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The direction of cascades in a two-dimensional model that takes electron inertia and ion sound

Larmor radius into account is studied, resulting in analytical expressions for the absolute equi-

librium states of the energy and helicities. These states suggest that typically both the energy

and magnetic helicity at scales shorter than the electron skin depth have a direct cascade, while

at large scales the helicity has an inverse cascade as established earlier for reduced magnetohy-

drodynamics (MHD). The calculations imply that the introduction of gyro-effects allows for the

existence of negative temperature (conjugate to energy) states and the condensation of energy to

the large scales. Comparisons between two- and three-dimensional extended MHD models

(MHD with two-fluid effects) show qualitative agreement between the two. Published by AIP
Publishing. https://doi.org/10.1063/1.5023089

I. INTRODUCTION

In various astrophysical and laboratory settings, plasma

is known to be in a turbulent state. Progress in the under-

standing of turbulence is thus crucial for explaining several

phenomena occurring in astrophysical and laboratory plas-

mas. On sufficiently large scales, magnetohydrodynamics

(MHD) is a valid model for describing plasma turbulence

and is indeed the basis for the theoretical descriptions of

several plasma phenomena: among these, for instance, the

magnetic dynamo action (see, e.g., Ref. 1), which has been

established as a mechanism for conversion of kinetic energy

into magnetic energy. Such conversion is relevant for the

Earth’s magnetosphere as well as the solar wind. The dynamo

action has also been linked to the inverse cascade in MHD tur-

bulence.2–6 Theoretical predictions for MHD turbulence have

been confirmed in numerical simulations4,7 and similar works

have been successfully undertaken in three-dimensional (3D)

Hall MHD.8 The magnetic relaxation process characterizing

magnetically confined plasmas in Reversed Field Pinches9 is

another example of phenomenon whose understanding is

based on the MHD description of a turbulent plasma. Further

applications of MHD turbulence can be found, for instance,

in Ref. 10.

While MHD has been a cornerstone for the description

of large scale plasma phenomena, it fails at short scales, such

as the electron skin depth d̂e ¼ c=xpe, where c is the speed

of light and xpe is the electron plasma frequency. The model

of extended MHD (XMHD) generalizes MHD (as well as

Hall MHD) by including terms that are relevant at scales of

the order of d̂e. The investigation of turbulence at such scales

is of relevance for instance for the recently launched

Magnetospheric Multiscale Mission,11 which is known to be

capable of probing such scales (observational results in these

regimes have been recently published in Ref. 12). The prob-

ing of such scales may also become feasible in the labora-

tory, with facilities such as WiPAL.13 The direction of

turbulent cascades in three-dimensional (3D) XMHD was

investigated in Ref. 14.

Besides Hall MHD and XMHD, a number of reduced

fluid models exist that account for additional two-fluid

plasma effects, models that are amenable to simpler analyti-

cal and numerical treatments. Such reduced models (see, e.g.,

Ref. 15) typically rely on the assumption of a magnetic field

with a strong constant component along one direction (strong

guide field assumption) and are valid at frequencies much

lower than the ion cyclotron frequency based on such a guide

field. This situation is relevant for some laboratory plasmas

as well as for a number of astrophysical situations (see, e.g.,

Ref. 16). These models are also characterized by the property

of possessing only quadratic nonlinearities and by a spatial

anisotropy induced by the presence of the guide field.

The purpose of this paper is to investigate the direction

of turbulent cascades in one such reduced fluid model17 that

accounts for the electron skin depth scale and an additional

scale consisting of the ion sound Larmor radius q̂s

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
=xci, with Te the equilibrium electron tempera-

ture, mi the ion mass, and xci the ion cyclotron frequency

based on the guide field. This additional scale, which

accounts for finite electron temperature, proved, for instance,

to be crucial for the nonlinear evolution of the current den-

sity and plasma vorticity during a magnetic reconnection

process.18,19

In our analysis, we consider the two-dimensional (2D)

case, assuming translational invariance along the direction of
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the guide field. This assumption could be justified by the

presence of a strong guide field. We remark that, in its origi-

nal and more general formulation,20 the model assumes only

weak variations along the guide field and, in particular, non-

linear terms only involve derivatives along directions per-

pendicular to the direction of the guide field. Moreover, the

appearance of coherent structures in two-dimensional turbu-

lence and the possible occurrence of reconnection events

induced by electron inertia, as suggested by recent observa-

tions of the fast solar wind,21 make the 2D version of the

model of interest in its own right. Some comparison with cas-

cade properties of 3D XMHD will nevertheless be made. In

2D, the model is known to possess two infinite families of inte-

gral invariants20 (Casimir invariants) associated with the non-

canonical Hamiltonian structure of the model. A qualitative

change in the form of these families of invariants occurs when

the normalized ion sound Larmor radius qs ¼ q̂s=L (with L a

characteristic length of the system) is set equal to zero.

