇Gw)

+ k−1vh ( [ρ−1kFvh,GΩ] − [ρ−1kGvh, FΩ]
+∇ · (ρ−1kGvh∇Fw)−∇ · (ρ−1kFvh∇Gw))

+ ρ−1kB±h ([FΩ, k−1GB±h ] − [GΩ, k−1FB±h ]
+∇Fw · ∇(k−1GB±h )−∇Gw · ∇(k−1FB±h ))

+ψ± ([FΩ, ρ−1Gψ±] − [GΩ, ρ
−1Fψ±]

+ [ρ−1kFvh, k−1GB±h ] − [ρ−1kGvh, k−1FB±h ]
+∇ · (ρ−1Gψ±∇Fw)−∇ · (ρ−1Fψ±∇Gw))

− 2n`ψ± ([FΩ, ρ−1k3GB±h ] − [GΩ, ρ
−1k3FB±h ]

+∇ · (ρ−1k3GB±h ∇Fw)−∇ · (ρ−1k3FB±h ∇Gw))

− ν±ρ−1kB±h [k−1FB±h , k−1GB±h ]
− ν±ψ±([ρ−1Fψ±, k−1GB±h ] − [ρ−1Gψ±, k−1FB±h ])
+ 2n`ν±ψ±([ρ−1k3FB±h , k−1GB±h ] − [ρ−1k3GB±h , k−1FB±h ]) }, (3.37)

where ν± := di− 2γ±. Note that the helically symmetric XMHD dynamics is described
correctly by either using the parameter ν+ or the parameter ν−.

4. Casimir invariants and equilibrium variational principle with helical symmetry
As mentioned in § 2, the Casimir invariants are functionals that satisfy {F, C} = 0,
∀F. For the bracket (3.37) this condition is equivalent to∫

D
d3x(FρR1 + FwR2 + ρ−1kFvhR3 + FΩR4 + k−1FB±h R5 + ρ−1Fψ±R6)= 0, (4.1)

where Ri, i= 1, . . . , 6 are expressions obtained by manipulating the bracket {F, C} so
as to extract as common factors the functional derivatives of the arbitrary functional F.
Requiring (4.1) to be satisfied for arbitrary variations is equivalent to the independent
vanishing of the expressions Ri, i.e.

Ri = 0, i= 1, 2, . . . , 6. (4.2)

The expressions for the Ri, i= 1, . . . , 6, read

R1 =1Cw = CΥ , (4.3)

R2 = −1Cρ − [ρ−1k−2Ω, Cw] + 2n`[ρ−1kvh, Cw]
+∇ · (ρ−1Cψ±∇ψ±)− 2n`∇ · (ρ−1k3CB±h ∇ψ

±)+∇ · (ρ−1kCvh∇(k
−1vh))

−∇ · (ρ−1Ω∇CΩ)+ 2n`∇ · (ρ−1k3vh∇CΩ)−∇ · (ρ−1kB±h∇(k
−1CB±h )), (4.4)

R3 = [CΩ, k−1vh] +∇(k−1vh) · ∇Cw − [ψ±, k−1CB±h ], (4.5)

R4 = ∇ · (ρ−1Ω∇Cw)− 2n`∇ · (ρ−1k3vh∇Cw)

− [ρ−1Ω, CΩ] + 2n`[ρ−1k3vh, CΩ] − [k−1vh, ρ
−1kCvh]

− [ψ±, ρ−1Cψ±] − [ρ−1kB±h , k−1CB±h ] + 2n`[ψ±, ρ−1k3CB±h ], (4.6)
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R5 = [ρ−1kCvh, ψ
±] + [CΩ, ρ−1kB±h ] +∇ · (ρ−1kB±h∇Cw)− 2n`ρ−1k4[CΩ, ψ±]

− 2n`ρ−1k4
∇ψ± · ∇Cw + ν±[ψ±, ρ−1Cψ±] + ν±[ρ−1kB±h , k−1CB±h ]

− 2n`ν±ρ−1k4[ψ±, k−1CB±h ] + 2n`ν±[ρ−1k3CB±h , ψ
±], (4.7)

