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ABSTRACT
Linearization of a Hamiltonian system around an equilibrium point yields a set of Hamiltonian symmetric spectra: If λ is an eigenvalue of
the linearized generator, −λ and λ (hence, −λ) are also eigenvalues—the former implies a time-reversal symmetry, while the latter guarantees
the reality of the solution. However, linearization around a singular equilibrium point (which commonly exists in noncanonical Hamilto-
nian systems) works out differently, resulting in breaking of the Hamiltonian symmetry of spectra; time-reversal asymmetry causes chirality.
This interesting phenomenon was first found in analyzing the chiral motion of the rattleback, a boat-shaped top having misaligned axes
of inertia and geometry [Z. Yoshida et al., Phys. Lett. A 381, 2772–2777 (2017)]. To elucidate how chiral spectra are generated, we study the
three-dimensional Lie–Poisson systems and classify the prototypes of singularities that cause symmetry breaking. The central idea is the defor-
mation of the underlying Lie algebra; invoking Bianchi’s list of all three-dimensional Lie algebras, we show that the so-called class-B algebras,
which are produced by asymmetric deformations of the simple algebra so(3), yield chiral spectra when linearized around their singulari-
ties. The theory of deformation is generalized to higher dimensions, including the infinite-dimensional Poisson manifolds relevant to fluid
mechanics.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5145218

I. INTRODUCTION
Canonical Hamiltonianmechanics serves an archetype for physics theories with two ingredients: the energy (Hamiltonian) characterizing

the mechanical property of matter and symplectic geometry dictating the universal rules of kinematics in the phase space. When encounter-
ing peculiar dynamics, we might attribute it to a weird Hamiltonian, but usually we do not ascribe it to an adjusted geometry of phase space.
Although this is the natural approach for understanding microscopic (canonical) mechanics, the other perspective, i.e., deforming the geom-
etry of phase space (keeping the Hamiltonian simple), can be more effective for studying macroscopic systems in which some topological
constraints foliate the phase space (such systems are called noncanonical). For example, a holonomic constraint reduces the effective phase
space to a leaf embedded in the original canonical phase space, on which some interesting Lie algebra may dictate the kinematics. There
are also many examples of noncanonical Hamiltonian systems in fluid and plasma physics, where the essence of mechanics is attributed to
complex Poisson brackets, while the Hamiltonians are rather simple.1

Here, we explore the possibility of explaining peculiar phenomena by the deformation of phase space geometry. In Sec. II, we start
by reviewing a model of the rattleback, a boat-shaped top having misaligned axes of inertia and geometry,2 which is a three-dimensional
noncanonical Hamiltonian system endowed with an interesting Poisson bracket.3 We find that the foliation of the three-dimensional phase
space by the Casimir invariant of this system has a singularity, which turns out to be the cause of the symmetry breaking; viz., the linearized
equations obtained by expanding about the singularity have a pair of unbalanced positive and negative eigenvalues, which explains the chi-
rality (time-reversal asymmetry) of the rattleback. Here, we also review the basic formalism of Lie–Poisson manifolds. Particular attention
will be drawn to the duality of the space of state vectors (tangent bundle) and the phase space of observables (cotangent bundle), which
plays an essential role when we discuss the deformation of Lie algebras4 and its reflection on Lie–Poisson brackets. Using Bianchi’s list of
three-dimensional Lie algebras (for example, see Refs. 5 and 6), we examine all three-dimensional Lie–Poisson manifolds (Sec. III). Then, we
find an interesting correspondence between the classification of Lie algebras and symmetry breaking; class-A Lie–Poisson systems maintain
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the spectral symmetry, while class-B systems do not. In Sec. IV, we nail down the underlying structure that causes the symmetry break-
ing (chirality). We show that all three-dimensional Lie algebras are derived by deformation of a simple algebra so(3), and the asymmetry
of the deformation endomorphism brings about the symmetry breaking. The three-dimensional Lie algebras are special in that all possible
Lie algebras are derived from a mother class-A simple algebra by deformations; a symmetric endomorphism produces a class-A algebra,
while an asymmetric deformation yields a class-B algebra. In higher dimensions, we find it necessary to add another group of Lie alge-
bras (called class C) that are not produced from some mother class-A algebra; we find that their corresponding Lie–Poisson systems have
chirality (Sec. V).

Because of the richness of noncanonical Hamiltonian systems of fluids and plasmas, we will construct, in Sec. VI, a bridge between the
foregoing three-dimensional Lie algebras and continuum (infinite-dimensional) dynamical systems. Upon introducing a base space, we define
a vector bundle of Lie-algebra fibers to formulate field theories; these theories are not yet relevant to fluid/plasma mechanics. However, we do
show that the deformation of the so(3) bundle by the curl operator (which can be regarded as a symmetric deformation) yields the Lie–Poisson
bracket of vortex dynamics.

II. PRELIMINARIES
A. An example of chiral dynamics: The rattleback

The peculiar motion of a rattleback is “strange” when examined in the light of Hamiltonian mechanics. Let us start with a short review
of our previous discussion.3

In the limit of zero dissipation, the equations of Moffatt and Tokieda2 are

d
dt

⎛
⎜
⎝

P
R
S

⎞
⎟
⎠
=
⎛
⎜
⎝

αPS
−RS

R2 − αP2

⎞
⎟
⎠
, (1)

where P,R, andS stand for pitching, rolling, and spinning modes of motion. We will call (1) the PRS system and denote the state vector
by x = (P R S)T ∈ R3. The parameter α encodes the aspect ratio of the rattleback shape. Here, we assume α > 1 so that P corresponds to
lengthwise oscillations along the keel of the boat and R corresponds to sideways oscillations.

Evidently, a purely spinning state xs = (0 0 Se)T (Se an arbitrary constant measure of spin) is an equilibrium (steady state) of (1). For
small perturbation x̃ = (P̃ R̃ S̃)T around xs, linearization of (1) gives

d
dt

⎛
⎜
⎝

P̃
R̃
S̃

⎞
⎟
⎠
=
⎛
⎜
⎝

αSe 0 0
0 −Se 0
0 0 0

⎞
⎟
⎠

⎛
⎜
⎝

P̃
R̃
S̃

⎞
⎟
⎠
. (2)

Hence, we obtain an unbalanced spectrum with the eigenvalues (time constants) αSe and −Se. For Se > 0, P̃ grows exponentially at the larger
rate αSe, while R̃ decays exponentially at the smaller rate Se. For Se < 0, these are reversed, i.e., R̃ grows at the smaller rate ∣Se∣, while P̃ decays
at the larger rate α∣Se∣. The chirality of rattleback motion manifests as these unbalanced eigenvalues.2

This observation raises a paradox if we notice that the PRS system is a Hamiltonian system. As is well-known, the spectra of a linearized
Hamiltonian system must have Hamiltonian symmetry, i.e., when λ is an eigenvalue, −λ and the complex conjugate λ (hence, −λ also) are
simultaneous eigenvalues. The pair of λ and −λ guarantees a time-reversal symmetry, and the pair of λ and λ guarantees the reality of the state
vectors. The unbalanced spectrum of (2) does not have this symmetry. However, we do find that (1) can be put into a Hamiltonian form3

d
dt
x = J∂xH, (3)

where
H(x) = 1

2
(P2 + R2 + S2) (4)

is the Hamiltonian and

J =
⎛
⎜
⎝

0 0 αP
0 0 −R
−αP R 0

⎞
⎟
⎠

(5)

is the Poisson matrix (also called the co-symplectic matrix and Hamiltonian bi-vector). By direct calculation, we can verify that Jacobi’s
identity holds for the bracket

{G,H} = (∂xG, J∂xH), (6)

where (a, b) denotes the standard inner product (pairing).

J. Math. Phys. 61, 082901 (2020); doi: 10.1063/1.5145218 61, 082901-2
Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

B. Lie–Poisson brackets
While we first derived the Poisson bracket (6) through an heuristic argument, there is a systematic method for constructing Poisson

brackets from any given Lie algebra. Such brackets are called Lie–Poisson brackets because they were known to Lie in the 19th century.
The PRS bracket (6) was identified as the type-VI Lie–Poisson bracket in accordance with Bianchi’s classification of three-dimensional Lie
algebras.3

1. Phase space and measurement
Here, we review the formulation of Lie–Poisson brackets, paying attention to the relationship between the space of state vectors and its

dual, i.e., the set of phase space of observables. Let X be a real vector space, which we call the state space. When the dimension of X is infinite,
we assume that X is a Banach space endowed with a norm ∥ ⋅ ∥. A member x of X is called a state vector. The dual space of X (the vector space
of linear functionals on X) is denoted by X∗. With a bilinear pairing ⟨ , ⟩ : X × X∗ → R, we can represent a linear functional as Ξ(x) = ⟨x, ξ⟩
(ξ ∈ X∗). For a Hilbert space, we have the Riesz representation theorem so that we can identify X∗ = X by using the inner product ( , ) in place
of ⟨ , ⟩. Physically, ξ means an observable [Ξ(x) is the measurement of a physical quantity for a state x]. We call X∗ the phase space.