In order to predict the direction of turbulent cascades of

invariants of the model, we resort to the well-known tech-

nique of absolute equilibrium states (AES). This technique

(see Sec. IV) has been used in various past works: it was

applied to hydrodynamical turbulence in Ref. 22, MHD in

Refs. 2–4, Hall MHD in Refs. 8 and 14, two-fluid theory in

Ref. 23, 3D XMHD in Ref. 14, gyrokinetics in Ref. 24, and

drift wave turbulence in Refs. 25 and 26. AES are derived

from the Gibbs ensemble probability density and represent

states towards which actual turbulent tends to relax; thereby,

they are of value for predicting the direction and structure of

the exchange of various invariants among the modes.27 It is

important to mention that these modes are not eigenstates of

the various models considered, but Fourier amplitudes that

allow analyses of how components of the invariants flow

through different scales.

One of the earliest suggestions for ascertaining the

inverse cascade based on AES in MHD turbulence10 can be

found in Ref. 2, followed by the two-dimensional studies of

Ref. 3, inspired by works of Kraichnan in hydrodynam-

ics.22,27 Numerical simulations4 support the predicted

relaxed spectra. Although later it was found that deviation

from Gaussian statistics occurs as well as breaking of ergo-

dicity in MHD.28 Good agreement between AES in Hall

MHD and numerics was found in Ref. 8. Later mostly

analytical calculations for AES were performed in two-fluid

theory23 and gyrokinetics,24 where the former alludes to the

possibility that the “poles” of AES can appear in the high-k
regime and a pole implies condensation of a spectral quantity

to that wavenumber (see Sec. VI). More detailed analyses

were performed in Ref. 14, predicting the phenomenon of

cascade reversal of the magnetic helicity in 3D extended

MHD at the electron skin depth scale. An in-depth overview

can be found in Refs. 14 and 29.

One of the main objectives of the present analysis is to

see if the cascade reversal of magnetic helicity at the electron

skin depth predicted in Ref. 14 has a counterpart in the 2D

reduced model considered in this paper. (We anticipate that,

when neglecting toroidal velocity and magnetic field compo-

nents, the 2D incompressible limit of XMHD,30 which we

will refer to as ’2D planar incompressible XMHD’, formally

reduces to the 2D reduced model studied here in the limit

qs ¼ 0). As is well known, the directions of cascades change

when going from 3D to 2D in hydrodynamics and in MHD,

although in the latter case regimes exist where AES predict

the same direction for energy cascade in 2D and 3D (see,

e.g., Ref. 31).

The identification of cascade reversal is a subject that

has attracted considerable interest. However, mostly cascade

reversals (usually referred to as cascade transitions in the

literature) have only been identified in highly idealized

systems. For instance, there are many examples of cascade

reversal when the interactions of the real physical system

have been artificially modified.

For example, in Ref. 32 it is demonstrated that 3D

hydrodynamics (HD) displays a change in the direction of

the energy cascade when varying the value of a free parame-

ter that controls the relative weights of the triadic interac-

tions between different helical Fourier modes. Another

useful study was performed in a model of thin layer turbu-

lence,33 where 2D motions were coupled to a single Fourier

mode along the vertical direction. As the height of the layer

is varied, the authors find critical transitions from forward to

backward cascade of energy.

The literature on cascade reversal in real physical sys-

tems, ones without artificial modification, is scarcer. Some

examples include the rotating three dimensional stirred HD

system,34,35 where the transition to inverse cascade of energy

occurs below certain values of the Rossby number. In addi-

tion, in Ref. 36 3D direct numerical simulations of rotating

Boussinesq turbulence also demonstrate such transitions.

There is also theoretical and experimental evidence for the

inverse energy cascade in the second sound acoustic turbu-

lence in superfluid Helium.37 In 3D MHD, various simula-

tions have been performed38,39 that demonstrate cascade

reversal when the system is forced only mechanically. Since

the stirring lacks a magnetic component with stronger guide

fields, the flow becomes two-dimensional, leading to the

inverse cascade of energy like in 2D HD. The transition

appears to have some interesting features40 as the magnetic

forcing is turned on, viz., there exists a critical value for

which the energy flux towards the large scales vanishes.

In the MHD examples above, the parameter that is varied cor-

responds to the form of the amplitude of a magnetic forcing

added to the MHD system. In our paper, on the other hand,

the possible occurrence of cascade reversal will be investi-

gated adopting de and qs as control parameters.

This paper is organized as follows. We review the

reduced fluid model and its Hamiltonian structure in Sec. II,

while a discussion of its spectral decomposition properties

follows in Sec. III. In Sec. IV, we present our calculations of

AES, whereas in Sec. V we discuss the different regimes that

characterize the AES depending on the values of the parame-

ters. Finally, in Sec. VI we discuss comparisons with other

related models and summarize.