R6 = [CΩ, ψ±] +∇ψ± · ∇Cw + ν±[ψ±, k−1CB±h ]. (4.8)

Equation R1 = 0, i.e. CΥ = 0, implies that the Casimirs are independent of Υ . We
observe that (4.2) are satisfied automatically for Cρ = const., which amounts to the
conservation of mass density,

Cm =
∫

D
d3xρ. (4.9)

For the rest of the Casimirs we follow a similar procedure as in § IIIB of our previous
study (Kaltsas et al. 2017). Although the analysis is now more involved due to the
purely helical terms appearing in (4.4)–(4.8), it turns out that it is not difficult to
make the necessary adaptions for computing the helically symmetric Casimirs. For
this reason we avoid presenting the procedure once again, instead giving directly the
resulting Casimir invariants, which in terms of the original magnetic field variables
(B∗h, ψ

∗) are given by

C1=
∫

D
d3x[(kB∗h+ γΩ − 2n`γ k3vh)F(ψ∗+ γ k−1vh)+ 2n`k4F̃(ψ∗+ γ k−1vh)], (4.10)

C2=
∫

D
d3x[(kB∗h +µΩ − 2n`µk3vh)G(ψ∗+µk−1vh)+ 2n`k4G̃(ψ∗+µk−1vh)], (4.11)

C3 =
∫

D
d3xρM(ψ∗ + γ k−1vh), (4.12)

C4 =
∫

D
d3xρN (ψ∗ +µk−1vh), (4.13)

where the parameters γ and µ are (γ , µ) = (γ+, γ−), F , G, M, N are arbitrary
functions and F̃ , G̃ are defined by

F̃ =
∫ ψ∗+γ k−1vh

0
F(g) dg, G̃ =

∫ ψ∗+µk−1vh

0
G(g) dg. (4.14a,b)

Obviously Cm is just a special case of the functionals C3, C4. Upon substituting the
functionals (4.10)–(4.13) into (4.3)–(4.8), we can verify that (4.2) are satisfied and
thus C1, C2, C3 and C4 are indeed conserved quantities of the helically symmetric
XMHD. The interesting new feature of these Casimirs is the presence of two purely
helical terms appearing in C1 and C2, which vanish for either n = 0 or ` = 0. An
analogous helical term, that depends on ψ , having coefficient 2n`, appears also in the
Casimirs of ordinary MHD (Andreussi et al. 2012). In the case of XMHD the helical
terms depend on ψ∗ and on the helical velocity vh, this additional dependence on vh
emerges due to the presence of the vorticity in (2.12).

4.1. MHD limit
In Kaltsas et al. (2017) various limits of the symmetric XMHD Casimirs to the
Casimirs of the simpler models of Hall MHD, ordinary MHD and inertial MHD
were obtained. Here, to corroborate that the computed invariants are correct, we
take the MHD limit, anticipating the recovery of the invariants found in Andreussi
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12 D. A. Kaltsas, G. N. Throumoulopoulos and P. J. Morrison

et al. (2012). For the MHD limit we set de = 0 (Hall MHD) and di = 0. If we set
only de = 0 we exclude electron inertial contributions and we obtain the Hall MHD
Casimirs

CHMHD
1 =

∫
D

d3x[(kBh + diΩ − 2n`dik3vh)F(ψ + dik−1vh)+ 2n`k4F̃(ψ + dik−1vh)],
(4.15)

CHMHD
2 =

∫
D

d3x [kBhG(ψ)+ 2n`k4G̃(ψ)], (4.16)

CHMHD
3 =

∫
D

d3x ρM(ψ + dik−1vh), (4.17)

CHMHD
4 =

∫
D

d3x ρN (ψ). (4.18)

For the corresponding MHD families of invariants we additionally require di→ 0 in
(4.15)–(4.18). From the resulting set of Casimirs the cross-helicity and the helical
momentum are absent. This is a characteristic peculiarity, encountered when the MHD
limit of models with Hall physics contributions is considered (e.g. see Hazeltine, Hsu
& Morrison 1987; Yoshida & Hameiri 2013; Abdelhamid et al. 2015; Kaltsas et al.
2017). In Kaltsas et al. (2017) we resolved this peculiarity by expanding the invariants
CHMHD