By introducing a basis for each space, let us examine the mutual relationship between X and X∗ more explicitly. When X has a finite
dimension n, we can define a basis {e1, . . . , en} to represent x = xkek (we invoke Einstein’s summation rule of contraction). On the other
hand, we provide X∗ with the dual basis {e1, . . . , en} such that ⟨ej, ek⟩ = δjk. A complete system of measurements is given by Ξk(x) = ⟨x, ek⟩
(k = 1, . . . ,n); measuring every xk = ⟨x, ek⟩ for a state vector x, we can identify it as x = xkek. Therefore, we may say that X∗ defines X as (X∗)∗
(this reflexive relation is not trivial in infinite dimensions). It is more legitimate to construct a theory by first defining X∗ since the description
of a system depends on what we can measure. For example, if we remove en from X∗, the component xn becomes invisible, resulting in a
reduced identification of x by only xj = ⟨x, ej⟩ (j = 1, . . . ,n − 1).
2. The Lie algebra X

Endowing X with a Lie bracket [ , ] : X × X → X makes X a Lie algebra. By adv○ = [○,v] : X → X, we denote the adjoint representation
of v ∈ X. Physically, the action of adv on a state vector x ∈ X is a representation of infinitesimal dynamics

d
dt
x = advx = [x,v].

Dual to adv , we define the coadjoint action ad∗v○ = [v, ○]∗ : X∗ → X∗, where [ , ]∗ : X × X∗ → X∗ is defined by

⟨x, [v, ξ]∗⟩ ∶= ⟨[x,v], ξ⟩. (7)

The right-hand side means that we observe the dynamics of a state vector x by measuring an observable ξ. The left-hand side is its translation
into the change in the observable ξ (evaluated for a fixed state vector x),

d
dt

ξ = ad∗vξ = [v, ξ]∗.

Remark 1 (Semi-simple Lie algebra). For a semi-simple Lie algebra, we can formally evaluate [x, y]∗ = [x, y]. This means that we may
identify X = X∗ (with an appropriate basis of X∗ as explained below) and that the structure constants are fully antisymmetric. Let us write

[ej, ek] = cα
jkeα (8)

to define the structure constants cα
jk ({ej} is the basis of X). For a semi-simple Lie algebra, the Killing form gjk = cbjacakb is regular (nondegener-

ate). We find that cijk ∶= cα
jkgαi is fully anti-symmetric (i.e., cjik = cikj = −cijk), by which the brackets [ , ] and [ , ]∗ are equally evaluated as to be

shown below in (9). Indeed, we observe, using Jacobi’s identity,

cijk = cα
jkc

a
bαc

b
ai = −(cα

kbc
a
jα + cα

bjc
a
kα)c

b
ai.

Changing the indexes in the second term as α↦ b, a↦ α and b↦ a, we may rewrite the right-hand side as

−cα
kb(c

b
aic

a
jα + cbajc

a
αi) = cα

kbc
b
aαc

a
ij = gakcaij = ckij.

We represent ξ ∈ X∗ in contravariant variables as ξ = ξiϵi ∶= ξigiβeβ (eβ being the dual of eβ). Notice that this transformation is possible only
when giβ is nondegenerate, i.e., X is semi-simple. We may write ⟨x, ξ⟩ = xjξig ji. For example, when cijk = εijk, the (scaled) Killing form is
g ji = −δji. Hence, ξi = −ξi, and ⟨x, ξ⟩ = −xjξiδji = xjξj. With contravariant variables x = xjej, y = ykek, and ξ = ξiϵi = ξigiβeβ, we may calculate

⟨[x, y], ξ⟩ = ⟨cα
jkx

jykeα, ξigiβe
β⟩ = cα

jkx
jykξigiβδαβ = cijkxjykξi.
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To write this as ⟨x, [y, ξ]∗⟩, we identify [ , ]∗ : X × X∗ → X∗ as (in the contravariant parameterization of X∗ with the basis {ϵα := gαjej})

[y, ξ]∗ = cjkiykξiej = cα
kiy

kξigαjej = cα
kiy

kξiϵα = [y, ξ]. (9)

We note that the general dual bracket [ , ]∗ is not necessarily a Lie bracket (even [ξ, ξ]∗ = 0 may not hold).

3. The Poisson manifold X∗ and Lie–Poisson algebra
Now, we construct a Poisson algebra onC∞(X∗), the space of smoothR-valued functions onX∗; hereafter, we callX∗ a Poissonmanifold

(a point in X∗ is denoted by ξ ) and G(ξ) ∈ C∞(X∗) a physical quantity. The most important example of a physical quantity is the energy
=Hamiltonian.

For G(ξ) ∈ C∞(X∗), we define its gradient ∂ξG (∈ X) by

G(ξ + ϵξ̃) −G(ξ) = ϵ⟨∂ξG, ξ̃⟩ +O(ϵ2), ∀ξ̃ ∈ X∗.

If v ∈ X is given as v = ∂ξH with a Hamiltonian H(ξ) ∈ C∞(X∗), its coadjoint action yields the following Hamilton’s equation:

d
dt

ξ = ad∗vξ = [∂ξH, ξ]∗. (10)

For a general physical quantity G(ξ) ∈ C∞(X∗), we may calculate

d
dt
G(ξ(t)) = ⟨∂ξG,

d
dt

ξ⟩ = ⟨∂ξG, [∂ξH, ξ]∗⟩. (11)

We write the right-hand side as {G,H} and call it the Lie–Poisson bracket, i.e., on the space C∞(X∗) of physical quantities, we define a Poisson
algebra by

{G,H} = ⟨∂ξG, [∂ξH, ξ]∗⟩ = ⟨[∂ξG,∂ξH], ξ⟩. (12)

The bi-linearity, antisymmetry, and the Leibniz property are evident. Jacobi’s identity inherits that of the Lie bracket [ , ] (see Ref. 1).
Denoting

J(ξ)○ = [ ○ , ξ]∗ : X → X∗, (13)

which we call a Poisson matrix (or Poisson operator, particularly if X is an infinite-dimensional space), we may write (12) as

{G,H} = ⟨∂ξG, J(ξ)∂ξH⟩. (14)

Invoking the structure constants cℓjk of the Lie bracket [ , ] [see (8)], we may write the Poisson matrix as

J(ξ)jk = cℓjkξℓ, (15)

whence
{G,H} = (∂ξjG)J(ξ)jk(∂ξkH). (16)

Remark 2 (Related Poisson brackets). One may define a homogeneous Poisson bracket such that

{G,H} = ⟨[∂ξG,∂ξH],ϕ⟩, (17)

with an arbitrary constant vector ϕ ∈ X∗. Here, the Poisson matrix J(ϕ) ∈ Hom(X,X∗) is a homogeneous (constant coefficient) map. The
simplest choice is ϕ = eℓ (ℓ is a fixed index), which gives

⟨[∂ξG,∂ξH], eℓ⟩ =
∂G
∂ξj

∂H
∂ξk
⟨[ej, ek], eℓ⟩ =

∂G
∂ξj

∂H
∂ξk

cℓjk.

We easily find that the bracket of (17) satisfies Jacobi’s identity. We will encounter such brackets when we linearize Lie–Poisson brackets (see
Sec. IV C). Another interesting idea is the deformation of the Lie–Poisson bracket such that

{G,H} = ⟨[∂ξG,∂ξH],Mξ⟩, (18)

whereM is a certain linear map X∗ → X∗. Rewriting (18) as
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{G,H} = ⟨MT[∂ξG,∂ξH], ξ⟩, (19)

we may view this as a deformation of the Lie algebra by modifying the bracket from [ , ] to [ , ]M =MT[ , ]. Of course, there is a strong
restriction on M so that the new bracket [ , ]M satisfies Jacobi’s identity. This is, indeed, the central issue of the following discussions (see
Sec. IV A).

C. The Casimir
Given a Hamiltonian H ∈ C∞(X∗), the dynamics of ξ (in the Poisson manifold X∗) is described by Hamilton’s equation: repeating (10)

with notation (13),
d
dt

ξ = J(ξ)∂ξH(ξ). (20)

Let us look at the equilibrium points. If J(ξ) is regular [i.e., KerJ(ξ) = {0} for every ξ ∈ X∗], an equilibrium point of the Hamiltonian system
(20) must be a critical point of the Hamiltonian. However, nontrivial KerJ(ξ) enriches the set of equilibrium points. If C(ξ) ∈ C∞(X∗) satisfies

{C,G} = 0, ∀G ∈ C∞(X∗), (21)

we call C a Casimir (or a center element of the Lie–Poisson algebra). By the definition of the Lie–Poisson bracket, (21) is equivalent to

J(ξ)∂ξC = 0, (22)

which implies that C is the “integral” of an element of KerJ(ξ), i.e.,

∂ξC ∈ Ker J(ξ).

The dynamics governed by (20) is invariant under the transformation

H ↦ F = H + μC (∀μ ∈ R).

If there are multiple Casimirs, we may include them to define further transformed Hamiltonians F = H + μ1C1 + μ2C2 + ⋅ ⋅ ⋅. We call F an
energy-Casimir function. While the critical points of H are often trivial, those of F may have various interesting structures. As mentioned in
Sec. I, such degeneracy enables even simple Hamiltonians to generate the nontrivial structure or dynamics in a system dictated by a particular
Poisson algebra; the key factor being the nature of the degeneracy of J(ξ).

A point where Rank J(ξ) changes is a singularity of the Poisson algebra (see Remark 3). By the Lie–Darboux Theorem,1 the Casimirs
foliate the phase space X∗, so that, in a neighborhood of every regular point [where Rank J(ξ) is constant], the leaf is locally symplectic, i.e.,
there is a local coordinate system in which J(ξ) is transformed into a standard form

JD = Jc⊕ν0, Jc = ( 0 I
−I 0), (23)

where ν is the nullity of J(ξ).
In the following discussion, the singularity σ = {ξs ∈ X∗; J(ξs) = 0} will play an important role (see Remark 3). Needless to say, every

point ξs ∈ σ is an equilibrium point, which we call a singular equilibrium and distinguish it from the critical points of the energy-Casimir
functional; the latter will be called regular equilibria.

