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ABSTRACT

In this study, we find the points of transition between elliptic and hyperbolic regimes for the axisymmetric extended
magnetohydrodynamic (MHD) equilibrium equations. The ellipticity condition is expressed via a single inequality but is more
involved than the corresponding two-fluid ones due to the imposition of the quasineutrality condition and is also more compli-
cated than the Hall MHD ellipticity condition, due to electron inertia. In fact, the inclusion of electron inertia is responsible for
peculiar results; namely, even the static equilibrium equations can become hyperbolic.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5080997

The study of the equilibrium properties of fusion and astro-
physical plasmas is usually performed within the framework of
ordinary, single-fluid magnetohydrodynamics (MHD), which
considers the plasma as a single conducting fluid without taking
into account the individual contributions of the constituent spe-
cies of particles, i.e., the ions, electrons, and possibly neutral
particles. A better and more accurate description includes the
consideration of this coexistence of the various components of
the plasma. The easiest way to observe the effects that emerge
due to this coexistence is to perform equilibrium studies within
the framework of two-fluid theory. There exist various studies
in this field, and most of them adopt certain assumptions
regarding the effect of each fluid or their combined behavior in
order to simplify the analysis. The most generic case is rather
difficult and challenging because a complete two-fluid equilib-
rium study requires the solution of two force balance equations
coupled to the Maxwell equations, on account of the long range
interactions, and also the consideration of two continuity equa-
tions for the particle densities, which in turn are involved in
thermodynamical relations. A first assumption that reduces this
system is the assumption of quasineutrality, reducing the two
continuity equations into one and eliminating the electric field
in the resulting force balance equation. This assumption leads to

extendedMHD (XMHD), which is a quasineutral two-fluid model
expressed in terms of total velocity and current density.1,2 In
addition, an expansion in the smallness of the electron to ion
mass ratio is also performed. Upon neglecting electron inertia,
the XMHD model reduces to the well-known and extensively
studied model of Hall magnetohydrodynamics (HMHD).

In the present study, we show how the quasineutrality con-
dition, although it reduces the number of equations that have to
be considered for a fully self-consistent description, inserts a
peculiarity into the system of equilibrium equations derived in
Refs. 3 and 4: the two flux functions representing the electron
and the ion contributions are connected through a single
Bernoulli equation and a single mass density function. This fea-
ture,which is not a characteristic of the complete two-fluid the-
ory, introduces a complication in deriving ellipticity conditions
for the XMHD equilibrium system of equations, rendering the
condition more involved than those for the two-fluid system.
However, there are special cases where the ellipticity condition
is reduced to more convenient forms that indicate interesting
conclusions. Such a case is static equilibria, static in the sense
that the motion of the electron and the ion fluids are restricted
so as to prevent macroscopic mass flow, in which case we can
prove that ellipticity is not always possible, despite the fact that
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if we neglect electron inertia, the absence of macroscopic flow
implies ellipticity, as it is well known in the case of MHD.

The classification of PDEs and systems of PDEs into elliptic,
parabolic, and hyperbolic ones is fundamental in the theory of
differential equations (e.g., Ref. 5). Boundary value problems
(BVPs) with elliptic equations or systems of equations under
Dirichlet, Neumann, or Robin boundary conditions are well-
posed. On the other hand, hyperbolic equations are usually
related to evolutionary problems. Typically, ellipticity is defined
for systems of linear PDEs (e.g., for the specific case of second
order systems, see Ref. 6) because it is a property defined point-
wise and is completely depended on the principal symbol of the
differential operator; hence, the definition can be extended in
order to include quasilinear systems as it is done below.
Consider a second order system of M quasilinear partial differ-
ential equations inN independent andM dependent variables of
the following form:

XM
j¼1

XN
‘;n¼1

s‘nij ðx;u;uxÞ
@2uj

@x‘@xn

�fiðx;u;uxÞ ¼ 0 ; i ¼ 1;…;M; (1)

where x¼ ðx1;…;xNÞ 2D�RN; u¼ ðu1;…;uMÞ 2 U �RM; ands‘nij
are the coefficients of the second order derivatives in (1), and by
ux we denote the first order derivatives of the dependent varia-
bles. The classification of the system depends only upon its prin-
cipal symbol, or the characteristic matrix, which for arbitrary
real scalars k¼ ðk1;…;kNÞ, is defined as

s½k� ¼
XN
‘;n¼1

s‘nij ðx;u;uxÞk‘kn

2
4

3
5 ; (2)

which is an M�M matrix with rows and columns labeled by i
and j, respectively.