II. THE MODEL AND ITS INVARIANTS

As stated in Sec. I, we consider the model of Ref. 17,

which was used earlier in Hamiltonian reconnection
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studies.18,41 This model is applicable to low-b plasmas, with

b indicating the ratio of the kinetic and magnetic pressures,

and it can be seen as an extension of the previously investi-

gated reduced MHD model of Ref. 3, accounting also for the

effects of electron inertia and finite, constant electron tem-

perature. As such, it describes plasmas with a strong mag-

netic guide field and it can be used to locally model

phenomena such as collisionless reconnection and turbu-

lence, in situations where a detailed description of the tem-

perature and heat flux evolution is not required. Because the

processes occur on time scales shorter than dissipation time

scales, a collisionless Hamiltonian treatment is appropriate.

However, in a realistic turbulence scenario dissipation can-

not be ignored, even if the resistivity and viscosity appear

negligible. The model can be obtained from a more general

three-field model20 in the cold ion limit and assuming an ion

response with ion density fluctuations proportional to vortic-

ity fluctuations. Alternatively, the model can be obtained

from a two-moment closure of drift-kinetic equations.42–44

The model equations, in the dimensionless form, are

given by

@w?

@t
¼ fw?;Hg ¼ w?;/½ � þ q2

s x;w½ �;

@x
@t

¼ fx;Hg ¼ x;/½ � þ w?;r2w
� �

;

(1)

where x ¼ r2/ indicates the vorticity associated with a

stream function / (normalized electrostatic potential),

whereas w? ¼ w� d2
er2w, with w the poloidal magnetic

flux function of a magnetic field B ¼ rw� ẑ þ ẑ. The

parameter de denotes the constant electron skin depth and the

second constant parameter qs corresponds to the ion sound

Larmor radius. The bracket ½ ; � is defined as usual by ½f ; g�
:¼ rf �rg � ẑ for two functions f and g and the noncanoni-

cal Poisson bracket f ; g is defined below.

Using a caret to denote dimensional quantities, we have

adopted the normalizations, de ¼ d̂e=L; qs ¼ q̂s=L; t ¼ t̂=sA;
/ ¼ c/̂=ðB0vALÞ, and w ¼ ŵ=ðB0LÞ, where as noted above L
is a characteristic length and sA ¼ L=vA with vA being the

Alfv�en speed based on the amplitude B0 of the guide field. The

latter is assumed directed along the ẑ axis of a Cartesian coor-

dinate system (x, y, z). Due to the 2D assumption, the z coordi-

nate is taken as ignorable. Note that, when two-fluid effects are

suppressed (i.e., de ¼ qs ¼ 0), the model reduces to the 2D

reduced MHD model of Ref. 45.

The first equalities of Eq. (1) indicate that the system

possesses a Hamiltonian formulation characterized by a

Hamiltonian functional

H :¼ 1

2

ð
d2x ð�/ x� w?r2wþ q2

s x
2Þ; (2)

and a noncanonical Poisson bracket (see Ref. 46 for review)

P;Qf g ¼
ð

d2x

(
x

dP

dx
;
dQ

dx

� �
þ d2

eq
2
s

dP

dw? ;
dQ

dw?

� � !

þw? dP

dw? ;
dQ

dx

� �
þ dP

dx
;
dQ

dw?

� �� �)
: (3)

We remark that when electron temperature effects are

neglected, i.e., when qs ¼ 0, Eqs. (1) reduce to the 2D iner-

tial MHD (IMHD) system of Ref. 47 or, equivalently, as

stated above, to 2D planar incompressible XMHD.

The complexity of the Poisson Bracket of (3) can be

reduced by the coordinate transformation w6 :¼ w?6deqsx
to normal coordinates, in which the Poisson bracket has the

following form:

P;Qf g ¼ 2deqs

ð
d2x w�

dP

dw�
;

dQ

dw�

� �
� wþ

dP

dwþ
;

dQ

dwþ

� � !
:

(4)

With the bracket in the form of (4), it is easily seen that the

systems possesses two infinite families of Casimir invariants:

C6 ¼
ð

d2xF6ðw6Þ; (5)

for arbitrary functions F6. Casimir invariants are functionals

C that satisfy fC;Qg ¼ 0 for all functionals Q. They are thus

preserved for dynamics generated by any Hamiltonian.