Remark 3 (Symplectic foliation and singularity). Here, we study chirality from the algebraic point of view, limited to Lie–Poisson
systems, and emphasize the rank changing singularities of the Poisson tensor, as opposed to addressing the bigger geometric picture based
on the symplectic foliations possessed by all Poisson manifolds.7,8 To understand what we mean by rank changing singularity, let M be a
Poisson manifold endowed with a Poisson bracket {G,H} = ⟨∂ξG, J(ξ)∂ξH⟩; here, M = X∗ (phase space). Let us denote by Sξ the totality of
the Hamiltonian vectors {ξ,H} [∀H ∈ C∞(M)] evaluated at the point ξ ∈M; here, {ξ,H} = ad∗h ξ = [h, ξ]∗ (∀h = ∂ξH). In general, Sξ is a
subspace of Tξ . The vector bundle SM = {Sξ ; ξ ∈M} is a distribution. The dimension r(ξ) of Sξ is a lower semicontinuous function of ξ ∈M.
Evidently, r(ξ) = Rank J(ξ). The regular point ξ is where r(ξ) = constant (local maximum) in the neighborhood of ξ. The set ρ of regular points
is an open set (not necessarily connected), and σ =M/ρ is the singularity. In the neighborhood of ξ ∈ ρ, the Hamiltonian vectors foliate M
into symplectic leaves (a leaf will be denoted by L). The Casimir C (if it exists) is an integral of the kernel (null space) of J(ξ) [i.e., J(ξ)∂ξC = 0],
implying that C is constant on each leaf (i∗LdC = 0), or the exact one-form dC is the normal vector on the leaves. The singularity σ is detected
as the set of points where C (or dC) becomes singular. Therefore, the Casimirs are useful elements of the Poisson algebra to characterize the
foliation.

In general, however, the kernel is not necessarily integrable, and the nullity = dimM − r(ξ) can be larger than the number of independent
Casimirs; this is the “Casimir deficit” problem and is typical at the singularity.1 We also note that some Casimirs fail to identify (parameterize)
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the symplectic foliation; this occurs when a non-compact leaf is immersed densely in the phase space (a Kronecker foliation); then clearly,
there cannot be an appropriate nonconstant function, which is constant on all leaves.10,11 In the present work, we only concentrate on the
singularities where r(ξ) goes to zero, but there are more moderate class of singularities where r(ξ) drops to some finite number. The “interior”
of such singularities still maintains dynamics.12

In a broad sense, our study of chirality is related to singular symplectic foliations, including b-Poisson or log-symplectic manifolds and
symplectic manifolds with boundary (see, e.g., Ref. 9). In higher dimensions, there are other kinds of singularities when the rank drops by
2, 4, 6, . . ., and besides spectra, other interesting “non-Hamiltonian” behavior is possible. Such a study is beyond the scope of the present
paper.

D. Hamiltonian spectral symmetry
It is known that the linearization of Hamilton’s equation (10) around a regular equilibrium point (to be denoted by ξr) yields a linearized

Hamiltonian system and that the spectra of the linearized generator have the Hamiltonian symmetry (with a zero eigenvalue of multiplicity
ν); if λ is an eigenvalue of the generator, −λ is also an eigenvalue (implying a time-reversal symmetry), and λ is also an eigenvalue (see Remark
4). Remember that our linearized PRS system (2) does not obey this theorem, even though the original PRS system (1) is Hamiltonian. This
is because (2) is a linearization around a singular equilibrium point. Let us see how the linearization works out differently for regular and
singular equilibrium points.

First, consider general equilibrium points of Hamilton’s equation (10); we use the energy-Casimir functional (if the Poisson algebra
has Casimirs) in place of the Hamiltonian, but we will denote it by H(ξ) for simplicity. Around a given equilibrium point ξe (either regular
or singular), we consider a small amplitude perturbation ϵξ̃ to write ξ = ξe + ϵξ̃. Approximating (10) to the first order of ϵ, we obtain the
linearized Hamilton’s equation

d
dt

ξ̃ = J(ξe)H
″(ξe)ξ̃ + J(ξ̃)h(ξe), (24)

where
h(ξe) = (∂ξH)∣ξ=ξe ∈ X

is the Hamiltonian vector evaluated at the equilibrium point ξe and

(H″(ξe)jk) = (∂ξk∂ξjH)∣ξ=ξe ∈ Hom(X∗,X)

is the Hessian of H(ξ) evaluated at ξe. In deriving J(ξe + ξ̃) − J(ξe) = J(ξ̃), we have used the fact that J(ξ) is a linear function of ξ [see (13)].
Interestingly, different equilibrium points pick up different terms from the right-hand side of (24), depending on whether they are regular

or singular:

● Regular equilibrium: The regular equilibrium ξr is a point where ∂ξH = 0; hence, the second term on the right-hand side of (24)
vanishes. The Hamiltonian (obtained by expanding the energy-Casimir functional) of a perturbation is

HL(ξ̃) =
1
2
⟨H″(ξe)ξ̃, ξ̃⟩, (25)

by which we may cast (24) into a Hamiltonian form

d
dt

ξ̃ = J(ξr)∂ξ̃HL(ξ̃). (26)

Note that J(ξr) is the Poisson operator J(ξ) evaluated at the fixed equilibrium point, which defines a homogeneous Poisson algebra
(see Remark 2). The spectra of these equilibria have the Hamiltonian symmetry (Remark 4).

● Singular equilibrium: The singular equilibrium ξs is a point where J(ξs) = 0. Then, the first term on the right-hand side of (24)
vanishes, and we have

d
dt

ξ̃ = J(ξ̃)h(ξs) = [h(ξs), ξ̃]
∗. (27)

Here, h(ξs) is a fixed vector so that the dynamics stems from J(ξ̃). There is no guarantee that (27) is a Hamiltonian system. Indeed,
the linearized PRS system (2) is of this type, in which the Hamiltonian symmetry is broken.3 However, we also find that the linearized
generator A = [h(ξs), ○]∗ becomes a Hamiltonian vector field for a special class of Lie brackets. We will identify such class of Lie
algebras in Sec. III.
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While the singular linearized system (27) is not necessarily Hamiltonian, we have the following conservation laws:

Proposition 1 (Conservation laws). The linear system (27) has the following invariants:

1. The Casimir C(ξ̃) of the original nonlinear system (10), which is evaluated for the perturbation ξ̃.
2. The first-order energy H1(ξ̃) = ⟨h(ξs), ξ̃⟩.

Proof. For a Casimir C(ξ̃), (22) implies that

d
dt

C(ξ̃) = ⟨∂ξ̃C,
d
dt

ξ̃⟩ = ⟨∂ξ̃C, J(ξ̃)h(ξs)⟩

= ⟨[∂ξ̃C,h(ξs)], ξ̃⟩
= −⟨[h(ξs),∂ξ̃C], ξ̃⟩
= −⟨h(ξs), J(ξ̃)∂ξ̃C⟩ = 0.

We also observe, by the anti-symmetry of J,

d
dt
H1(ξ̃) = ⟨h(ξs),

d
dt

ξ̃⟩ = ⟨h(ξs), J(ξ̃)h(ξs)⟩ = 0.

■
Note that the first-order energyH1(ξ̃) is different from the second-order energyHL(ξ̃), given by (25), which is an invariant of the regular

linearized system (26).

Remark 4 (Hamiltonian symmetry of spectra). The generator (matrix) of a linear Hamiltonian system can be written as

A = JH,

where J is a constant coefficient Poisson matrix andH is a constant coefficient symmetric matrix that is the Hessian of some Hamiltonian. As
seen above, the quadratic form HL(ξ̃) ∶= 1

2 ⟨Hξ̃, ξ̃⟩ is the Hamiltonian for the linear Hamiltonian system

d
dt

ξ̃ = J∂ξ̃HL = Aξ̃.

The eigenvalues of the generatorA, which are the solutions of the characteristic equation

P(λ) ∶= det (A − λI) = 0, (28)

are the subjects of the discussion on the following symmetry. By Hamiltonian symmetry, we mean that every eigenvalue λ always has the
following counterparts that are simultaneously eigenvalues: −λ, λ (and hence, −λ). Clearly, λ is a simultaneous eigenvalue. Suppose that
Aζ = λζ. Since A is a real-coefficient matrix, the complex conjugate of this equation reads Aζ = λ ζ. Hence, λ is an eigenvalue, and ζ is the
corresponding eigenvector. The time-reversal symmetry −λ is, however, not so obvious. First, a Hamiltonian generator satisfies JcATJc = A
with the canonical Poisson matrix (symplectic matrix) Jc; see (23). Using this, together with JcJc = −I and det Jc = 1, we observe

P(λ) = det(JcATJc + λJcIJc)

= (det Jc)[det(AT + λI)](det Jc)
= det(A + λI) = P(−λ).

Hence, −λ also satisfies the characteristic equation.

III. THREE-DIMENSIONAL LIE–POISSON SYSTEMS
The Bianchi classification of the three-dimensional Lie algebras guides us to delineate the mathematical structure that leads to chirality

(the symmetry breaking of Hamiltonian spectra) around the singular equilibrium points of Lie–Poisson systems. We start by reviewing the
Bianchi classification.

