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Overview
The special historic form of dynamical systems credited to Hamil-
ton encompasses a vast array of fundamental and applied research.
It is a basic form for physical law that has engendered development
in many areas of mathematics, including analysis of ordinary and
partial differential equations, topology, and geometry. Our jumbo
program at MSRI has brought together a broad spectrum of math-
ematicians and scientists with research spanning emphasis on the
applied to the rigorous.

It is hard to choose a starting point in the long history of Hamil-
tonian dynamics and its concomitant variational principles. One
can go as far back as ancient Greece (Euclid, Heron), onward to
the inspirational work of Fermat’s principle of geometric optics
(17th century), and up to the voluminous works of Lagrange (18th
century). Fermat stated that the path taken by light going from
one point to another in some medium is the path that minimizes
(or, more accurately, extremizes) the travel time. This implies the
law of optical reflection (the angle of incidence equals the angle of
reflection) and Snell’s law of refraction.

William Rowan Hamilton (19th century) studied the propagation of
the phase in optical systems guided by Fermat’s principle and real-
ized that one could generalize it and adapt it to particle mechanics.
Here is a very brief description of Hamiltonian mechanics.

(continued on page 4)

Multiple trajectories for a billiard inside an ellipse: One of the
popular Hamiltonian systems is the “billiard problem.”
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Come and Celebrate . . .
 Our recent Celebration of Mind (page 8).

The Summer Research for Women program cre-
ated and first hosted in 2017 (page 9). !
#Mafia, hats, and more in the Puzzles, as Elwyn
and Joe welcome a new contributor (page 15)!
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Hamiltonian Systems, from Topology to Applications through
Analysis
(continued from page 1)

A mechanical system is described by its configuration space, mathe-
matically a smooth manifold Q whose points, q2Q, are understood
as positions. The system is described by a Lagrangian function
L(q,q̇) : TQ! R, depending on the position q and the velocity q̇.
One considers the action functional

S[q(t)] =

Zt1

t0

L(q,q̇) dt, �q(t0) = �q(t1) = 0.

The time evolution of the mechanical system is described as a vari-
ational principle that the action S be extremal. This implies the
Euler–Lagrange equations,

@L

@q
=

d

dt

✓
@L

@q̇

◆
.

Going from the tangent bundle TQ to the cotangent bundle
T⇤Q, one introduces momenta p = @L/@q̇ and the Hamilto-
nian function T⇤Q ! R, given by the Legendre transform
H(q,p) = pq̇-L(q,q̇). In the phase space T⇤Q, the motion is
described by Hamilton’s first order differential equations,

ṗ=-
@H

@q
and q̇=

@H

@p
.

The Hamiltonian form is not limited to finite-dimensional systems —
indeed, action functionals are fundamental to the development of
20th century field theories in physics. A case in point is �4 field
theory that has the action functional

S[�] =

Zt1

t0

dt

Z
d3xL(�,@�) ,

with the Lagrangian density
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The Legendre transform of this system gives the associated Hamil-
tonian form of the partial differential equations,

@t⇡=-
�H

��
and @t�=

�H

�⇡
,

where �H/�� denotes the functional derivative and the Hamiltonian
functional is

H=

Z
d3x
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where m and g are parameters of the theory. By direct calculation
one obtains a nonlinear wave equation as a Hamiltonian system.

There are many ramifications and generalizations, practical and aes-
thetic, of both the finite and infinite forms of Hamiltonian systems.
We describe some of those addressed by our MSRI program below.

Dynamics on Symplectic Manifolds

The theoretical underpinning of Hamiltonian mechanics is sym-
plectic geometry. (The term symplectic was adopted by H. Weyl
to avoid any connotation of complex numbers that his previously-
used term, “complex group,” had suffered. It is simply the Greek
adjective corresponding to the word “complex.”) The cotangent
bundle T⇤Q of a smooth manifold carries a canonical symplectic
structure != dp^dq, a closed non-degenerate differential 2-form.
Other manifolds, not necessarily cotangent bundles, may also cary
a symplectic structure. Hamilton’s equations of motion describe the
Hamiltonian vector field (or the symplectic gradient) XH defined
by the formula !(XH, ·) =-dH.