1 , CHMHD
3 about ψ , then by rescaling the arbitrary functions we managed to show

that, since the terms that diverge when di→ 0 are already Casimirs, the rest of the
terms translate into the MHD Casimirs. Doing so for the helically symmetric Casimirs
we arrive at

CMHD

1 =
∫

D
d3x[BhvhF ′(ψ)+ΩF(ψ)], (4.19)

CMHD

2 =
∫

D
d3x[kBhG(ψ)+ 2n`k4G̃(ψ)], (4.20)

CMHD

3 =
∫

D
d3xρk−1vhM(ψ), (4.21)

CMHD

4 =
∫

D
d3xρN (ψ). (4.22)

The functionals (4.19)–(4.22) are indeed the correct helically symmetric MHD Casimir
invariants (Andreussi et al. 2012).

4.2. Equilibrium variational principle with helical symmetry
With the helically symmetric Casimirs at hand, we can build the EC variational
principle to obtain equilibrium conditions. For analogous utilizations of this methodol-
ogy for symmetric or 2-D plasmas the reader is referred to Holm et al. (1985),
Almaguer et al. (1988), Andreussi & Pegoraro (2008), Tassi et al. (2008), Andreussi
et al. (2010, 2012), Moawad (2013), Morrison, Lingam & Acevedo (2014) and
Kaltsas et al. (2017). As mentioned in § 2, the EC principle states that the phase
space points that nullify the first variation EC functional F are equilibrium points. In
our case requiring the vanishing of δF amounts to
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δ

∫
D

d3x
{
ρ

(
v2

h

2
+ k2

2
|∇χ |2 + [Υ , χ ] + |∇Υ |

2

2
+U(ρ)

)
+ B∗hBh

2
+ k2

2
∇ψ∗ · ∇ψ − (kB∗h + γΩ − 2n`γ k3vh)F(ϕ)− 2n`k4F̃(ϕ)

− (kB∗h +µΩ − 2n`µk3vh)G(ξ)− 2n`k4G̃(ξ)− ρM(ϕ)− ρN (ξ)
}
= 0, (4.23)

where ϕ :=ψ∗ + γ k−1vh, ξ :=ψ∗ +µk−1vh and

F̃ :=
∫ ϕ

F(g) dg and G̃ :=
∫ ξ

G(g) dg. (4.24a,b)

Since the variations of the field variables are independent, equation (4.23) is satisfied
if the coefficients of the variations of the field variables vanish. This requirement, upon
exploiting the relations (3.21)–(3.26), leads to the following equilibrium conditions:

δρ : [ρU(ρ)]ρ + v
2

2
−M(ϕ)−N (ξ)+ d2

e

2ρ2
(J2

h + k2|∇(k−1Bh)|2)= 0, (4.25)

δΥ : −∇ · (ρ∇Υ )+ [χ, ρ] = 0, (4.26)
δχ : −∇ · (ρk2

∇χ)+ [ρ, Υ ] − γLF(ϕ)−µLG(ξ)= 0, (4.27)

δvh : ρvh − ρk−1[γM′(ϕ)+µN ′(ξ)] − B∗h[γF ′(ϕ)+µG ′(ξ)]
−k−1(Ω − 2n`k3vh)[γ 2F ′(ϕ)+µ2G ′(ξ)] = 0, (4.28)

δB∗h : Bh − k[F(ϕ)+ G(ξ)] = 0, (4.29)

δψ∗ :Lψ − kB∗h[F ′(ϕ)+ G ′(ξ)] − 2n`k4[F(ϕ)+ G(ξ)]
−(Ω − 2n`k3vh)[γF ′(ϕ)+µG ′(ξ)] − ρ[M′(ϕ)+N ′(ξ)] = 0. (4.30)