III. SPECTRAL ANALYSIS

Equilibrium states of XMHD have been studied (see,

e.g., Ref. 48) leading to a generalization of the Grad-

Shafranov equation. In contrast, here we are interested in sta-

tistical equilibrium in Fourier space, and the analysis of the

associated direction of cascades. In order to apply equilib-

rium statistical mechanics to the Fourier series of this

system, one has to prove a Liouville theorem to ensure that a

measure is conserved.49 Various systems have been shown

to possess such, including hydrodynamics, MHD, and

extended MHD in 3D.14,27,50,51

Using a standard Fourier representation wðxÞ
¼
P

k wk eik�x, so that w?
k ¼ ð1þ k2d2

e Þwk, Eqs. (1) become

_w
?

k ¼ ẑ �
X
k0;k00

dk;k0þk00 k
00 � k0

xk0 w
?
k00

k02
þ q2

s xk0wk00

� �
(6)

and

_xk ¼ ẑ �
X
k0;k00

dk;k0þk00 k
00 � k0

xk0 xk00

k02
þ k02wk0 w

?
k00

� �
: (7)

These equations can be generated by the Hamiltonian of (2)

and Poisson bracket of (3) written in terms of Fourier series.

Consequently, they preserve the energy and all Casimir

invariants written in terms of their Fourier series.

Of particular interest to us are the quadratic invariants

preserved by (6) and (7), the so-called rugged invariants.

These are the Hamiltonian and the quadratic Casimirs. The

main reason for this is that such invariants survive wave-

number truncations, kmin < k < kmax, which is common for

spectral Galerkin codes. Another motivation for using these

invariants is the ease of handling Gaussian statistics.

Of course, in general there may be other criteria, possi-

bly motivated by experimental results, to ignore or select
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certain invariants in an analysis of our type, based on the

effects of viscosity/resistivity or other aspects ignored in

ideal models. For instance in order to determine the relevant

invariants, the authors of Ref. 52 have resorted to experi-

ments. In our case, this possibility is excluded by the diffi-

culty in obtaining experimental measures on the invariants

for our system. Therefore, we stick with the quadratic invari-

ants and introduce linear combinations of the Casimirs of

(5), viz., the following:

F :¼ 1

2

ð
d2x w?ð Þ2 þ d2

eq
2
s x2

h i
; (8)

G :¼
ð

d2x x w?: (9)

The Hamiltonian (2) and the constants of (8) and (9) expressed

in terms of Fourier series are

H ¼ 1

2

X
k

q2
s þ k�2

	 

jxkj2 þ

k2jw?
kj

2

1þ k2d2
e

 !
; (10)

F ¼ 1

2

X
k

jw?
kj

2 þ d2
eq

2
s jxkj2

� �
; (11)

G ¼ 1

2

X
k

xkw
?
�k þ x�kw

?
k

	 

: (12)

Equations (11) and (12) can be thought of as 2D remnants of

the magnetic and cross helicities53 if we set qs ¼ 0, although

since there is no third dimension they lose their topological

meaning associated with linking. It can be shown via direct

calculation that these helicity remnants are indeed rugged.

For instance, using (6) and (7) and the reality condition

�xk ¼ x�k with overbar being complex conjugate, we find

_G ¼
X
k;k00

ẑ � k00 � k ðkþ k00Þ2 w?
kw

?
k00 þ q2

s xkxk00

� �
wk0 ¼ 0:

(13)

Similarly, it is not hard to show that a Liouville theorem is

satisfied, i.e.,

@ _xk

@xk

¼ 0 and
@ _w

?

k

@w?
k

¼ 0: (14)

It is necessary to demonstrate this in order to apply equilib-

rium statistical mechanics, even though the model of (1) is

Hamiltonian. This is because the variables w? and x are non-

canonical and one must identify an invariant measure. The

Darboux theorem ensures that the usual phase space volume

measure is preserved in some local canonical coordinate sys-

tems;46 however, in the truncated noncanonical coordinates,

the finite number of retained Fourier amplitudes, Eq. (14),

need to be verified. We emphasize this point because some-

times this step is missing in analyses.

IV. ABSOLUTE EQUILIBRIUM STATES

We now turn to our study of turbulent cascades using

the statistical mechanics of AES, even though turbulence is

an out-of-equilibrium phenomenon. This might be seen as

counterintuitive; however, it important to stress here that

the AES hypothesis is a tool used to predict the direction of

cascades10,54and does not in general describe the distribu-

tion of actual invariants in fully developed turbulence in a

driven dissipative system. The operative intuitive idea is

that the AES captures the relevant properties of the nonlin-

ear dynamics active in the inertial range. For instance, in

2D HD turbulence, using AES one could infer the presence

of the inverse energy cascade that dumps energy to large

scales away from the small scales where the dissipation

normally occurs. As a consequence, the flow dynamics is

dominated by large scale coherent structures, such as vorti-

ces or jets.55 In the 3D fluid case there is the well-

established cascade56 (see Fig. 1) from large scales, where

stirring occurs, to the short scales, where energy is dissi-

pated, a picture that has been confirmed in experi-

ments.10,54,57 So typically one follows Kolmogorov and

makes use of phenomenological estimates based on dimen-

sional arguments in order to describe turbulent spectra. For

instance, this was done in recent work on a 3D extended

MHD model, where steepening of spectra was predicted58

and in a companion work14 the direction of such cascades

was investigated. This work relied on a generalization of

pioneering works in hydrodynamics22,51 and MHD turbu-

lence2,51 based on statistical mechanics ideas. We apply

those same methods here.