Definition: The second order quasilinear system (1) is called
elliptic if 8x 2 D; detðs½k�Þ 6¼ 0 8k 6¼ 0. That is, detðs½k�Þ has to be
positive or negative definite 8k 6¼ 0.

Ellipticity is generally desired for equilibrium studies
because they rely on solving boundary value problems, which as
stated above are well-posed and well understood in the elliptic
regime. It is also known that solutions to elliptic equations have
no discontinuous derivatives. Such discontinuities are related to
jumps in equilibrium profiles and shock formation, which cer-
tainly introduce additional numerical challenges. In ordinary
MHD, describing fusion plasmas, the boundaries between elliptic
and hyperbolic regimes are determined by the magnitude of the
poloidal flow. Weak poloidal flows render the equilibrium prob-
lem elliptic, and thus, its solution can be attained by standard
methods for boundary value problems; however, when poloidal
flows have larger magnitudes, then mixed elliptic-hyperbolic
regimes, i.e., situations for which the equilibrium system is
hyperbolic in one part of the domain and elliptic in the other
part, emerge. This implies the existence of discontinuities and
jumps in profile quantities such as the plasma density.7 The con-
nection of strong poloidal sheared flows with the formation of
internal transport barriers that are associated with the transition
to high confinement modes and whose emergence comes with

the formation of steep gradients in equilibrium profiles, estab-
lishes a link between mixed elliptic-hyperbolic equilibria with
transonic flows and high-mode confinement.

For the reasons mentioned above, it is important to know
where the boundaries between elliptic and hyperbolic regimes
are located. The ellipticity conditions for single fluid MHD have
been derived in several instances, e.g., Refs. 8–10. For the com-
plete two-fluid Grad-Shafranov-Bernoulli equilibrium system,
ellipticity conditions are provided in Ref. 10,while there are anal-
ogous conditions for simplified versions, e.g., in Ref. 11, for two-
fluid equilibria with massless electrons, in Refs. 12–14, for the
Hall MHD model with scalar and anisotropic electron pressures.
For the purpose of comparison and completeness, we give here
the well-known ellipticity conditions for axisymmetric MHD and
HMHD equations and in addition the respective two-fluid
conditions.

In the context of MHD, the axisymmetric Grad-Shafranov-
Bernoulli system is elliptic if

0 �
v2p
v2Ap

<
c2s

c2s þ v2A
; v2s < v2p < v2A; v2A < v2p < v2f ; (3)

where vp is the poloidal plasma velocity, cs is the speed of sound,
vA is the poloidal Alfv�en speed, while vs and vf correspond to the
slow and fast magnetosonic wave speeds, respectively. We can
see that within the framework of ordinary MHD, there exist two
elliptic regions; the second one, which involves stronger flows,
is interrupted by the so-called Alfv�en singularity encountered
when the poloidal flow speed coincides with the poloidal Alfv�en
speed. This makes the Grad-Shafranov equation singular, and a
global equilibrium solution cannot be constructed. It is interest-
ing that the speed of sound is not a transition point, with the
transition points being defined by the trailing cusp speed in the
wave-front diagram, c2s=ðc2s þ v2AÞ, and the characteristic speeds
of the slow and fast magnetosonic waves.