Note that the left-hand side of (4.25)–(4.30) are the coefficients of the variations
(δρ, δΥ , δχ, δvh, δB∗h, δψ

∗) in δF. In addition to these terms, some surface-boundary
terms emerged in δF, due to integration by parts. We assumed that those terms vanish,
which is true if the variations δΥ , δχ, δψ∗ vanish on the boundary ∂D. The first
equation (4.25) represents a Bernoulli law

p̃(ρ)= ρ[M(ϕ)+N (ξ)] − ρ v
2

2
− d2

e

2ρ2
[J2

h + k2|∇(k−1Bh)|2], (4.31)

where p̃ := ρ[ρU(ρ)]ρ = ρh(ρ) where h(ρ) is the total enthalpy (p̃ = Γ p/(Γ − 1)
if we adopt the equation of state p ∝ ρΓ with Γ being the adiabatic constant). It
describes the effect of macroscopic equilibrium flow including the electron inertial
effect, expressed via the magnetic terms, in the total plasma pressure. The rest of the
equations can be cast into a Grad–Shafranov or a JFKO system as in the case with
translational symmetry.
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14 D. A. Kaltsas, G. N. Throumoulopoulos and P. J. Morrison

4.3. The JFKO–Bernoulli system
The system (4.25)–(4.30) can be cast in a JFKO–Bernoulli PDE form that describes
completely helically symmetric XMHD equilibria. This can be done by exploiting
(4.26), (4.27), (4.29) and (3.17) in order to turn (4.28) and (4.30) into a coupled
system for the flux functions ϕ and ξ . These equations, except of their coupling to the
Bernoulli equation, are additionally coupled to the definition (3.18) given in terms of
ϕ and ξ expressing essentially the Ampere’s law. The derivation of the system requires
tedious algebraic manipulations that we omit here; however, the steps are analogous
to those used in Kaltsas et al. (2017) for the derivation of the corresponding system.
The JFKO equations for barotropic XMHD are

(γ 2 + d2
e)F ′∇ ·

(
k2

ρ
∇F

)
= (1+ s)k2(F + G)F ′ + ρM′ +

(
µ

γ −µ − 2n`
d2

e

ρ
k2F ′

)
Lψ

− 2n`
µ

γ −µk4(F + G)− k2

[
ρ

(γ −µ)2 + 2n`
γ

γ −µk2F ′
]
(ϕ − ξ), (4.32)

(µ2 + d2
e)G ′∇ ·

(
k2

ρ
∇G
)

= (1+ s)k2(F + G)G ′ + ρN ′ −
(

γ

γ −µ + 2n`
d2

e

ρ
k2G ′

)
Lψ

+ 2n`
γ

γ −µk4(F + G)+ k2

[
ρ

(γ −µ)2 − 2n`
µ

γ −µk2G ′
]
(ϕ − ξ), (4.33)

Lψ = k2 ρ

d2
e

[
µϕ − γ ξ
µ− γ −ψ + 2n`d2

eρ
−1k2(F + G)

]
, (4.34)

where s :=4n2`2d2
eρ
−1k4. The equations above coupled to the Bernoulli equation (4.31)

describe completely the equilibria in terms of the flux functions ψ , ϕ, ξ and of the
density ρ, for given free functions F(ϕ), G(ξ), M(ϕ), N (ξ) and a thermodynamic
closure p= p(ρ), since all physical quantities of interest can be expressed in terms of
ψ , ϕ, ξ and ρ. Namely, the helical component of the flow is

vh = k
ϕ − ξ
γ −µ, (4.35)

the helical magnetic field is given by (4.29), the poloidal field is simply ∇ψ × h,
while for the poloidal velocity we need to observe that (4.26) and (4.27) can be
written as

h · ∇×Q= 0 and ∇ · (k2Q)= 0, (4.36a,b)

with
Q := ρ∇χ − ρk−2

∇Υ × h− γ∇F −µ∇G. (4.37)
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Helically symmetric extended MHD 15

Therefore the mutual solution of (4.26) and (4.27), should satisfy

ρ∇χ − ρk−2
∇Υ × h= γ∇F +µ∇G. (4.38)