A. Bianchi classification of three-dimensional Lie algebras
The real three-dimensional Lie algebras can be classified by the scheme used to describe the Bianchi cosmologies, which divides them

into nine types (e.g., Refs. 5 and 6). The multiplication tables are given in Table I.
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TABLE I. Three-dimensional Lie algebras in the order of Bianchi classification (see e.g.,
Ref. 6). Type I is abelian, so every [ej , ek] is zero. Type II is the Heisenberg algebra.
Type IX is so(3). Type VIII may be regarded as the three-dimensional Minkowski and
describes the Kida vortex.13 Note that types VIη and VIIη have a parameter η ∈ R.

II [○, e1] [○, e2] [○, e3]
e1
e2

0 0 0
− 0 e1

III [○, e1] [○, e2] [○, e3]
e1
e2

0 0 e1
− 0 0

IV [○, e1] [○, e2] [○, e3]
e1
e2

0 0 e1
− 0 e1 + e2

V [○, e1] [○, e2] [○, e3]
e1
e2

0 0 e1
− 0 e2

VIη [○, e1] [○, e2] [○, e3]
e1
e2

0 0 e1
− 0 ηe2

VIIη [○, e1] [○, e2] [○, e3]
e1
e2

0 0 e2
− 0 −e1 + ηe2

VIII [○, e1] [○, e2] [○, e3]
e1
e2

0 e3 e2
− 0 −e1

IX [○, e1] [○, e2] [○, e3]
e1
e2

0 e3 −e2
− 0 e1

Tables II and III summarize the 3 × 3 Poisson matrices J defined as

Jjk = cℓjkξℓ,

which gives the Lie–Poisson brackets {G,H} = ⟨∂ξG, J∂ξH⟩ as in (15).
Among the nine possibilities, type IX corresponds to so(3), which gives the Lie–Poisson matrix

JIX(ξ)u =
⎛
⎜
⎝

0 ξ3 −ξ2
−ξ3 0 ξ1

ξ2 −ξ1 0

⎞
⎟
⎠

⎛
⎜⎜
⎝

u1

u2

u3

⎞
⎟⎟
⎠
= −ξ × u. (29)

TABLE II. Three-dimensional class-A Lie–Poisson algebras
(Bianchi classification).

Type Poisson matrix J(ξ) Casimir invariant

I
⎛
⎜
⎝

0 0 0
0 0 0
0 0 0

⎞
⎟
⎠

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ξ1
ξ2
ξ3

II
⎛
⎜
⎝

0 0 0
0 0 ξ1
0 −ξ1 0

⎞
⎟
⎠

ξ21

VI−1
⎛
⎜
⎝

0 0 ξ1
0 0 −ξ2
−ξ1 ξ2 0

⎞
⎟
⎠

ξ1ξ2

VII0
⎛
⎜
⎝

0 0 ξ2
0 0 −ξ1
−ξ2 ξ1 0

⎞
⎟
⎠

ξ21 + ξ22

VIII
⎛
⎜
⎝

0 ξ3 ξ2
−ξ3 0 −ξ1
−ξ2 ξ1 0

⎞
⎟
⎠

ξ21 + ξ22 − ξ23

IX
⎛
⎜
⎝

0 ξ3 −ξ2
−ξ3 0 ξ1

ξ2 −ξ1 0

⎞
⎟
⎠

ξ21 + ξ22 + ξ23
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TABLE III. Three-dimensional class-B Lie–Poisson algebras (Bianchi
classification). To avoid redundancy, for type IVη, η ≠ 0, 1. The Casimir
of type VIIη≠0 needs further classification: η2

> 4 gives [denoting
λ± = (−η ±

√

η2 − 1)/2] CVIIη≠0 = λ− log(−λ−ξ1 − ξ2) − λ+ log(λ+ξ1
+ ξ2); η = ±2 gives CVIIη≠0 =

±ξ2
ξ1∓ξ2

+ log(ξ1 ∓ ξ2); and η2
< 4 gives (putting

a = −η/2 and ω =
√

1 − η2/4, i.e., λ± = a ± iω) CVIIη≠0 = 2a arctan aξ1+ξ2
ωξ1

− ω log[(aξ1 + ξ2)2 + (ωξ1)2].

Type Poisson matrix J(ξ) Casimir invariant

III
⎛
⎜
⎝

0 0 ξ1
0 0 0
−ξ1 0 0

⎞
⎟
⎠

ξ2

IV
⎛
⎜
⎝

0 0 ξ1
0 0 ξ1 + ξ2
−ξ1 −ξ1 − ξ2 0

⎞
⎟
⎠

ξ2
ξ1
− log ξ1

V
⎛
⎜
⎝

0 0 ξ1
0 0 ξ2
−ξ1 −ξ2 0

⎞
⎟
⎠

ξ2
ξ1

VIη≠−1
⎛
⎜
⎝

0 0 ξ1
0 0 ηξ2
−ξ1 −ηξ2 0

⎞
⎟
⎠

ξ2
ξη
1

VIIη≠0
⎛
⎜
⎝

0 0 ξ2
0 0 −ξ1 + ηξ2
−ξ2 ξ1 − ηξ2 0

⎞
⎟
⎠

CVIIη≠0 (ξ1, ξ2)

For example, the Euler top obeys Hamilton’s equation d
dt ξ = JIX(ξ)∂ξH with a HamiltonianH = ∑3

j=1ξ2j /Ij (Ij being the inertial moment along
the axis ej).1

As announced in Sec. II A, the PRS system of the rattleback is a type-VI system; with the VIη Poisson matrix JVI(ξ) and a symmetric
Hamiltonian H(ξ) = ∥ξ∥2/2, Hamilton’s equation d

dt ξ = JVI(ξ)∂ξH, under the correspondences ξ1 = P, ξ2 = R, ξ3 = S, and η = −α, reproduces
the PRS system (1).

B. Class-A and class-B
The Bianchi types are divided into two classes: class A, composed of types I, II, VI−1, VII0, VIII, and IX, and class B, composed of types

III, IV,V,VIη≠−1, and VIIη≠0. Somewhat fortuitously, this classification turns out to separate non-chiral systems from chiral: the class-A
systems maintain the Hamiltonian symmetry, while class-B systems have chiral spectra. Before analyzing the reason for this, we summarize
some direct observations.

In Tables II and III, we list the Casimirs for the Lie–Poisson brackets associated with each algebra. We find that the Casimirs of class-
A Lie–Poisson brackets (Table II) are all quadratic forms, while those of class-B (Table III) are “singular” functions. Therefore, the class-A
Casimir leaves are algebraic varieties, each of which defines a two-dimensional symplectic manifold (see Fig. 1). On the other hand, every
class-B leaf contains a singularity of some kind, so it is only locally symplectic (see Fig. 2).

C. Spectra of class-A and class-B Lie–Poisson systems around singularities
Let us calculate the spectra of the linearized systems around singular equilibrium points. We exclude the trivial [J(ξ) ≡ 0] type-I system.

The singularity [the set of singular equilibrium points: σ = {ξs ∈ X∗; J(ξs) = 0}] varies from two-dimensional to zero-dimensional:

● σ = {ξ = (0 ξ2 ξ3)T} for type II and III.
● σ = {ξ = (0 0 ξ3)T} from type IV through VII.
● σ = {ξ = (000)T} for type VIII and IX.

The generator of the linear system is, as given in (27),

(Aℓ
j ) = [h(ξs), ○]

∗ = (cℓjkhk),
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FIG. 1. The foliated phase spaces of the class-A Bianchi Lie–Poisson algebras. The leaves are level sets of the Casimirs given in Table II.

where hk = ∂ξkH∣ξs . In three-dimensional systems, the orbit is given by the intersection of the levels of the Casimir C(ξ̃) and the linearized
energy H1(ξ̃) (Proposition 1). Because of the foliation by C(ξ̃), one of the eigenvalues of the linearized system (27) must be zero. For the
spectrum to be Hamiltonian, the remaining two eigenvalues must be either a pair ±iω of imaginary numbers or a pair ±γ of real numbers.
Therefore, the Hamiltonian symmetry implies a time-reversal symmetry.

FIG. 2. The foliated phase spaces of the class-B Bianchi Lie–Poisson algebras. The leaves are level sets of the Casimirs given in Table III.
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TABLE IV. Linearized class-A systems around a singular equilibrium point ξs. The singularity
σ = {ξ; J(ξ) = 0}, the generator A = [h(ξs), ○ ]∗, and the characteristic equation det(λI −A) = 0
of each class-A Bianchi Lie–Poisson system are summarized (those of class-B systems are given in
Table V). We denote hj = ∂ξjH∣ξs . Type-I algebra is omitted because it is abelian so that the Poisson
bracket is trivial.

Class A σ A det(λI −A) = 0

II ξ1 = 0 plane
⎛
⎜
⎝

0 0 0
h3 0 0
−h2 0 0

⎞
⎟
⎠

λ3 = 0

VI−1 ξ3-axis
⎛
⎜⎜
⎝

h3 0 0
0 −h3 0

−h1 h2 0

⎞
⎟⎟
⎠

λ(λ − h3)(λ + h3) = 0

VII0 ξ3-axis
⎛
⎜⎜
⎝

0 h3 0
−h3 0 0
h2 −h1 0

⎞
⎟⎟
⎠

λ(λ2 + (h3)2) = 0

VIII ξ = 0 point
⎛
⎜⎜
⎝

0 h3 h2

−h3 0 −h1
h2 −h1 0

⎞
⎟⎟
⎠

λ[λ2 − ((h1)2 + (h2)2 − (h3)2)] = 0

IX ξ = 0 point
⎛
⎜⎜
⎝

0 −h3 h2

h3 0 −h1
−h2 h1 0

⎞
⎟⎟
⎠

λ[λ2 + ((h1)2 + (h2)2 + (h3)2)] = 0

Tables IV and V summarize the spectra of each linearized system. It is evident that the spectra of the class-A systems (Table IV) have
the Hamiltonian symmetry, while those of the class-B systems (Table V) do not. For example, class-B, type VI with h3 = ∂ξ3H (H = ∥ξ∥2/2)
reproduces the rattleback chiral spectra under the correspondences ξ3 = S and η = −α [see (2)].