An important example of a Hamiltonian system, and one of the
research topics in this program, is the motion of a charged particle
in a magnetic field. Mathematically, a magnetic field is represented
by a closed differential 2-form � on a Riemannian manifold Q.
One considers the twisted symplectic structure !+⇡⇤(�) on the
cotangent bundle T⇤Q, where ⇡ : T⇤Q!Q is the projection. The
motion of a charge is described as the Hamiltonian vector field of
the energy function ||p||2/2 (the norm is taken using the metric on
Q) with respect to the twisted symplectic structure. One of the prob-
lems of contemporary interest is the existence of periodic motions
of the charge.

Iteration of the Standard Nontwist map [del-Castillo-Negrete et
al., Physica D 91, 1 (1996)] that shows invariant tori (continuous
curves) embedded in a chaotic sea of orbits. (Figure courtesy
of George Miloshevich.)

Other theoretical backgrounds of Hamiltonian dynamics include the
calculus of variations, Morse theory, and Floer theory. Floer theory,
in particular, is designed for the study of symplectic dynamics of
Arnold’s conjecture concerning fixed points of Hamiltonian diffeo-
morphisms (flows of time-dependent Hamiltonian vector fields). In
the simplest case, this conjecture states that an area and center of
mass preserving diffeomorphism of a torus has at least three, and
generically at least four, distinct fixed points (proved in the 1980s
by Conley and Zehnder).
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Integrability and Chaos

Hamiltonian systems exhibit a wide variety of dynamical behav-
ior, from very regular (completely integrable) to chaotic. In a
completely integrable system (for example, Kepler’s problem in
celestial mechanics), the motion is typically confined to tori that
have half the dimension of the phase space, and the motion on these
invariant tori is described by constant vector fields.

While completely integrable systems are interesting, they are ex-
tremely rare. The Kolmogorov–Arnold–Moser (KAM) theory stud-
ies small perturbations of integrable systems; its fundamental result
is that some invariant tori persist under small perturbations.

If the dimension of the phase space is greater than two, the invariant
tori do not separate the space, and a phase trajectory may escape
to infinity. This, and related phenomena, are known as Arnold
diffusion. Arnold diffusion is one of the focal points of this topical

Normally hyperbolic invariant cylinder in a Froeschlé map. This
type of object is relevant to the mechanism of Arnold diffusion;
for example, moving around a 2-torus in a four dimensional
manifold. (Figure courtesy of Alex Haro.)

semester, and many experts in this field are participants of the pro-
gram. KAM theory and the theory of Arnold diffusion have many
applications, in particular, in celestial mechanics (for example, “Is
the solar system stable?”)

Flows on Poisson Manifolds

Poisson manifolds are a generalization of symplectic manifolds,
where a manifold M has instead of a symplectic 2-form a Poisson
bracket { , } : C1(M)⇥C1(M)! C1(M) for arbitrary functions
f,g,h 2 C1(M) satisfying

1. Bilinearity: {f+�g,h}= {f,h}+�{g,h} � 2 R

2. Skew symmetry: {f,g}=-{g,f}

3. Jacobi identity: {{f,g},h}+ {{g,h}, f}+ {{h,f},g}= 0

4. Leibniz Rule: {fg,h}= g{f,h}+ f{g,h}

Here, the Poisson bracket {f,g} = J(df^dg), written in terms of
the Poisson bivector J, generates the vector field Xf = {f, ·} whose
integral curves are the trajectories of the Hamiltonian dynamics of
interest. Because the bivector does not have the usual form, systems
of this type are sometimes called noncanonical Hamiltonian systems.
Unlike conventional Poisson brackets, the noncanonical Poisson
brackets of Poisson manifolds are degenerate with special invariants
know as Casimir invariants C 2 C1(M) that satisfy {C,f}= 0 for
all f 2 C1(M). Because of this degeneracy flows are constrained
to submanifolds that are in fact generically symplectic manifolds.

Cartoon of Poisson manifold with its foliation by symplectic
leaves.