Upon taking the cross-product of (4.38) with h, we obtain the poloidal velocity

vp = ρ−1 (γ∇F +µ∇G)× h. (4.39)

Note that (4.38) was necessary in the derivation of (4.32)–(4.33). Due to the number
of the PDEs that have to be solved simultaneously and the consequence of the
symmetry that inserts additional terms and the strong coupling among the equations,
the solution of this system is not trivial even in the context of numerical computing.
For this reason we present below special cases of equilibria, including axisymmetric
XMHD, incompressible XMHD, barotropic and incompressible Hall MHD equilibria
with helical symmetry. To our knowledge all these reduced kinds of equilibria have
not been studied so far. In the next section we present the corresponding system of
Grad–Shafranov or JFKO equations for each of the aforementioned equilibria.

5. Special equilibria
5.1. Axisymmetric barotropic XMHD

The axisymmetric equilibrium equations are obtained by setting the helical angle a to
zero, i.e. `= 0 and n=−1, so the parameter s is zero and the scale factor k = 1/r
and h= r−1êφ . With these parameters, equations (4.32)–(4.34) reduce to the following
Grad–Shafranov system:

(γ 2 + d2
e)F ′r2

∇ ·

(
F ′

ρ

∇ϕ

r2

)
=F ′(F + G)+ r2ρM′ − µ

γ −µ∆
∗ψ − ρ ϕ − ξ

(γ −µ)2 ,
(5.1)

(µ2+ d2
e)G ′r2

∇ ·

(
G ′

ρ

∇ξ

r2

)
=G ′(F +G)+ r2ρN ′+ γ

γ −µ∆
∗ψ +ρ ϕ − ξ

(γ −µ)2 , (5.2)

∆∗ψ = ρ

d2
e

(
ψ − µϕ − γ ξ

µ− γ
)
, (5.3)

where ∆∗ := r2∇ ·
(
∇/r2

)
is the so-called Shafranov operator. The Bernoulli equation

(4.31) assumes the form:

p̃(ρ)= ρ[M(ϕ)+N (ξ)] − ρ v
2

2
− d2

e

2ρ2
[J2
φ + r−2|∇(rBφ)|2], (5.4)

where Jφ = −r−1∆∗ψ is the toroidal current density. For de = 0 we obtain the
axisymmetric Hall MHD Grad–Shafranov–Bernoulli system (Throumoulopoulos &
Tasso 2006).

5.2. Incompressible equilibria
To obtain the equilibrium system for incompressible plasmas with uniform mass
density, we set ρ = 1. Note that incompressibility may refer also to the kind of the
flows, i.e. flows with divergence-free velocity fields, that renders the mass density a
Lagrangian invariant, that is, ρ is advected by the flow. Here we address the simpler
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16 D. A. Kaltsas, G. N. Throumoulopoulos and P. J. Morrison

case where the mass density is constant. One should be careful when adopting
this assumption because it has to be imposed a priori, i.e. before varying the EC
functional. This is because, if we use the barotropic version of the EC functional
to derive the equilibrium equations and then impose the uniformness of the mass
density, this will result in a restricted class of equilibria because the Bernoulli equation
(4.31) will act as an additional constraint on the permissible equilibria. However for
uniform mass density, no Bernoulli equation occurs via the variational principle and
the computation of the pressure decouples from the PDE problem. Ultimately the
resulting equilibrium equations will be given by (4.27)–(4.30) with ρ= 1. This system
leads to the equilibrium system of (4.32)–(4.34) with ρ = 1, that is, the differential
operators on the left-hand side of (4.32) and (4.33) reduce to the operator −L acting
on F and G, respectively. Those equations can alternatively be derived directly by
taking projections of the starting stationary XMHD equations. We have verified that
this method leads to the same JFKO system. The pressure can be computed from
(2.2) by setting ∂tv = 0, taking the divergence of the resulting equation and acting
with the inverse of the Laplacian operator in order to solve for the pressure, leading
to the following equation:

p=∆−1
∇ · (v×∇× v + J×B∗)− v

2

2
− d2

e

2
J2. (5.5)

If we employ the helically symmetric representation (3.3), (3.4) for the fields B∗, v
and B and use the equilibrium equations (4.27)–(4.30) with ρ = 1, then we can prove
that

v×∇× v + J×B∗ =∇M(ϕ)+∇N (ξ), (5.6)

so from (5.5) and (5.6), we deduce that the incompressible pressure is given by

p=M(ϕ)+N (ξ)− v
2

2
− d2

e

2
J2. (5.7)

5.3. Hall MHD equilibria
The Hall MHD limit is effected by setting de = 0 and thereby neglecting electron
inertial effects. Thus, γ = di, µ= 0, and the flux functions become ϕ = ψ + dik−1vh
and ξ = ψ . In this model, only ion drift effects are considered and the electron
surfaces coincide with the magnetic field surfaces. The JFKO system for computing
the poloidal ion and magnetic fluxes is

d2
i F ′∇ ·

(
k2

ρ
∇F

)
= k2(F + G)F ′ + ρM′ − k2

[
ρ

d2
i
+ 2n`k2F ′

]
(ϕ −ψ), (5.8)

Lψ = k2(F + G)G ′ + ρN ′ + 2n`k4(F + G)+ k2ρ
(ϕ −ψ)

d2
i

. (5.9)

These equilibria are completely determined through the coupling of the equations
above with a Bernoulli law, which can be deduced from (4.31) for de = 0, allowing
the computation of the mass density ρ self-consistently given an equation of state
P(ρ). So the HMHD Bernoulli equation is simply

p̃(ρ)= ρ
[
M+N − k2 (ϕ −ψ)2

2d2
i

]
− d2

i k2 (F ′)2

2ρ
|∇ϕ|2. (5.10)
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Also from (4.35) and (4.39) we have

vh = k
ϕ −ψ

di
and vp = di

F ′

ρ
∇ϕ × h. (5.11a,b)

For ` = 0, equations (5.8)–(5.10) reduce to the axisymmetric Grad–Shafranov–
Bernoulli system of Throumoulopoulos & Tasso (2006). For the baroclinic version
of the axisymmetric HMHD equilibrium equations the reader is referred to Hameiri
(2013), Guazzotto & Betti (2015).

5.4. Incompressible HMHD equilibria and the double-Beltrami solutions
As in the case of XMHD, to obtain an equilibrium system that is not constrained by
an equation arising from the ρ functional derivative of the EC functional, we take
ρ = 1 before varying the EC functional. If we do so for the HMHD model then the
equilibrium system reduces to (5.8)–(5.9) with ρ = 1, i.e. we have

d2
i F ′LF =−k2(F + G)F ′ −M′ + k2(d−2

i + 2n`k2F ′)(ϕ −ψ), (5.12)

Lψ = k2(F + G)G ′ +N ′ + 2n`k4(F + G)+ k2(ϕ −ψ)d−2
i . (5.13)

The pressure can be computed using (5.7) with de = 0. To obtain solutions for the
fluxes ϕ and ψ , we need to specify the free functions F , G, M and N . There exists
a particular ansatz for the free functions, for which the system (5.12)–(5.13) assumes
an analytic solution. In this case the magnetic and velocity fields are superpositions of
two Beltrami fields and the functions ϕ and ψ are expressed as linear combinations
of the corresponding poloidal flux functions of the Beltrami fields. The generic linear
ansatz, for the system (5.12)–(5.13) is

F = f0 + f1ϕ, G = g0 + g1ψ, M=m0 +m1ϕ, N = n0 + n1ψ, (5.14a−d)

where f0, f1, g0, g1,m0, n0 are constant parameters, leads to the following equations for
helically symmetric HMHD equilibria:

k−2L
(
ϕ
ψ

)
=
(
W1 W2
W3 W4

)(
ϕ
ψ

)
+
(
R1
R2

)
, (5.15)

where

W1 = 1+ 2n`d2
i f1k2

d4
i f 2

1
− 1

d2
i
, W2 =− g1

d2
i f1
− 1+ 2n`d2

i f1k2

d4
i f 2

1

W3 = g1f1 + 1+ 2n`f1d2
i k2

d2
i

, W4 = g2
1 −

1− 2n`g1d2
i k2

d2
i

,

R1 =− f0 + g0

f1d2
i
− m1

d2
i f 2

1 k2
, R2 = g1( f0 + g0)+ n1

k2
+ 2n`k2( f0 + g0).