The ellipticity conditions for two-fluid equilibria acquire a
much simpler form, and only one elliptic region exists, viz.,

v2ip < c2is ; and v2ep < c2es ; (4)

where c2js ¼ Cpj=ðmjnjÞ; j ¼ i; e for polytropic gases with adia-
batic index C, deduced by reversing the hyperbolicity conditions
in Ref. 10. In the case of Hall MHD, the ellipticity condition,
derived in Ref. 13, becomes

v2p < c2s ; (5)

where c2s ¼ c2is þ c2es which holds true for HMHD and XMHD due
to the quasineutrality condition. Conditions (4) and (5) show
hydrodynamic behavior within the two-fluid context, with tran-
sitions to hyperbolicity when the poloidal speed reaches the
corresponding sound speed. One would expect that since the
XMHD model is essentially a quasineutral two-fluid model, it
would exhibit a similar behavior. However, as we show below,
the quasineutrality condition introduces complication in the
XMHD formalism. We reveal this complication by deriving the
ellipticity condition for the most generic system of XMHD equi-
librium equations, and later on,we discuss some special cases.
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The definition of ellipticity, as given above, is clear and
allows the classification of systems such as the following, which
describes axisymmetric barotropic XMHD equilibria4 in cylindri-
cal coordinates ðr;/; zÞ:

ðc2 þ d2eÞF 0ðuÞr2r �
F 0ðuÞ

q
ru
r2

� �
þ l

c� l
D�w

¼ F0ðuÞ FðuÞ þ GðnÞ½ � þ r2qM0ðuÞ � q
u� n

ðc� lÞ2
; (6)

ðl2 þ d2eÞG0ðnÞr2r �
G0ðnÞ

q
rn
r2

� �
� c

c� l
D�w

¼ G0ðnÞ FðuÞ þ GðnÞ½ � þ r2qN 0ðnÞ þ q
u� n

ðc� lÞ2
; (7)

D�w ¼ q
d2e

w� lu� cn
l� c

� �
; (8)

hðqÞ ¼ MðuÞ þ NðnÞ � v2

2
� d2e
2q2 J2/ þ r�2jrðrB/Þj2

h i
; (9)

where D� :¼ r2r � ðr=r2Þ is the elliptic Shafranov operator, J/
¼ �r�1D�w is the toroidal current density, and q denotes the
mass density. Note that all quantities are normalized to Alfv�en
units and so vA ¼ 1. The functions u ¼ w� þ crv/ and
n :¼ w� þ lrv/ are related to the poloidal components of the ion

and electron fluid flows, respectively; c :¼ di þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2i þ 4d2e

q� �
=2

and l :¼ di �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2i þ 4d2e

q� �
=2, where di and de are the normal-

ized ion and electron skin depths, respectively. The flux function
w* is the poloidal flux function of the generalized magnetic field
B� :¼ Bþr� ðr� B=qÞ. The magnetic field B has a toroidal
component given by

B/ ¼ r�1 FðuÞ þ GðnÞ½ � (10)

and a poloidal component Bp ¼ rw�r/. The same decomposi-
tion applies for the velocity field with

vp ¼ q�1r cF þ lGð Þ � r/ (11)

and

v/ ¼ r�1
u� n
c� l

: (12)

Note that for de ¼ 0, one obtains the axisymmetric Hall MHD
equilibrium system.15

For the classification of the system (6)–(9), we are inter-
ested in knowing the principal symbol, which depends only on
the coefficients of second order derivatives of (6)–(8). An inter-
esting property of Grad-Shafranov-Bernoulli (GSB) systems,
such as the above system, is that the second order derivatives of
the flux functions are not only those that appear explicitly in
the Grad-Shafranov (GS) equations but also additional terms
coming from the involvement of the mass density q in the
differential operators; according to the Bernoulli equation,
q ¼ qðr;u; n; jruj2; jrnj2Þ, so rq will contain second order
derivatives. By denoting

q0 :¼ @q

@jruj2
; _q :¼ @q

@jrnj2
; (13)

we can rewrite the equilibrium system as follows:

ðc2 þ d2eÞ
F 02
qr2

1� au2
r

� �
@rruþ 1� au2

z

� �
@zzu

�
� 2auruz@rzu� burnr@rrn

� buznz@zzn� bðurnz þ uznrÞ@rzn
�

þ lower order terms ¼ 0; (14)