The idea50,51 is to assume that Fourier modes play a role

analogous to that of the particle degrees of freedom in statis-

tical mechanics. One calculates spectra in the canonical

ensemble and then makes predictions regarding the direction

of the cascades based on where the spectra peak. It is under-

stood that in reality dissipation acts to remove the ultraviolet

catastrophe (high k divergence) that typically occurs in

Galerkin systems.27

There is a problem that may arise in a case when one

has non-additive constants of motion that may lead to non-

Boltzmann statistics. For more on this, see the discussion in

Ref. 59. On the other hand, in the case of the 2D Euler equa-

tion, we find that according to Ref. 60, even though the

canonical distribution has to be used with caution for long-

range interacting systems, the statistical tendency of vortices

of the same sign of circulation to cluster in the so-called neg-

ative temperature regime can be indeed predicted using the

same canonical distribution by observing that spectra peak at

low k.

We seek AES given by the phase space probability den-

sity of the form

P ¼ Z�1e�aH�bF�cG ¼: Z�1e�Aijuiuj=2; (15)

FIG. 1. Schematic demonstrating the standard Richardson-Kolmogorov

direct cascade. Energy injected at low k, e.g., via large scale stirring, cas-

cades through the inertial range and dissipates at small scales (large k).

Upon reversal of the arrows along with the driving and dissipative ranges, a

depiction of the inverse cascade is obtained.
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where ui :¼ fx<k ;x=k ;w
?<
k ;w?=

k g and according to (10), (11),

and (12) the matrix ðAijÞ is given by

A :¼

d 0 c 0

0 d 0 c

c 0 g 0

0 c 0 g

0
BBBB@

1
CCCCA;

where

d :¼ ðaþ bd2
e Þq2

s þ
a
k2

and g :¼ ak2

1þ k2d2
e

þ b: (16)

The parameters a, b, and c present in Eq. (15) are Lagrange

multipliers. Their values in terms of the parameters de and qs

are determined by a normalization condition and by impos-

ing that the expectation values of the invariants H, F, and G
match their initial values [see Eqs. (25)–(27)]. This will be

carried out in Sec. V. These Lagrange multipliers are akin to

the inverse temperatures found in statistical mechanics.

Using (15), the partition function Z follows from the

normalization conditionð
PðkÞ dCðkÞ ¼

ð
PðkÞ dw?<

k dw?=
k dx<k dx=k ¼ 1; (17)

where w?
k ¼: w?<

k þ i w?=
k . Because the statistics are

Gaussian, integration is straightforward and the partition

function is found to be

Z ¼ ð2pÞ2ffiffiffiffiffiffiffiffiffiffi
det A
p : (18)

One can also invert the matrix A to obtain various

expectation values, such as huiuji ¼ A�1
ij .61 In addition, it is

necessary to investigate the realizability condition that the

matrix A needs to be positive-definite. Thus, we impose the

condition of positivity of its eigenvaules; otherwise the prob-

ability distribution would not be integrable. After some alge-

bra, we arrive at the following inequalities

ðaþ bd2
e Þq2

s k2 þ a > 0; (19)

ðaþ bd2
e Þk2 þ b > 0; (20)

ðaþ bd2
e Þq2

s k2 þ a
� �

ðaþ bd2
e Þk2 þ b

� �
> k2ð1þ k2d2

e Þc2 :

(21)

At this point, it is important to observe that a > 0 when we

set qs ¼ 0. Thus, 2D planar incompressible XMHD cannot

have the so-called “negative temperature states” (NTS) that

correspond to a < 0. It appears that NTS are in principle

possible if qs is not ignorable, i.e., when thermal electron

effects are taken into account. This is interesting since it is

known that in 2D fluid turbulence they are associated with

the inverse cascade of energy.62 Actually, NTS have been

analytically predicted in gyrokinetics24 in the 2þ 1D case as

well as in some earlier works on drift-wave turbulence.25,26

The latter works consider fluid models formed by an incom-

pressible Euler equation together with an equation for an

advected scalar. Therefore, they differ qualitatively from the

model (1) that we are using.