TABLE V. Linearized class-B systems around a singular equilibrium point ξs.

Class B σ A det(λI −A) = 0

III ξ1 = 0 plane
⎛
⎜
⎝

h3 0 0
0 0 0

−h1 0 0

⎞
⎟
⎠

λ2(λ − h3) = 0

IV ξ3-axis
⎛
⎜⎜
⎝

h3 0 0
h3 h3 0

−(h1 + h2) −h2 0

⎞
⎟⎟
⎠

λ(λ − h3)2 = 0

V ξ3-axis
⎛
⎜⎜
⎝

h3 0 0
0 h3 0

−h1 −h2 0

⎞
⎟⎟
⎠

λ(λ − h3)2 = 0

VIη≠−1 ξ3-axis
⎛
⎜⎜
⎝

h3 0 0
0 ηh3 0

−h1 −ηh2 0

⎞
⎟⎟
⎠

λ(λ − h3)(λ − ηh3) = 0

VIIη≠0 ξ3-axis
⎛
⎜⎜
⎝

0 h3 0
−h3 ηh3 0
h2 −h1 − ηh2 0

⎞
⎟⎟
⎠

λ(λ2 − ηh3λ + (h3)2) = 0
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As mentioned in Sec. II D, the linearization about a singular equilibrium point does not yield a (linear) Hamiltonian system (unlike the
linearization about a regular equilibrium point), so it is more surprising that the class-A systems do have Hamiltonian spectra than that the
class-B systems break the Hamiltonian symmetry. The reason for these correspondences will be elucidated in Sec. IV.

D. Geometrical interpretation
We notice that all Bianchi Lie–Poisson matrices (Tables II and III) are reversed (J ↦ −J) by the transformation T 3 : ξ3 ↦ −ξ3. Hence,

Hamilton’s equation of motion (10) is invariant with respect to the time-reversalT t : t ↦ −t combined withT 3. Evidently, all Casimir leaves
are invariant with respect to the transformation T 3 (in Figs. 1 and 2, ξ3 is the vertical axis).

The linearized systems inherit this time-reversal symmetry of the original Hamiltonian system. In the context of spectral symmetry,
however, there is an additional constraint to be taken into account. Notice that the transformation T 3 flips the sign of h3 = ∂ξ3H. With this
transformation, all spectra of class-A systems (Table IV), as well as those of class-B systems (Table V), have the time-reversal symmetry.
However, in the linear theory, the coefficients included in the generator A are fixed numbers pertinent to the equilibrium state ξs. Therefore,
in the argument of spectral symmetry, h3 must not be transformed. Here, class A contrasts with class B, because of the existence of alternative
transformations. The Poisson matrices of type II, type VII0, type VIII, and type IX are reversed by the transformation T 2 : ξ2 ↦ −ξ2. The
Poisson matrix of type-VI−1 is reversed by T 12 : (ξ1 ξ2)↦ (ξ2 ξ1). These transformations yield the Hamiltonian (time-reversal symmetric)
spectra of the corresponding linearized generators. To the contrary, the Poisson matrices of class B do not have such symmetry; evidently, the
Casimir invariants of class-B algebras are not invariant with respect to T 2 or T 12.

Let us see how the non-Hamiltonian (chiral) spectra are created in the class-B systems. The existence of the singularity σ on the Casimir
leaves (excepting those of type-VIη≠−1 with η < 0, which will be discussed separately) poses an obstacle for the time-reversal symmetry. By
Proposition 1, the orbits are on the levels of Casimirs C(ξ̃). The levels of the linearized energy HL(ξ̃) are planes including ξs ∈ σ; hence, the
orbits are connected to the singularities, implying that only real eigenvalues can occur. The Casimir invariants C(ξ1, ξ2) of class-B systems,
however, forbids the co-existence a pair time constants γ and −γ.

As noted above, type-VIη≠−1 with η < 0 is somewhat special. Although the singularity σ = ξ3-axis is not included in the Casimir leaves,
each level of C(ξ) is divided into separate surfaces, preventing circulating orbits around ξs ∈ σ. Hence, only real eigenvalues can occur, and
only the special value η = −1 yields symmetric eigenvalues λ = ±h3.

IV. DEFORMATION OF LIE–POISSON ALGEBRAS
A. Deformation of observables and its reflection to Lie algebras

The central idea of the following exploration is to characterize the variety of three-dimensional Lie–Poisson algebras (and their underly-
ing Lie algebras) as deformations from amother algebra.4 We will show that the symmetry and asymmetry of the deformations correspond to
classes A and B.

Remembering the argument of Sec. II B, it stands to reason that we ask how phenomena will vary when we modify the observables
(cf. Remark 2). WithM ∈ End(X∗), we deform the Lie–Poisson bracket (12) as

{G,H}M = ⟨[∂ξG,∂ξH],Mξ⟩ = ⟨∂ξG, [∂ξH,Mξ]∗⟩. (30)

Hence, the deformed Poisson matrix (operator) is

JM(ξ) = J(Mξ). (31)

With the adjoint matrix (operator)MT ∈ End(X), we may rewrite (30) as

{G,H}M = ⟨MT[∂ξG,∂ξH], ξ⟩ = ⟨[∂ξG,∂ξH]M , ξ⟩. (32)

Therefore, we may interpret { , }M as the Lie–Poisson bracket produced by the deformed Lie bracket [ , ]M =MT[ , ]. For this deformation to
be allowed, [ , ]M must satisfy Jacobi’s identity (other conditions for Lie brackets are clearly satisfied). Let us study how this condition applies
by examining the three-dimensional Lie algebras, for which we have a complete list, as reviewed in Sec. III.

B. Three-dimensional systems: Deformation of so(3)
We show that all types of the three-dimensional Lie algebras can be derived by the deformations from one simple Lie algebra. The

“mother” is the type-IX algebra [denoted by gIX, which is nothing but so(3)] that is characterized by

[ei, ej]IX = ϵijkek. (33)

In vector-analysis notation, we may write [a, b]IX = a × b.
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The multiplication table of the deformed bracket is given by calculating

[ei, ej]M =MT[ei, ej]IX. (34)

If this bracket satisfies Jacobi’s identity, we obtain a deformed Lie algebra, which we will denote by gM . Before discussing the Jacobi constraint
need for the possible deformation matrix MT, we derive it directly from the multiplication tables of the Lie algebras (see Table VI). The
following relations are readily deduced:

1. For a class-A algebra,M is symmetric, while for a class-B algebra,M is non-symmetric. This fact brings about fundamental differences
between both classes, to be discussed later.

2. Let g′ denote the derived algebra of g (which is the ideal of g consisting of elements such that [ej, ek]). Since g′IX = gIX,

dim g
′

M = RankM,

TABLE VI. Bianchi classification of three-dimensional Lie
algebra. Here, we unify the classification by a general
matrix M.

Class A M RankM

I 0 0

II
⎛
⎜
⎝

1 0 0
0 0 0
0 0 0

⎞
⎟
⎠

1

VI−1
⎛
⎜
⎝

0 −1 0
−1 0 0
0 0 0

⎞
⎟
⎠

2

VII0
⎛
⎜
⎝

−1 0 0
0 −1 0
0 0 0

⎞
⎟
⎠

2

VIII
⎛
⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎟
⎠

3

IX
⎛
⎜
⎝

1 0 0
0 1 0
0 0 1

⎞
⎟
⎠

3

Class B M RankM

III
⎛
⎜
⎝

0 0 0
−1 0 0
0 0 0

⎞
⎟
⎠

1

IV
⎛
⎜
⎝

1 1 0
−1 0 0
0 0 0

⎞
⎟
⎠

2

V
⎛
⎜
⎝

0 1 0
−1 0 0
0 0 0

⎞
⎟
⎠

2

VIη≠−1
⎛
⎜
⎝

0 η 0
−1 0 0
0 0 0

⎞
⎟
⎠

2

VIIη≠0
⎛
⎜
⎝

−1 η 0
0 −1 0
0 0 0

⎞
⎟
⎠

2
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where RankM = 3 − dimKerM = 3 − dimCokerMT. In Table VI,

dim g
′

I = 0,
dim g

′

II = dim g
′

III = 1,
dim g

′

III = ⋅ ⋅ ⋅ = dim g
′

VII = 2,
dim g

′

VIII = dim g
′

IX = 3.

Now, we examine the conditions on M for [ , ]M =MT[ , ]IX to be a Lie bracket. We can produce all three-dimensional Lie algebras by
the following process. The dimension of the derived algebra plays the role of a guide (cf. Ref. 15).

1. For dim g′M = 3, only symmetric M is allowed; otherwise, Jacobi’s identity does not hold. Since MT must not have a kernel (to obtain
dim g′M = 3), we have to demand

[[e1, e2]M , e3]IX + [[e2, e3]M , e1]IX + [[e3, e1]M , e2]IX = 0.

Inserting [ej, ek]M =MT[ej, ek]IX, the left-hand side reads

(MT
23 −MT

32)e1 + (MT
31 −MT

13)e2 + (MT
12 −MT

21)e3.