ðl2 þ d2eÞ
G02
qr2

1� bn2r

� �
@rrnþ 1� bn2z

� �
@zzn

�
�2bnrnz@rzn� aurnr@rru�auznz@zzu

�aðurnz þ uznrÞ@rzu
�
þ lower order terms ¼ 0 ; (15)

@rrwþ @zzwþ lower order terms ¼ 0 ; (16)

where a :¼ 2q0=q and b :¼ 2 _q=q. Therefore, according to the
definition (2), the principal symbol of the systems (14)–(16) is

s k1; k2½ � ¼

C1 ð1� au2
rÞk21 þ ð1� au2

zÞk22 � 2auruzk1k2
h i

�C1b urnrk
2
1 þ uznzk

2
2 þ ðurnz þ uznrÞk1k2

h i
0

�C2a urnrk
2
1 þ uznzk

2
2 þ ðurnz þ uznrÞk1k2

h i
C2 ð1� bn2r Þk21 þ ð1� bn2zÞk22 � 2bnrnzk1k2
h i

0

0 0 k21 þ k22

0
BBBBBB@

1
CCCCCCA
; (17)

where C1 :¼ ðc2 þ d2eÞF 02=ðqr2Þ and C2 :¼ ðl2 þ d2eÞG02=ðqr2Þ. The
determinant of the characteristic matrix is

detðsÞðk1; k2Þ ¼ C1C2ðk21 þ k22Þ
2 k21 ð1� au2

r � bn2rÞ
h

þk22ð1� au2
z � bn2zÞ � 2k1k2ðauruz þ bnrnzÞ

	
¼: C1C2ðk21 þ k22Þ

2Pðk1; k2Þ: (18)

For free functions FðuÞ and GðnÞ with F0 6¼ 0 and
G0 6¼ 0 8x 2 D, the coefficient C1C2 can be ignored since it is
strictly positive. Clearly, for F0;G0 6¼ 0 and k1; k2 6¼ 0, the
determinant can be zero if and only if the homogeneous
polynomial P(k1, k2) has real roots. Thus, the ellipticity condi-
tion for XMHD equilibrium equations can be summarized as
follows:
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Pðk1; k2Þ 6¼ 0 ; 8k1; k2 6¼ 0: (19)

We can prove that, by directly computing the roots of P(k1, k2)
with respect to either k1 or k2, no real roots exist if

1� ajruj2 � bjrnj2 þ ab jruj2jrnj2 � ðru � rnÞ2
� �

> 0 : (20)

At this point, it remains to compute a and b in terms of equilib-
rium quantities. This can be done by performing implicit differen-
tiation of the Bernoulli equation with respect to jruj2 and jrnj2
(e.g., see Refs. 8 and 13). The final expressions for a and b are

a ¼ �ðc2 þ d2eÞF 02

q2r2 c2s � v2p �
d2e

q2r2
jrðrB/Þj2

" # ; (21)

b ¼ �ðl2 þ d2eÞG02

q2r2 c2s � v2p �
d2e

q2r2
jrðrB/Þj2

" # ; (22)

where c2s :¼ qh0ðqÞ ¼ c2is þ c2es is the Alfv�en normalized speed of
sound, leading eventually to

ðc2 þ d2eÞðl2 þ d2eÞF 02G02 jruj2jrnj2 � ðru � rnÞ2
h i

q4r4 v2p þ
d2e

q2r2
jrðrB/Þj2 � c2s

 !2

þ 1

1� v2p þ
d2e

q2r2
jrðrB/Þj2

 !
=c2s

> 0 : (23)

This is the ellipticity condition for the complete system of axi-
symmetric XMHD equilibrium equations. We observe that since
the first term is always non-negative, a sufficient (but not neces-
sary) condition for ellipticity is

v2p þ
d2e

q2r2
jrðrB/Þj2 < c2s : (24)

Observe in (23) that setting de ¼ 0, i.e., neglecting electron iner-
tia, we recover the Hall MHD ellipticity condition v2p < c2s .