It is evident from (19) that if a < 0 then ~a :¼ a
þbd2

e > 0. Alternatively, we can have a > 0, which if b > 0

obviously implies ~a > 0 and on the other hand if b < 0 then

(20) implies that ~a is again positive. Thus, we have the use-

ful inequality independent of k

~a :¼ aþ bd2
e > 0: (22)

We proceed with evaluating various expectations of cor-

relations. The quantities of interest are the average squared

generalized flux function per wave-mode

1

2
hjw�kj

2i ¼ ~ak2 þ b
1þ k2d2

e

� c2 1

~aq2
s þ ak�2

" #�1

(23)

and the average squared vorticity

1

2
hjxkj2i ¼ ~aq2

s þ
a
k2
� c2 1þ k2d2

e

~ak2 þ b

" #�1

: (24)

To calculate the remnant cross-helicity, we need to add

cross-correlation terms

hGðkÞi ¼ � c

~aq2
s þ

a
k2

� �
~ak2 þ b
1þ k2d2

e

� c2

: (25)

To simplify the analysis, we assume that the remnant cross-

helicity G is zero and therefore, c ¼ 0. Thus, per wave mode,

we obtain the expressions

hFðkÞi ¼ d2
eq

2
s k2

aþ ~aq2
s k2
þ 1þ k2d2

e

~ak2 þ b
; (26)

hHðkÞi ¼ 1þ q2
s k2

aþ ~aq2
s k2
þ k2

~ak2 þ b
: (27)

This is consistent with the MHD results of Ref. 3 (if we rela-

bel appropriately a! 2a; b! 2c; c! 2b and set qs ! 0

and de ! 0).

We observe that, for large k, the remnant helicity and

energy spectra behave as follows:

2pkhFðkÞi � Oð1=kÞ; 2pkhHðkÞi � OðkÞ; (28)

similarly to MHD. On the other hand, at large scales, the

presence of finite electron temperature can yield a different

behavior, depending on the value of parameters. Relevant

limits of the remnant helicity and energy spectra will be dis-

cussed in Sec. VI.

V. QUALITATIVE ANALYSIS

In this section, we will discuss different regimes that the

system exhibits. The parameters a and b can be found from

the total energy and the remnant helicity, which are obtained

as H ¼
Ð

2pk hHðkÞi dk and F ¼
Ð

2pk hFðkÞi dk. It also

turns out to be convenient to introduce the variable ~F :¼ F
�d2

e H and the ratio
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K :¼ H
~F
¼ 2

k2
max � k2

min

ln
ðbþ ~ak2

maxÞðaþ ~aq2
s k2

minÞ
d2

e=q
2
s

ðbþ ~ak2
minÞðaþ ~aq2

s k2
maxÞ

d2
e=q

2
s

� b
~a
: (29)

Notice that aH þ bF ¼ ~aH þ b ~F; however, since ~F is not a

Casimir, in the following we will focus on the invariant F. In

addition, we observe the well-known identity

aH þ bF ¼ 2p ðk2
max � k2

minÞ: (30)

For simplicity, we first consider the 2D planar incompress-

ible XMHD limit qs ! 0. Then, (29) becomes

K ! 2

ðk2
max � k2

minÞ
�1

ln
bþ ~ak2

max

bþ ~ak2
min

� d2
e

~a
a

� b
~a
: (31)

The parameter b switches sign at

Kb :¼ Kðb ¼ 0Þ ¼ 2

ðk2
max � k2

minÞ
�1

ln
k2

max

k2
min

� d2
e

; (32)

signaling the emergence of negative temperature states.

Notice that Kb > 0 provided de is small enough. The local

minimum is reached when

Kcr :¼ K
b
a
¼ � k2

min

1þ k2
mind2

e

 !
¼ k2

min: (33)

A depiction of the behavior is shown in Fig. 4. Notice that at

Kcr the remnant helicity condenses to the lowest wavenum-

ber kmin. This can be seen from the second term in (26) and

is a direct analogy of the energy condensation in HD pro-

posed by Kraichnan63 and others.

In addition, it can be shown that the logarithm found in

the denominator of (31) is a monotonically decreasing func-

tion of b=a because kmax > kmin, while the magnitude of the

second term is linearly increasing and thus there exists a pole.

This pole is absent in MHD, where therefore K> 0. This will

be important below. The analysis is concluded by observing

that as b=a!1, K approaches K1 ¼ �d�2
e and thus curi-

ously there seems to be a gap in the admissible values of K.

Now let us step back to MHD by letting de ! 0 and

explicitly follow an argument found in Refs. 3 and 4. In this

case, the following identity can be found from (31) in the

limit kmax !1:

b
a
þ k2

min ¼ k2
max exp � 2kmax2

K

� �
! 0: (34)

Thus, the authors conclude that physically one can expect

condensation to the lowest wavenumber since b becomes

negative. If b is negative, we can have a low-lying pole as

will be described below. And when K reaches its local mini-

mal value [associated with a specific negative value of b, see

Fig. 4 and Eq. (33)], then this pole coincides with kmin.

Existence of a pole naturally implies that most of the spectral

quantity is going to condense there.

If we redo these arguments for the XMHD case, we obtain

K ! �d�2
e

a
~a
þ 1

� �
) b

a
! �d�2

e 1þ d2
e K

	 

(35)

and therefore b=a may remain positive, thus avoiding con-

densation for some values of K even if kmax !1.