Hence, we need MT
jk =MT

kj for all j ≠ k. From this observation, it is also evident that for every symmetric M, regardless of its rank,
[ , ]M =MT[ , ]IX is a Lie bracket. Hence, all class-A algebras are produced by some symmetricM. For degenerateM (i.e., for dim g′M <
3), however, the symmetry condition can be weakened, and some non-symmetricM can still define Lie algebras.

2. To define dim g′M = 2, we suppose that thematrixM is rank 2 so that KerM = CokerM(= KerMT) = {e3}, i.e.,M = N ⊕ 0 with a regular
2 × 2 matrix N (notice that all rank-2 matricesM of Table VI have such forms; the reason why we need this setting will become clear in
the following construction). Then, g′M is abelian; for e1, e2 ∈ g′M ,

[e1, e2]M =MT[e1, e2]IX =MTe3 = 0. (35)

The multiplication table is completed by evaluating [e1, e3]M and [e2, e3]M . By definition,

[○, e3]M =MT[○, e3]IX.

Since the range of the operator on the right-hand side excludes CokerMT = KerM = {e3}, we see that g′M is indeed an ideal of gM (to
put it in another way, if the condition KerM = {e3} is violated, it causes a contradiction with the derived algebra g′M being an ideal). To
evaluate [○, e3]M for g′M , we may define the 2 × 2 matrix

A = NT[○, e3]IX = NT( 0 −1
1 0 ).

This A is identical to the matrix given in the work of Jacobson [Eq. (18)],15 by which we obtain

([e1, e3]M[e2, e3]M) = A(
e1
e2
).

Interestingly, for every regular matrixA (thus, for every regular matrixN), the deformed product [ , ]M satisfies the Jacobi identity (each
[[ei, ej]M , ek]M vanishes separately), so gM is a Lie algebra. This is primarily due to the fact that the derived algebra g′M is abelian. If the
condition KerMT = {e3} is violated, (35) does not hold, and then, Jacobi’s identity is not satisfied (see Remark 5). Therefore, we do
need both KerMT = KerM = {e3} (i.e.,M = N ⊕ 0 with regular N) to derive a dim g′M = 2 algebra.

3. For dim g′M = 1, a symmetric rank-1M defines a class-A algebra that is type II (Heisenberg algebra). There is another possibility. Let e1
be the element of the one-dimensional g′M . Then, e2, e3 ∈ KerM. Except for the symmetric one, the only possibility is of the form

M =
⎛
⎜
⎝

0 0 0
−1 0 0
0 0 0

⎞
⎟
⎠
,

which gives
[e1, e2]M = 0, [e1, e3]M = e1, [e2, e3]M = 0.

We may check that Jacobi’s identity holds. This is the type-III algebra.
4. Evidently,M = 0 yields dim g′M = 0, which corresponds to the abelian type-I algebra.

J. Math. Phys. 61, 082901 (2020); doi: 10.1063/1.5145218 61, 082901-14
Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Remark 5 (InadequateM). For the derivation of dim g′M = 2, we assumed thatM is such that N ⊕ 0 with regular N. Let us demonstrate
that other types of degenerateM deteriorate the deformation.

(1) First, consider

M =
⎛
⎜
⎝

1 1 0
0 0 1
0 0 0

⎞
⎟
⎠
,

which has KerM = e1 − e2, while KerMT = e3. The multiplication table becomes
[e1, e2]M = 0, [e2, e3]M = e1 + e2, [e3, e1]M = e3 ∉ g′M .

Hence, g′M fails to be an ideal.
(2) Take the transposed one asM,

M =
⎛
⎜
⎝

1 0 0
1 0 0
0 1 0

⎞
⎟
⎠
,

which has KerM = e3, while KerMT = e1 − e2. The multiplication table becomes

[e1, e2]M = e2, [e2, e3]M = e1, [e3, e1]M = e1,

which violates Jacobi’s identity,
[[e1, e2]M , e3]M + [[e2, e3]M , e1]M + [[e3, e1]M , e2]M = e1 − e2.

Note that the residual is in KerMT.

Summarizing the forgoing results, we have the following:

Theorem 1 (Deformation of so(3)). Every three-dimensional real Lie bracket can be written as [ , ]M =MT[ , ]IX, with M ∈ End(R3),
which is chosen from the following two classes:

1. class A: M is an arbitrary symmetric 3 × 3matrix.
2. class B: M = N ⊕ 0 (N is an arbitrary asymmetric 2 × 2matrix).

Accordingly, we have a unified representation of all three-dimensional Lie–Poisson brackets,

{G,H}M = ⟨[∂ξG,∂ξH]M , ξ⟩ = ⟨[∂ξG,∂ξH]IX,Mξ⟩. (36)

The corresponding Poisson operator is
JM(ξ)○ = JIX(Mξ)○ = [○,Mξ]∗IX = −(Mξ) × ○. (37)

The singularity (where the rank of the Poisson operator becomes zero) is

σ = KerM.

Corollary 1 (Casimirs of class-A Lie–Poisson brackets). Let M ∈ End(R3) be a symmetric matrix (of any rank). Then, the Lie–Poisson
bracket {G,H}M = ⟨[∂ξG,∂ξH]IX,Mξ⟩ has a Casimir given by a quadratic form

C(ξ) = 1
2
⟨ξ,Mξ⟩. (38)

Proof. By the symmetry ofM, ∂ξC =Mξ. Inserting this, we obtain

JM(ξ)∂ξC = JIX(Mξ)Mξ = −(Mξ) × (Mξ) = 0.

■
This corollary does not preclude the existence of Casimirs for the class-B algebras; as shown in Table III, they are singular functions in

the sense that each Casimir leaf contains the singularity σ where Rank J(ξ) drops to zero. As we will see in Subsection IV C, this singularity is
related to the chirality of the spectra.

The three-dimensional Lie algebras are special in that all of them have a unique mother so(3), and the symmetry/asymmetry of the
deformation matrix M determines the classification into A and B. As we will see later (Sec. V), this is no longer true in higher dimensions
so that we will need to introduce “class C” to separate the classes A and B. Before extending to higher dimensions, we show how the class-A
algebras yield Hamiltonian symmetric spectra around the singularities. This property will be used as the determinant of class A in higher
dimensions.
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C. Spectra of three-dimensional Lie–Poisson systems
Let us analyze the spectra of the three-dimensional Lie–Poisson systems linearized around the singularities ξs ∈ σ = KerM. The aim is

to prove the Hamiltonian symmetry for the class-A systems and, conversely, that this symmetry is generally broken for class-B systems. As is
easily inferred, the Hamiltonian symmetry of the class-A systems is due to the symmetry of the deformation matrixM.

Let H(ξ) be an arbitrary Hamiltonian (energy-Casimir functional) and denote h = ∂ξH∣ξs , which is a fixed vector. The linearized
equation (27) reads

d
dt

ξ̃ = [h, ξ̃]∗M = [h,Mξ̃]∗IX. (39)

Because type IX is semi-simple, we may formally calculate as [a, b]∗IX = [a, b]IX = a × b (see Remark 1). Therefore, the right-hand side of (39)
reads

[h, ξ̃]∗M = [h,Mξ̃]∗IX = −[Mξ̃,h]∗IX = −JIX(h)Mξ̃. (40)

Note that Mξ̃ is now regarded as a member of X. With the constant-coefficient matrix J h = −JIX(h), the linearized equation (39) can be
written as

d
dt

ξ̃=J hMξ̃. (41)

By the definition, J h defines a homogeneous Poisson bracket {G,H}h = ⟨∂ξ̃G,J h∂ξ̃H⟩ (see Remark 2). If M is a symmetric matrix (class
A), we can define a ‘Hamiltonian”

C(ξ̃) = 1
2
⟨Mξ̃, ξ̃⟩,

by which the linearized equation (41) reads Hamilton’s equation

d
dt

ξ̃=J h∂ξ̃C(ξ̃). (42)

Hence, the spectra of class A have the Hamiltonian symmetry (Remark 4). The Hamiltonian C(ξ̃) is nothing but the Casimir evaluated for the
perturbation (see Corollary 1).

Remembering Proposition 1, one may postulate that the other invariant, the linearized energy H1(ξ̃) = ⟨h, ξ̃⟩ is the Casimir of J h. One
can easily confirm that this is true. It is remarkable that the roles of the Casimir and Hamiltonian are switched when linearized around the
singularity.

For the class-B Lie–Poisson systems, M is not symmetric, so J hM is not a Hamiltonian generator; hence, its spectrum need not have
the Hamiltonian symmetry. However, C(ξ̃) and H1(ξ̃) are still invariant (Proposition 1).

In summary, we have the following corollary of Theorem 1:

Corollary 2 (Hamiltonian spectral symmetry).A three-dimensional class-A Lie–Poisson system, given by a symmetric deformationmatrix
M, has Hamiltonian symmetric spectra when linearized around a singular equilibrium point ξs ∈ Ker(M).

Remark 6 (Linearized class-A system). Corollary 2 explains the observation in Sec. III C. The mathematical structure underlying the
class-A linearized systems has the following two common ingredients that produce Hamiltonian symmetric spectra around the singularities:

1. The full antisymmetry of the “mother” bracket [x,ϕ]IX = [x,ϕ]∗IX = ϵijkxiϕjek, which is used in (40) to obtain the Poisson matrix
J h = −JIX(h).

2. The symmetry of the deformation matrixM, which is used in (41) to define the “Hamiltonian” 1
2 ⟨Mξ̃, ξ̃⟩.

V. EXTENSION TO HIGHER DIMENSIONS
For dimension greater than three, the range of deformation falls short of encompassing all possible Lie algebras. Yet, we can produce a

class of Lie algebras (and the associated Lie–Poisson brackets) by symmetric and asymmetric deformations of some fully antisymmetric Lie
algebras. We propose an extended classification:

Definition 1 (Classification into A, B, and C). Let g be an n-dimensional real Lie algebra.