The study of Poisson manifolds is important both because of intrin-
sic mathematical interest and because infinite-dimensional versions
of such flows generated by noncanonical Poisson brackets describe
many physical systems. These flows are systems of partial differen-
tial equations that have a Hamiltonian form given by

@t�= J(�)
�H

��
,

where � denotes the set of dependent field variables and J is a Pois-
son operator that is a generalization of the Poisson tensor J of the
Hamiltonian bivector for finite systems.
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Mathematical Billiards
One of the popular Hamiltonian systems is a mathematical billiard
that describes the motion of a mass-point in a domain, subject to
specular reflections off the boundary. Many mechanical systems
with elastic collisions — that is, collisions in which the energy and
momentum are preserved — are described as billiard systems.

On a basic level, billiards can be viewed as a study of non-smooth
Hamiltonian vector fields, one motivated by a physically relevant

Trajectories for a billiard inside an ellipse, broken out from the
cover image. (Figure courtesy of Vadim Kaloshin.)

setup. The study of billiards was put forward by Birkhoff, who
observed (in 1927) that “... in this problem the formal side, usually
so formidable in dynamics, almost completely disappears, and only
the interesting qualitative questions need to be considered.”

The billiard system can be considered as a continuous-time Hamil-
tonian system with discontinuities corresponding to the reflections.
It can be also considered as a discrete-time system, that is, a trans-
formation acting on the oriented lines, thought of as segments of a
billiard trajectory. The space of oriented lines (rays of light) carries
a symplectic structure, and the billiard ball map is a symplectic
transformation.

Just like general Hamiltonian systems, planar billiards exhibit a full
spectrum of dynamical behaviors, from completely integrable to
chaotic. A completely integrable example is the billiard inside an
ellipse: the interior of the billiard table is foliated by caustics which
are confocal conics.

A notoriously hard problem in this area is known as Birkhoff’s
conjecture: If a neighborhood of the boundary of a billiard table
is foliated by caustics, then it is an ellipse. There was a very sub-
stantial progress made toward the proof of this conjecture and its
variation (for example, algebraic integrability, where the conserved
quantity is a polynomial in momentum). A number of the main
players in this field participate in the program.

Applications
Given the history of its development, it comes as no surprise that
Hamiltonian dynamics plays an important role in modern theoretical
physics and an array of applications, a few of which we note.

The Hamiltonian dynamics of bodies under the influence of gravity,
celestial mechanics, is of course of basic importance for understand-
ing the dynamics of the solar system and beyond (planets and stars).
However, it also is needed for practical satellite navigation, for
communication and space exploration, and the tracking of possibly
deleterious astroids.

The Hamiltonian dynamics of gravitating bodies is a special case of
so-called natural Hamiltonian systems where H(q,p) = T(q,p)+
V(q) with T(q,p) the kinetic energy (mathematically, a Rieman-
nian metric on the fiber of T⇤Q) and V(q) the potential energy.
Examples of natural Hamiltonian systems are spring systems, pen-
dula, particles in potential wells, and the N-body problem with
qi 2 R3, i= 1, . . . ,N, where

H(q,p) =
NX

i=1

||pi||
2

2mi
+

NX

i,j=1

cij

|qi-qj|

and cij represents the interaction. In the context of celestial me-
chanics, the interaction represents gravitational attraction, but the
N-body setup can also describe the electrostatic interaction of re-
pelling electrons, electrons and ions (protons) that attract each other,
and the collection of both that occurs in plasmas.

If charged particles experience the full electromagnetic interaction
then the Hamiltonian is given by

H(q,p) =
||p-eA(q,t)||2

2m
+e�(q,t) ,
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Fermilab National Accelerator Laboratory near Chicago, IL hosts a large particle accelerator with radius of approximately 1km 
(photo) in which particles moving very close to the speed of light need to be stored for many hours. Understanding how this 
can be done is a complicated problem in Hamiltonian Dynamics, which in its essence boils down to correctly estimating 
minute deviations from integrability, which are shown in the figure (inset) after magnification of 1 million. 
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The Tevatron — a large, 1 km-radius particle accelerator at Fermilab
near Chicago — accelerated particles to near the speed of light and
stored them for many hours. Understanding the particle orbits in such a
system is a complicated Hamiltonian dynamics problem of estimating
minute deviations from integrability. (Inset courtesy of Martin Berz.)