When the electron temperature is not ignorable (qs > 0),

we recover the a < 0 regime and the situation becomes more

complicated according to (29). From (26) and (27), we can

see that there are two poles. In the vicinity of one pole, the

other term can be ignored. When b is negative, the remnant

helicity condenses to kcr;1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
�b=~a

p
as described above in

the XMHD case. However in the a < 0 case the pole kcr;2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�aq�2

s =~a
p

dominates and the roles of H and F are inter-

changed. Notice that both poles cannot occur simultaneously

since that would clearly violate (22). When qs is small

enough, one expects a diagram similar to that of Fig. 4. It is

not hard to show that b changes sign at

Kb ¼ 2
k2

max � k2
min

ln
k2

max

k2
min

� d2
e

q2
s

ln
1þ q2

s k2
max

1þ q2
s k2

min

; (36)

which generalizes (32). In fact, because the second term in

the denominator is monotonic, it turns out that as a function

of qs the quantity Kb is bounded from below by (32), which

is positive provided that de is sufficiently small, so we can

assume Kb > 0. Similarly, a changes sign at

Ka ¼ �d�2
e �

2q2
s

d2
e

k2
max � k2

min

ln
k2

max

k2
min

� q2
s

d2
e

ln
1þ d2

e k2
max

1þ d2
e k2

min

(37)

and by the same argument Ka < 0, provided that qs is suffi-

ciently small.

VI. RESULTS, COMPARISONS, AND SUMMARY

Our new results concern the limit kde 	 1, where

2pkhFðkÞi � OðkÞ; 2pkhHðkÞi � OðkÞ: (38)

Thus, we see that the scaling changes from the inverse to

direct, which suggests cascade reversal for the remnant mag-

netic helicity F. Table I contains our analyses for behavior

across scales when qs > 0. The cascade reversal behavior

indicated by (28) and (38) is seen in this more general analy-

sis. Thus, there is cascade reversal behavior at the electron

skin depth in 2D planar incompressible XMHD as was pre-

dicted for 3D XMHD in Ref. 14, although the details may

vary. In Figs. 2 and 3, we plot spectral quantities for non-

zero c.

As pointed out in Ref. 3, when kde 
 1 the inverse cas-

cade implies the presence of large scale structures in w?. In

our model due to the presence of qs, this can be achieved

in the a > 0 regime; on the other hand when qs ¼ 0 states

a < 0 are forbidden. In 3D MHD, the large scale presence of

magnetic helicity is often associated with the generation of

large scale magnetic fields.64,65 In our previous work,14 we

have explored the influence the electron inertia can have on

the development of the turbulent cascade of the magnetic
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helicity in 3D. As stated earlier, in the absence of qs the pre-

sent paper can be seen as a natural continuation of the earlier

work, where geometry is simplified to two dimensions. In

2D MHD, we see that instead of inverse cascade of magnetic

helicity one has inverse cascade of the square vector poten-

tial and so we reach similar conclusions. The fact that mag-

netic helicity would condense to large scales is often cited as

evidence of the dynamo action in MHD.4,66 The antidynamo

theorem applies in the absence of the external magnetic field

or a magnetic source.40 For convenience, we plot spectral

quantities in 3D XMHD in Fig. 5 (see Ref. 14 and Table II

for more details).

We are led to conclude that there may be barriers for

finer-scale fluctuation amplifications (such as kde 	 1). Also

a natural conclusion could be that fluctuations of magnetic

helicity F are suppressed on the d�1
e scale. Often times in

this regime the electron MHD (EMHD) model is applied67–69

and so it is worthwhile comparing these models. For the

analysis, what matters are integrals of motion; thus we

(a) (b)

(c)

FIG. 2. Log-log plots for total energy,

remnant magnetic helicity, and cross-

helicity. The parameters used here are

a ¼ 10 and b ¼ 1 and c ¼ f0;�:75; 1g
is varied so that different values of G

are obtained (color-coded, see the leg-

end for the description). The micro-

scales were chosen to be de ¼ 0:1 and

qs ¼ 0:01. As a result, there are no con-

straints imposed on k according to (19).

The main feature is the change of the

sign of the slope of F ¼ FðkÞ as we

smoothly transition through the k � d�1
e

scale. Notice that plots are obtained

under the assumption that kmin ¼ 1 and

not 2p for the simplicity. (a) Total

energy H, (b) remnant magnetic helicity

F, and (c) remnant cross helicity G.

(a) (b)

(c)

FIG. 3. Log-log plots for total energy,

remnant magnetic helicity, and cross-

helicity. The parameters used here are

a ¼ �0:1; b ¼ 106, and c ¼ f0; 500;
800g is varied so that different values

of G are obtained (color-coded, see the

legend for the description). The micro-

scales were chosen to be de ¼ 0:1 and

qs ¼ 0:01. Helicity F seems to only

have direct cascade, when a < 0. This

can also be seen from Table I since b
is so large. The highlight of these neg-

ative energy states is the possibility of

the inverse cascade of energy that

seems to be independent of the cross-

correlation c. (a) Total energy H, (b)

remnant magnetic helicity F, and (c)

remnant cross helicity G.