● If g is fully antisymmetric (i.e., the Lie bracket is given by fully antisymmetric structure constants), or it is the deformation of some fully
antisymmetric Lie algebra by a symmetric matrix M ∈ End(Rn), we say that g is class A.

● If g is the deformation of some fully antisymmetric Lie algebra by an asymmetric matrix M ∈ End(Rn), we say that g is class B.
● If g is neither class A nor class B, we say that g is class C.
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Remember that every three-dimensional Lie algebra is either class A or class B because all of them are produced by deformations of the
unique “mother” so(3). We can easily generalize Corollary 2 to arbitrary dimension:

Theorem 2 (Hamiltonian spectral symmetry). Suppose that gM is a real n-dimensional class-A Lie algebra endowed with a Lie bracket
[ , ]M =MT[ , ]AS, where [ , ]AS is a fully antisymmetric Lie bracket and M ∈ End(Rn) is a symmetric matrix. Then, the linearized generator

A = −[h,M○]∗AS (h ∈ gM)

has the Hamiltonian symmetric spectra. On the other hand, the linearization of the class-B or class-C system has chiral (non-Hamiltonian)
spectra.

The proof is evident from Remark 6. Note that this theorem does not preclude the possibility of Hamiltonian symmetry of spectra in
class-B or class-C systems; special selection of h can produce symmetric spectra (see Table V).

By Remark 1, we find

Corollary 3 (Semi-simple Lie–Poisson system).When a Lie–Poisson bracket {G,H} = ⟨[∂ξG,∂ξH]g, ξ⟩ is defined by the Lie bracket [ , ]g
of a semi-simple Lie algebra g, it is class-A so that the linearized generator A = −[h, ○]∗g = −[h, ○]g (h ∈ g) has Hamiltonian symmetric spectra.
The Casimir 1

2 ∣ξ∣
2 is the Hamiltonian of the linearized system.

We also note that unlike the case of three-dimensional Lie algebras, the deformation matrix M is not so easily found, as in Theorem 1.
Even a symmetric M may deteriorate Jacobi’s identity. A small-rank M such as N ⊕n−2 0 no longer yields an abelian derived algebra, so the
multiplication table of the deformed algebra must be carefully constructed to satisfy Jacobi’s identity.

To see how the extended classification applies, let us examine the four-dimensional Lie algebras; we invoke the complete list given in
Ref. 14.

As is well known, there are no simple (or semi-simple) four-dimensional Lie algebras (we exclude algebras that are direct sums of lower-
dimensional algebras). For the “mother” algebra, we choose a fully antisymmetric algebraR⊕ so(3) [which is not in the list of Ref. 14 because
it has the three-dimensional sub-algebra so(3)]; the multiplication table of this algebra is

[○, e1] [○, e2] [○, e3] [○, e4]
e1
e2
e3

0 0 0 0
− 0 e4 −e3
− − 0 e2

.

The linearized generator [h, ○]∗ = −[○,h]∗ (here we have used the full asymmetry) has Hamiltonian spectra determined by the characteristic
equation λ2(λ2 + ∣h∣2) = 0. All possible deformation matrices and the resultant multiplication tables are listed below:

1. Symmetric deformation yielding A4,10 (class A) algebra:

MT =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

[○, e1] [○, e2] [○, e3] [○, e4]
e1
e2
e3

0 0 0 0
− 0 e1 −e3
− − 0 e2

.

The linearized generator has Hamiltonian spectra determined by the characteristic equation λ2(λ2 + (h4)2) = 0.
2. Symmetric deformation yielding A4,8 (class A) algebra:

MT =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

[○, e1] [○, e2] [○, e3] [○, e4]
e1
e2
e3

0 0 0 0
− 0 e1 e2
− − 0 −e3

.

The linearized generator has Hamiltonian spectra determined by the characteristic equation λ2(λ − h4)(λ + h4) = 0.
3. Symmetric deformation yielding A4,1 (class A) algebra:

MT =
⎛
⎜⎜⎜
⎝

0 0 0 1
0 −1 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎟
⎠
,

[○, e1] [○, e2] [○, e3] [○, e4]
e1
e2
e3

0 0 0 0
− 0 e1 0
− − 0 −e2

.

The linearized generator has only zero eigenvalue.
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4. Asymmetric deformation yielding A4,3 (class B) algebra:

MT =
⎛
⎜⎜⎜
⎝

0 −1 0 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
,

[○, e1] [○, e2] [○, e3] [○, e4]
e1
e2
e3

0 0 0 0
− 0 e2 0
− − 0 −e1

.

The linearized generator has chiral spectra determined by the characteristic equation λ3(λ − h3) = 0.

As shown in Table I of Ref. 14, there are twelve four-dimensional real Lie algebras (excluding those which are direct sums of lower-
dimensional algebras). Separating out the aforementioned four algebras, the remaining eight are class C, i.e., they are not obtained by any
deformation of a fully antisymmetric four-dimensional Lie algebra. As easily inferred, the linearized generator is not Hamiltonian. For
example, the A4,12 algebra

[○, e1] [○, e2] [○, e3] [○, e4]
e1
e2
e3

0 0 e1 −e2
− 0 e2 e1
− − 0 0

.

is class C. The characteristic equation of the linearized generator is λ2[(λ − h3)2 + (h4λ)2] = 0, which gives a chiral spectrum.

VI. VECTOR BUNDLE OF so(3) FIBERS AND ITS DEFORMATIONS
Here, we give an example of an infinite-dimensional Poisson manifold that is relevant to vortex dynamics in fluids.

A. Vector bundle
We introduce a base space Ω ⊂ R3, which is a bounded domain with a smooth boundary ∂Ω. We consider the vector bundle E that

consists of fibers of the so(3) algebra; each fiber has the Lie bracket

[a, b]IX = a × b (a, b ∈ R3).

We assume that each v ∈ E is a C∞-class three-vector function of x ∈ Ω and write it as v(x). Then, E is regarded as a function space (totality
of C∞-class cross-sections) endowed with a Lie bracket,

[[v(x),w(x)]]IX = v(x) ×w(x), (x ∈ Ω).

The L2-completion of E is denoted by V . Taking the L2 inner product as the paring ⟨ , ⟩, the phase space is V∗ = V . Evidently, [[ , ]]∗IX
= [[ , ]]IX. For a functional F ∈ C∞(V∗), we define the gradient ∂uF ∈ V by

δF = F(u + ϵũ) − F(u) = ϵ⟨∂uF, ũ⟩ +O(ϵ2) (∀ũ ∈ V∗).

The “mother” Lie–Poisson bracket (which will be deformed in various ways) is

{{ F,G }}IX ∶= ⟨[[∂uF,∂uG]]IX,u⟩ = ⟨∂uF, [[∂uG,u]]∗IX⟩, (43)

and the corresponding Poisson operator is
J IX(u) = [[ ○ ,u]]∗IX = ( ○ × u). (44)

We may evaluate the brackets on the dense subset E ⊂ V∗ = V .

B. Local deformations
By applying the deformation using a 3 × 3 constant-coefficient matrix M of a type specified in Theorem 1, we obtain a bundle of three-

dimensional Lie algebras. Each of them is just the “direct sum” of the local Lie algebras; hence, Jacobi’s identity evidently holds.
An asymmetric M yields a bundle of class-B algebra, and the corresponding Lie–Poisson system exhibits chirality. Let us demonstrate

this with type III. Using

M =
⎛
⎜
⎝

0 0 0
−1 0 0
0 0 0

⎞
⎟
⎠
,
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(see Table. VI), we define a bracket
[[v(x),w(x)]]III ∶=MT[[v(x),w(x)]]IX =MT(v(x) ×w(x)). (45)

Evidently, this defines a Lie algebra on E. The Lie–Poisson bracket (43) is deformed to

{{ F,G }}III = ⟨[[∂uF,∂uG]]III,u⟩ = ⟨[[∂uF,∂uG]]IX,Mu⟩, (46)

which gives a Poisson operator
J III(u) = ○ × (Mu), (47)

where Mu = (0 − u1 0)T. This deformed system exhibits chirality. The linearized equation around the singularity u1 = 0 is (denoting
h = ∂uH∣u1=0)

∂

∂t

⎛
⎜
⎝

ũ1
ũ2
ũ3

⎞
⎟
⎠
=
⎛
⎜
⎝

−h3ũ1
0
h1ũ1

⎞
⎟
⎠
,

which generates a chiral solution ũ1 ∝ e−h
3t . Here, h3 is a function of space x, so −h3 is a continuous spectrum.

C. Deformation by the “curl” operator: Vortex dynamics system
Here, we deform u ∈ E by a differential operator curl (to be denoted by ∇×) and choose vorticity ω = ∇× u as our observable. Then, we

obtain the Lie–Poisson bracket of vortex dynamics. We start by preparing the mathematical definition of the curl operator.

1. Self-adjoint curl operator
We consider a subspace EΣ ⊂ E consisting of smooth three-vectors that are solenoidal (∇ ⋅ v = 0), tangential to the boundary (n ⋅ v = 0,

where n⋅ is the trace of the normal component onto ∂Ω), and zero-flux (∫ Sν ⋅ vd2x = 0, where S is an arbitrary cross section of the handle, if
any, of Ω and ν⋅ is the trace of the normal component onto S). Let L2Σ(Ω) be the Hilbert space given by the L2-completion of EΣ,

L2Σ(Ω) = {v ∈ L2(Ω); ∇ ⋅ v = 0, n ⋅ v = 0, ∫
S
ν ⋅ v d2x = 0}.