The Parker Solar Probe, already in orbit around the
sun, will characterize plasma near the sun (within
10 solar radii) and investigate magnetic fields, ener-
getic particles, and the creation of the solar wind
that impacts the Earth’s environment and affects
space weather.

where the magnetic field B = r ⇥ A and the electric field
E=-r�-@tA. The dynamics under (relativistic versions of)
such Hamiltonians is of great importance for the design of particle
accelerators such as Fermilab where one must corral and accelerate
particles with sufficient luminosity to probe the nature of elemen-
tary particles. In addition accelerator technology is essential for the
medical physics of radiotherapy, radiology, nuclear medicine, and
oncology.

The Hamiltonian dynamics of charged particles is of fundamental
importance for understanding naturally occurring plasmas such as
that near the sun that will be explored with the Parker Solar probe,
which will investigate the origin of the solar wind that impacts
the earth’s magnetosphere. In addition the Hamiltonian dynamics
of charged particles is essential for understanding the laboratory
plasmas created in large machines such as the ITER Tokamak that
is being built in France. Particle dynamics in magnetic fields is
particularly important for the design of such devices that use strong
magnetic field to confine plasma inside a solid torus with the goal
of producing controlled thermonuclear fusion to generate power.

In addition to the finite-dimensional systems described above, there
are infinite-dimensional systems — field theories — that describe
collective motion. An important example is the Vlasov–Maxwell
system, a kinetic theory that takes into account the fact that charges
in addition to producing electric fields have motions, currents, that
produce magnetic fields and electromagnetic wavelike motions. A
reduced form of this system describes average features of large
scale stellar dynamics.

Other field theories include Euler’s equations of fluid mechanics;
shallow water theory and the quasi-geostrophic equations, impor-
tant equations of geophysical fluid dynamics that describe aspects
of atmospheric and ocean dynamics; magnetohydrodynamics and
two-fluid theory, fluid theories of plasma physics that include the
magnetic and electric fields as dynamical variables; and sundry
additional equations that describe various aspects of media treated
as a continuum.

All of these infinite-dimensional systems are Hamiltonian systems,
and they all possess the form of flows on infinite-dimensional Pois-
son manifolds as described above. Indeed, the discovery of their
Hamiltonian form provided a major impetus for the study of Poisson
manifolds begun in the 1980s.

Structure-Preserving Computation
Given that Hamiltonian systems are defined in terms of a differential
2-form, it comes as no surprise that various structures are preserved
by the dynamics. In fact, the 2-form itself is preserved in the sense
£XH

!= 0, where £XH
is the Lie derivative with the Hamiltonian

vector field XH. One understands that Hamiltonian dynamics is a
one-parameter temporal map of the phase space manifold to itself
by a canonical transformation (symplectomorphism) that preserves
symplectic area defined by the 2-form.

Numerical algorithms that preserve this structure are known as
symplectic integrators. In addition to the exact conservation of a
symplectic area, which can be wedged together to make a notion
of volume preservation, symplectic integrators prevent the Hamil-
tonian (energy) from deviating significantly from its theoretically
constant value. Thus they provide improved performance for long-
time computation.

Recently, the variational form of Hamiltonian dynamics has been
exploited to obtain variational integrators based on discretizing the
variational principle, giving rise to desirable preservation of geomet-
ric structure. Poisson integrators are numerical algorithms that have
exact conservation of the symplectic leaves of a Poisson manifold,
as well as being symplectic on symplectic leaves.

Currently, one major challenge is to extract from Hamiltonian partial
differential equations finite-dimensional (semi-discrete) systems of
ordinary differential equations that inherit their parent Hamiltonian
form and then to implement the resulting system with a symplec-
tic or Poisson integrator. This is particularly difficult for infinite-
dimensional systems that have noncanonical Poisson brackets.
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