In Ref. 3, it became clear that the XMHD formalism suggests
a different kind of static equilibrium. Consider a situation where
the electron and ion fluids are not static; nevertheless, there is
no macroscopic mass flow because they move in such a way
that the total flow v ¼ ðmivi þmeveÞ=ðmi þmeÞ vanishes every-
where. So, if we assume v 	 0 in expression (12), we conclude
that u ¼ n. Thus, (23) reduces to

d2e
q2r2

jrðrB/Þj2 < c2s : (25)

Therefore, in principle, elliptic-hyperbolic transitions are possi-
ble even for zero macroscopic flow, something that cannot hap-
pen within the framework of the MHD and HMHD. This is
indeed plausible because the static XMHD equilibrium does not
mean strictly static ions and electrons—if that were the case,
there would be no current at all. However, we need to clarify
that the violation of the ellipticity condition (25) would require

rather peculiar conditions, i.e., very high current density,
since jrðrB/Þj2=r2 is the poloidal current density squared and
very low mass density, because the speed of sound decreases,
if, for example, a polytropic equation of state is adopted
ðp / qCÞ, while the lhs of (25) increases with the decrease in
density. Therefore, a transition to the hyperbolic regime
requires sufficiently small mass density and sufficiently high
poloidal current density, which effectively means that the dif-
ference of the poloidal electron and ion velocities is large
enough. This can be seen by rewriting Eq. (25) as
ðme=mÞjvip � vepj2 < CðmnÞðC�1Þ. It is also noted that since the
current version of XMHD involves an expansion in the small-
ness of me=mi, although the model is self-consistent, a
straightforward correspondence between the two-fluid and
the XMHD quantities is not absolutely accurate.

We point out that (25) holds also for purely toroidal flows
(vp ¼ 0) because in that case, u ¼ f(n) [see Eq. (11)], so again the
first term of (23) vanishes. Another case that admits a simplified
version of the ellipticity condition (23) is when one of the two
free functionsF ; G is constant, say G0 ¼ 0. In this case, the poloi-
dal flow is present, and the flow surfaces coincide with the level
sets of the stream function u. For G0 ¼ 0, Eq. (23) reduces to Eq.
(24) which represents now both necessary and sufficient elliptic-
ity conditions.

As a final point, we address the following reasonable ques-
tion: Why does the more generic case of two-fluid equilibria
possesses ellipticity conditions simpler in form? As stated
before, the quasineutrality condition is the source of the com-
plication because it causes the two stream functions to be
related through a single Bernoulli equation. In the two-fluid
case, there exist two Bernoulli equations for the two mass den-
sities, each one of which contains a dependence on the gradient
of the corresponding stream function and each GS equation
contains only the corresponding mass density function. As a
consequence, the principal symbol has only diagonal elements
and the ellipticity condition for each fluid becomes trivial
because it results from the requirement that all diagonal ele-
ments must have no real roots. This requirement leads eventu-
ally to the pair of inequlities (4) instead of a single inequality.

In conclusion, we emphasize that the present work is a
companion piece to the two previous studies3,4 on XMHD equi-
libria, which were concerned with the derivation of the equilib-
rium equations using the Hamiltonian structure. Those
equations are new in the literature, and therefore, their proper-
ties are not yet elucidated. One feature of particular importance
is the classification of the equilibrium PDEs. We examined this
problem by deriving ellipticity condition for the complete sys-
tem and by further examining some special cases. It turned out
that the quasineutrality assumption together with the inclusion
of electron inertia is of importance for the final form of the ellip-
ticity condition. We deduced a sufficient condition, which
becomes necessary under certain assumptions, indicating that
electron inertia lowers the threshold of the maximum poloidal
center of mass velocity for the system to remain elliptic. In par-
ticular, the electron inertial contribution may become consider-
able within the regions of low mass density. Also, we arrived at
the interesting conclusion that, in the context of XMHD, even
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static equilibrium equations can become hyperbolic a conse-
quence of the quasineutrality condition and electron inertia.
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