(5.16)

For n, ` 6= 0 we can find a solution to this system assuming m1 = n1 = f0 = g0 = 0

ϕ = λ+ − g1

f1
ψ+ + λ− − g1

f1
ψ−, ψ =ψ+ +ψ−, (5.17)

where ψ± are solutions of the equation

k−2Lψ± = λ2
±ψ± + 2n`λ±k2ψ±, (5.18)
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and parameters λ± are given by

λ± = 1
2

 1
d2

i f1
+ g1 ±

√(
1

d2
i f1
+ g1

)2

− 4
f1 + g1

d2
i f1

 . (5.19)

Either solving (5.18) directly or following the construction of Barberio-Corsetti (1973)
(see also Chandrasekhar & Kendall (1957)) we obtain the following analytic solutions
ψ±:

ψ± = c±[`J0(λ±r)− nrJ1(λ±r)] +
∑

m

a±m

[
`λ±I`m(σ±r)+ nr

d
dr

I`m(σ±r)
]

cos(mu),

(5.20)
where σ± :=

√
m2n2 − λ2± and I`m denotes the modified Bessel function of the first

kind with order `m. The parameters c± and a±m can be specified in connection with
the desirable boundary conditions. The functions ψ± are poloidal flux functions of
helically symmetric Beltrami fields with Beltrami parameters λ±. Their combination
(5.17) is a homogeneous solution of the system (5.15). Since the solution is a linear
combination of two Beltrami fields, the resulting solution is called double Beltrami
(DB). Another reason for adopting this terminology is that the resulting velocity and
magnetic fields satisfy conditions that involve the double curl operator. Such states,
are not only natural solutions of the incompressible Hall MHD equilibrium equations
(see Mahajan & Yoshida (1998)) but they occur also as relaxed states via minimization
principles (Yoshida & Mahajan 2002). They have been used to construct high-beta
equilibria with flows for 1-D (Mahajan & Yoshida 1998; Iqbal et al. 2001) and
axisymmetric systems (Yoshida et al. 2001) but not for helically symmetric ones. Here
we compute a helical DB equilibrium in view of (5.17) and (5.20). The computed
configuration is depicted in figure 1. The flux function ψ labels the magnetic surfaces
while the function φ labels the ion flow surfaces. We obtained the configuration of
figure 1, possessing closed surfaces, for normalized ion skin depth di= 0.09, f1= 4.2,
g1 = 2.01 and imposing the vanishing of ψ on some predetermined boundary points,
yielding the values of the free parameters in the truncated expansions (5.20). We
observe that the ion surfaces depart significantly from the electron–magnetic surfaces,
although in a manner consistent with other computations for axisymmetric (Guazzotto
& Betti 2015) and translationally symmetric (Kaltsas et al. 2017) HMHD equilibria,
resulting in a configuration with distinct helical structures for the ions and the
electrons.

6. Conclusion
We derived the helically symmetric extended magnetohydrodynamics Poisson

bracket and the corresponding set of Casimirs which consists of four infinite families
of helically symmetric invariants. The Poisson bracket was employed in order to
describe helical dynamics and the Casimirs with the Hamiltonian were used to derive,
via an energy–Casimir variational principle, the equilibrium equations of helically
symmetric XMHD. This symmetry makes both the dynamical and equilibrium
equations more involved than the corresponding translationally symmetric equations,
through the presence of a scale factor k, and new purely helical contributions. The
equilibrium equations were manipulated further for two simpler cases: first was
the axisymmetric barotropic and incompressible XMHD and second the helically
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FIGURE 1. The magnetic (solid red) and the ion (dashed blue) surfaces of the analytic DB
equilibria with helical symmetry in connection with (5.17) and (5.20) in three different
sections, namely z = 0, z = π/12, z = π/3. The parameters ` and n are ` = 1 and
n = 5 corresponding to five helical windings for distance 2π covered in the z-direction.
The contours have been plotted on the (x, y) plane (perpendicular to the z-direction).