The orthogonal complement of L2Σ(Ω) is Ker (∇×), which we will denote by L2Π(Ω), i.e.,

L2(Ω) = L2Σ(Ω)⊕ L2Π(Ω).

We denote by P Σ the orthogonal projection onto L2Σ(Ω) (when operated, this projector subtracts the irrotational component) and
P Π = I−P Σ.

To formulate a system of vortex dynamics, we invoke the self-adjoint curl operator given by Ref. 16. Let

H1
ΣΣ(Ω) = {u ∈ L2Σ(Ω); ∇× u ∈ L2Σ(Ω)},

which is a dense, relatively compact subset of L2Σ(Ω). We define a self-adjoint operator in LΣ(Ω) such that Su = ∇× u on the domainH1
ΣΣ(Ω).

This is a surjection to L2Σ(Ω) with a compact inverse S−1, so the set of eigenfunctions of S gives an orthogonal complete basis of LΣ(Ω).
Combining with P Σ, we consider S in L2(Ω),

S = SP Σ. (48)

We may write S = S⊕ 0P Π. Evidently, S is a self-adjoint operator in V∗ = L2(Ω) (note that this S is different from the non-self-adjoint
curl operator T or T̃ discussed in Ref. 16).

2. Deformation by the self-adjoint curl operator
Let us deform {{G,H }}IX = ⟨[[∂uG,∂uH]]IX,u⟩ to ⟨[[∂uG,∂uH]]IX,S u⟩ [which means that we deform the Poisson operator J IX(u) to

J IX(S u)]. Consequently, the Lie bracket [[u,v]]IX of E is deformed to

[[ω,ϕ]]S =S [[ω,ϕ]]IX (ω,ϕ ∈ EΣ). (49)

Note that we define the Lie algebra on a reduced space EΣ=P ΣE (see Remark 8). On EΣ, we may evaluate (using∇ ⋅ ω = ∇ ⋅ ϕ = 0)

S [[ω,ϕ]]IX = ∇× (ω × ϕ) = (ϕ ⋅ ∇)ω − (ω ⋅ ∇)ϕ.

The right-hand side is nothing but the Lie derivative of the vector: Lϕω. Hence, Jacobi’s identity is evident (being equivalent to the Leibniz
law for Lie derivatives) (cf. Ref. 19).
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The reduction to EΣ is naturally implemented in the definition of the deformed Lie–Poisson bracket because EΣ can be regarded as the
phase space of vorticities; by the definition of the self-adjoint curl operator S, we find

EΣ = {ω =S u; u ∈ E}.

By the chain rule, we observe, for a functional F(ω) ∈ C∞(EΣ),

δF = ⟨∂uF, ũ⟩ = ⟨∂ωF, ω̃⟩ = ⟨∂ωF,S ũ⟩ = ⟨S ∂ωF, ũ⟩.

Therefore, we may evaluate, for a functional F(ω) ∈ C∞(EΣ),

∂uF =S ∂ωF.

We define the curl-deformed Lie–Poisson bracket on C∞(EΣ),

{{G,H }}S ∶= ⟨[[∂uG,∂uH]]IX,S u⟩
= ⟨[[S ∂ωG,S ∂ωH]]IX,ω⟩
= ⟨S ∂ωG, [[S ∂ωH,ω]]∗IX⟩
= ⟨∂ωG,S [[S ∂ωH,ω]]∗IX⟩. (50)

The corresponding Poisson operator reads

JS (ω) =S ((S ○ ) × ω)=P Σ∇× ((∇× ○ ) × ω), (51)

which applies to the vortex dynamics equation for formulating a Hamiltonian form (see Remark 7). The Casimir is

C(ω) = 1
2
⟨S−1ω,ω⟩, (52)

which is known as the helicity, an important invariant of ideal (barotropic and dissipation-free) fluid motion.

Remark 7 (Vortex dynamics). The “Hamiltonian” of the incompressible fluid (mass density = 1) is given by

H(ω) = 1
2∫Ω
∣S−1ω∣2 d3x = 1

2∫Ω
∣u∣2 d3x. (53)

Here, u = S−1ω ∈ L2Σ(Ω) is the dynamical component of the fluid velocity [the irrotational component ∈ L2Π(Ω) is fixed by the boundary
condition and the circulation law]. Hamilton’s equation d

dtF = {{F,H}}S yields the vortex dynamics equation

∂tω = −∇ × (ω × u). (54)

The helicity

C(ω) = 1
2∫Ω

ω ⋅ S−1ω d3x = 1
2∫Ω

S u ⋅ u d3x (55)

is a Casimir of the bracket {{G,H }}S .

Evidently, this curl-deformed system is class A. The linearized equation reads, denoting h = (S ∂ωH)ω=0,

∂tω̃ =S (h × ω̃). (56)

By the symmetry S (h × ω̃) = −S (ω̃ × h), we may rewrite the right-hand side of (56) as, using the Poisson operator of (51) and the Casimir
of (52),

∂tω̃ = −JS (h)S−1ω̃ = −JS (h)∂ω̃C(ω̃), (57)

which is a linear Hamiltonian system with the Casimir as the Hamiltonian (the linear operator has a continuous spectrum due to flow shear;
cf. Refs. 17 and 18).

Remark 8 (Reduction). In the definition (49) of the curl-deformed Lie bracket [[ , ]]S , we reduced the state space from E to EΣ=P ΣE
=S E. In some sense, this means that we are considering a derived algebra, or, the ideal consisting of members such that S [[v,w]]IX
(∀u,v ∈ E, while S [[v,w]]IX is not a Lie bracket on E). If we apply a similar reduction to the three-dimensional Lie algebras discussed in
Sec. IV B, i.e., if we evaluate the deformed bracket [ , ]M =MT[ , ]IX on MTX, it becomes abelian (as mentioned when we derived rank-2
systems). However, the present example of reduction yields the non-abelian algebra.
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D. Variety of vortex systems
We may modify the standard curl operator to a variety of differential operators, by which we can formulate generalized vortex systems.

We consider a symmetric deformation by a combined self-adjoint operator

M =MTS +SM, (58)

whereM is some deformation matrix (either symmetric or asymmetric; see Table. VI).
We define a deformed vorticity

ωM =M u, (u ∈ E). (59)

The totality of the deformed vorticity constitutes a phase space,

EM = {ωM =M u; u ∈ E}. (60)

On C∞(EM ), we define a deformed Lie–Poisson bracket (denoting ωM =M u)

{{G,H }}M ∶= ⟨[[∂uG,∂uH]]IX,M u⟩
= ⟨[[M ∂ωMG,M ∂ωMH]]IX,ωM⟩
= ⟨∂ωMG,M [[M ∂ωMH,ωM]]∗IX⟩.

The corresponding Poisson operator is
JM (ωM) =M ((M ○ ) × ωM), (61)

which has a Casimir
C(u) = 1

2
⟨M −1

0 ωM ,ωM⟩,

where M 0 =M /Ker(M ) so that M M −1
0 ωM = ωM . This symmetric Casimir plays the role of the Hamiltonian in the linearized system,

resulting in the Hamiltonian symmetry of the spectra.

VII. CONCLUSION
The Lie–Poisson algebra is a special class of Poisson algebras, which is naturally introduced to the phase space X∗ that is dual to some

Lie algebra X. The coadjoint action, generated by a Hamiltonian (a smooth function on X∗), describes the evolution of an observable (point
ξ ∈ X∗). The problem we have explored is how the Lie algebra X is deformed when we transform the observable ξ ↦Mξ by M ∈ End(X∗).
Guided by Bianchi’s list of Lie algebras, we found that the symmetry/asymmetry of the deformation matrix M gives an interesting classifi-
cation A/B, which corresponds to the Hamiltonian symmetry/asymmetry of spectra in the neighborhood of the singularity (nullity) of the
coadjoint action; the symmetry breaking, occurring in class-B systems, appears as chirality (breaking of the time-reversal symmetry) in the
neighborhood of the singularity, which is forbidden in usual Hamiltonian spectra evaluated around regular equilibrium points (critical points
of a given Hamiltonian). Since the linearization works out differently in the neighborhood of singularities (which commonly exists in Lie–
Poisson manifolds, but the dimension of the set of singularities depends on the Lie algebra), there is no general reason for the spectra to have
the Hamiltonian symmetry. Therefore, it is more interesting that class-A systems maintain the Hamiltonian symmetry (Remark 6 explains
how this occurs).

The deformation induced by M ∈ End(X∗) is different from a “coordinate change” in a Lie algebra (or the isomorphic deformations;
see Ref. 4); in the latter, T ∈ Aut(X) applies as [x, y]↦ [x′, y′]T ∶= T[T−1x′,T−1y′]. It is also different from a reduction (homomorphism to a
sub-algebra; see Ref. 20, as well as Remark 8) or a constraint yielding a Dirac bracket (see Ref. 19). It is a back reaction to the Lie algebra caused
by deforming the observable. Possible deformations M are rather restricted (even for symmetric ones) by guaranteeing Jacobi’s identity for
the deformed bracketMT[ , ]. Interestingly, however, the three-dimensional Lie algebras are totally derived from so(3) by some deformations.
Given a base space, this mother algebra produces a variety of field models; the deformation by the self-adjoint curl operator, for example, yields
the Poisson manifold (infinite-dimensional) of vortex dynamics. However, it is challenging to obtain class-B infinite-dimensional systems and
demonstrate chirality in such field theories. This will be discussed in future work.
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