TABLE I. Various limits of spectral densities when a > 0 and b not too large.

The first row corresponds to the large scale MHD limit; it was assumed that b is

not orders of magnitude larger than a to avoid singular perturbation and most

likely this situtation is not realizable if one solves for the parameters via integrals

of motion. The second row pertains to the 2D planar incompressible XMHD high

k limit, where gyroeffects have been ignored. The third row displays an opposite

situation, where gyrophysics is relevant but the electron skin depth ignorable. The

last row demonstrates the microscopic k limit and may be unphysical depending

on how the model ordering works. Notice that terms were simply ignored based

on the ordering, a more precise description would involve Taylor series.

Length scale choices hHðkÞi hFðkÞi

1 < k
 ðd�1
e ;q�1

s Þ 1

a
þ 1

aþ bk�2

1

ak2 þ b

1
 d�1
e 
 k
 q�1

s
1

a
þ 1

aþ bd2
e

1

ad�2
e þ b

1
 q�1
s 
 k
 d�1

e
1

aþ bd2
e

þ 1

aþ bk�2

1

ak2 þ b
þ 1

ad�2
e þ b

1
 ðd�1
e ; q�1

s Þ 
 k 2

aþ bd2
e

2

ad�2
e þ b
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compare EMHD and inertial MHD (which corresponds to

Eqs. (1) with qs ¼ 0) in Table II. It appears that the similar-

ity is greater in 2D than in 3D. Direct cascade of energy is

also found in Ref. 70. However, the model we use can also

have non-zero electron temperatures (qs 6¼ 0) that for some

choice of parameters can lead to the inverse cascade of

energy.

2D IMHD and 2D EMHD can both be derived from 2D

XMHD in specific limits. The former, as already mentioned,

is obtained after setting to zero the out-of-plane components

of the velocity and magnetic field. The latter is obtained by

rescaling the time with respect to the whistler time and by

retaining the leading order terms in the limit di 	 1, where

di is the normalized ion skin depth. This comparison puts us

in a position to discuss recent comments71 regarding 2-fluid

absolute equilibrium states.14,23 We agree with Ref. 71 that

the qualitative picture of a direct cascade of the magnetic

helicity is achieved in both 3D EMHD23 and 3D IMHD;14

however, the details of spectral dependence are different, for

instance in our model14 we recover energy equipartition for

MHD.

When the effects of the ion sound Larmor radius are

included, the eigenvalue analysis demonstrates that NTS

(a < 0) are possible and we observe that in the low k limit the

total energy per wave-number 2pkhHðkÞi scales inversely

with k for the portion of inertial range, suggesting inverse cas-

cade of energy [see Fig. 3(a)], as was first predicted by

Onsager62 for two-dimensional hydrodynamics. The inverse

cascade of energy can also be inferred from the expression

(27) because b is so large. Observed dependence of the invari-

ants in this regime qualitatively agrees with the picture of the

dual cascade obtained in drift wave two-field fluid models25,26

and a gyrokinetic model24 investigated later.

Naturally, prior to proceeding to the more general

reduced extended MHD case like that of Ref. 30, these predic-

tions have to be confirmed by direct numerical simulations.

For instance, there is evidence of broken ergodicity and coher-

ent structures28,29 in MHD. Broken ergodicity is observed in

many other physical systems including classical dipolar spin

systems.72 It is most suitable to consider a pseudo-spectral

code41 to investigate whether the relaxation of the Fourier

modes in MHD can occur. The advantages of using Galerkin

methods in general involve accuracy and “semiconservation ”

of the integrals of motion.73 Although for us it has an addi-

tional advantage since we are interested in the k-space behav-

ior. Alternatively, since relaxation to equilibria subject to

constraints is sought, it could be beneficial to apply recently

developed symplectic/Poisson integration algorithms like the

ones of Refs. 74 and 75. This would also further justify the

Hamiltonian treatment the problem has received.

In closing we note that there are many plasma models

where similar analysis can be performed. One of the candi-

dates we intend to work with in the future is a special relativ-

istic two-fluid model that was recently shown to possess

Hamiltonian form.76 This model can be applied in relativistic

jets and laser fusion.

(a) (b)

(c)

FIG. 5. Log-log plots for total energy,

magnetic, and cross-helicity. The

parameters used here are a ¼ 10 and b
¼ 9 and c ¼ f0:001; 0:03; 0:1g is var-

ied so that different values of HC are

obtained (color-coded, see the legend

for the description). The microscales

were chosen to be di ¼ 0:1 and

de ¼ 0:01. (a) Total energy H, (b)

magnetic helicity HM, and (c) cross

helicity HC.

FIG. 4. Description of the K vs b=a dependence (not to scale) according to

(31) when qs ¼ 0.
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