symmetric barotropic and incompressible HMHD. Both systems with barotropic
closure were cast in Grad–Shafranov–Bernoulli forms, which describe completely
the respective equilibria. In the incompressible cases the Bernoulli equation can no
longer be derived via the standard EC principle and one has to return to the primary
equations of the model. The Bernoulli equation decouples from the equilibrium PDE
system, becoming a secondary condition for the computation of the pressure. As
an example, a particular case of equilibria was studied by means of an analytical
solution. The application concerns an incompressible, helically symmetric plasma
described by HMHD, for which we derived an analytic double-Beltrami solution and
constructed an equilibrium configuration with non-planar helical axis which can be
regarded as a straight-stellarator-like equilibrium.
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Appendix A. Compressible helically symmetric XMHD dynamics
The compressible XMHD dynamics that respects helical symmetry is given by

∂tηHS = {ηHS,H}XMHD
HS . In view of (3.14) and (3.16) we have:

∂tρ =−∇ · (ρ∇Υ )+ [χ, ρ], (A 1)
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∂tvh = ρ−1k([HΩ, k−1vh] + [k−1Bh, ψ
∗] +∇(k−1vh) · ∇Hw), (A 2)

∂tΩ = [HΩ, ρ
−1Ω] − 2n`[HΩ, ρ

−1k3vh] +∇ · (ρ−1Ω∇Hw)− 2n`∇ · (ρ−1k3vh∇Hw)

+ [kvh, k−1vh] + [k−1Bh, ρ
−1kB∗h] + [ρ−1Lψ, ψ∗] − 2n`[ρ−1k3Bh, ψ

∗], (A 3)
∂tw = −1Hρ + [Hw, ρ

−1k−2Ω] − 2n`[Hw, ρ
−1kvh] −∇ · (ρ−1Ω∇HΩ)

+ 2n`∇ · (ρ−1k3vh∇HΩ)+∇ · (kvh∇(k−1vh))−∇ · (ρ−1kB∗h∇(k
−1Bh))

+∇ · (ρ−1Lψ∇ψ∗)− 2n`∇ · (ρ−1k3Bh∇ψ
∗), (A 4)

∂tB∗h = k−1 ([HΩ, ρ
−1kB∗h] +∇ · (ρ−1kB∗h∇Hw)+ [kvh, ψ

∗]
− 2n`ρ−1k4[HΩ, ψ

∗] − 2n`ρ−1k4
∇ψ∗ · ∇Hw + di[ρ−1kB∗h, k−1Bh]

− di[ρ−1Lψ, ψ∗] − 2n`diρ
−1k4[ψ∗, k−1Bh] + 2n`di[ρ−1k3Bh, ψ

∗]
+ d2

e [k−1Bh, ρ
−1Ω] − 2n`d2

e [k−1Bh, ρ
−1k3vh] + d2

e [ρ−1Lψ, k−1vh]
− 2n`d2

eρ
−1k4[k−1Bh, k−1vh] − 2n`d2

e [ρ−1k3Bh, k−1vh]), (A 5)

∂tψ
∗ = ρ−1([HΩ, ψ

∗] +∇ψ∗ · ∇Hw + di[ψ∗, k−1Bh] + d2
e [k−1Bh, k−1vh]), (A 6)

where Hρ is given by (3.23) while HΩ and Hw are given by (3.26). For incompressible
plasmas (ρ = 1, w = 0) the terms that contain functional derivatives Fρ and Fw in
(3.14) cease to exist. Hence (A 1) and (A 4) are absent, while Hw= 0 and HΩ =χ in
the rest of the equations, leading to the system (3.27)–(3.30) for the incompressible
dynamics.
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